
Real-Time Programming & RTOS

Concurrent and real-time programming tools

1

Concurrent Programming

Concurrency in real-time systems

I typical architecture of embedded real-time system:

I several input units
I computation
I output units
I data logging/storing

I i.e., handling several concurrent activities

I concurrency occurs naturally in real-time systems

Support for concurrency in programming languages (Java, Ada, ...)
advantages: readability, OS independence, checking of interactions by
compiler, embedded computer may not have an OS

Support by libraries and the operating system (C/C++ with POSIX)
advantages: multi-language composition, language’s model of concurrency
may be difficult to implement on top of OS, OS API stadards imply portability

2

Processes and Threads

Process
I running instance of a program,
I executes its own virtual machine to avoid interference from

other processes,
I contains information about program resources and

execution state, e.g.:
I environment, working directory, ...
I program instructions,
I registers, heap, stack,
I file descriptors,
I signal actions, inter-process communication tools (pipes,

message boxes, etc.)
Thread
I exists within a process, uses process resources ,
I can be scheduled by OS and run as an independent entity,
I keeps its own: execution stack, local data, etc.
I share global data and resources with other threads of the

same process
3

Processes and threads in UNIX

4

Process (Thread) States

5

Process (Thread) Initialization and Termination

Initialization
I explicit process (thread) declaration
I fork (and join)
I cobegin, coend

Termination
I completion of execution
I “suicide” by execution of a self-terminte statement
I abortion, through the explicit action of another process

(thread)
I ocurrence of an error condition
I never (process is a non-terminating loop)

6

Concurrent Programming is Complicated

Multi-threaded applications with shared data may have
numerous flaws
I Race condition

Two or more threads try to access the same shared data, the result
depends on the exact order in which their instructions are executed

I Deadlock
occurs when two or more threads wait on each other, forming a cycle
and preventing all of them from making any forward progress

I Starvation
an idefinite delay or permanent blocking of one or more runnable
threads in a multithreaded application

I Livelock
occurs when threads are scheduled but are not making forward
progress because they are continuously reacting to each other’s state
changes

Usually difficult to find bugs and verify correctness
7

Communication and Synchronization

Communication
I passing of information from one process (thread) to

another
I typical methods: shared variables, message passing

Synchronization
I satisfaction of constraints on the interleaving of actions of

processes
e.g. action of one process has to occur after an action of another one

I typical methods: semaphores, monitors

Communication and synchronization are linked:
I communication requires synchronization
I synchronization corresponds to communication without

content
8

Communication: Shared Variables

Consistency problems:
I unrestricted use of shared variables is unreliable
I multiple update problem

example: shared variable X , assignment X := X + 1
I load the current value of X into a register
I increment the value of the register
I store the value of the register back to X

I two processes executing these instruction⇒ certain
interleavings can produce inconsistent results

Solution:
I parts of the process that access shared variables must be

executed indivisibly with respect to each other
I these parts are called critical section
I required protection is called mutual exclusion

... one may use a special mutual ex. protocol (e.g. Peterson) or
a synchronization mechanism – semaphores, monitors

9

Synchronization: Semaphores

A sempahore contains an integer variable that, apart from
initialization, is accessed only through two standard operations:
wait() and signal().

I semaphore is initialized to a non-negative value (typically 1)

I wait() operation: decrements the semaphore value if the value
is positive; otherwise, if the value is zero, the caller becomes
blocked

I signal() operation: increments the semaphore value; if the
value is not positive, then one process blocked by the
semaphore is unblocked (usually in FIFO order)

I both wait and signal are atomic

Semaphores are elegant low-level primitive but error prone and hard
to debug (deadlock, missing signal, etc.)

10

Synchronization: Monitors

I encapsulation and efficient condition synchronization
I critical regions are written as procedures; all encapsulated in a

single object or module
I procedure calls into the module are guaranteed to be mutually

exclusive
I shared resources accessible only by these procedures

In some cases processes may need to wait until some condition
holds true. The condition may be made true by another process using
the monitor.

Solution: condition variables
I only two operations can be invoked on a condition variable x :

I x.wait() = calling process is suspended until another
process invokes x.notify()

I x.notify() = resumes exactly one waiting process

11

Synchronization: Monitors

12

Communication: Message Passing

I asynchronous (no-wait): send operation is not blocking,
requires buffer space (mailbox)

I synchronous (rendezvous): send operation is blocking,
no buffer required

I remote invocation (extended rendezvous): sender is
blocked until reply is received

13

Synchronous Message Passing

14

Asynchronous Message Passing

15

Asynch. Message Passing with Bounded Buffer

16

Real-Time Aspects

I time-aware systems make explicit references to the time
frame of the enclosing environment
e.g. a bank safe’s door are to be locked from midnight to nine o’clock

I the "real-time" of the environment must be available

I reactive systems are typically concerned with relative
times
an output has to be produced within 50 ms of an associated input

I must be able to measure intervals
I usually must synchronize with environment: input sampling

and output signalling must be done very regularly with
controlled variability

17

The Concept of Time
Real-time systems must have a concept of time – but what is time?
I Measure of a time interval

I Units?
seconds, milliseconds, cpu cycles, system "ticks"

I Granularity, accuracy, stability of the clock source
I Is "one second" a well defined measure?

"A second is the duration of 9,192,631,770 periods of the
radiation corresponding to the transition between the two
hyperfine levels of the ground state of the caesium-133
atom."

I ... temperature dependencies and relativistic effects (the
above definition refers to a caesium atom at rest, at mean
sea level and at a temperature of 0 K)

I Skew and divergence among multiple clocks
Distributed systems and clock synchronization

I Measuring time
I external source (GPS, NTP, etc.)
I internal – hardware clocks that count the number of

oscillations that occur in a quartz crystal
18

Requirements for Interaction with "time"

For RT programming, it is desirable to have:
I access to clocks and representation of time
I delays
I timeouts
I deadline specification and real-time scheduling

19

Access to Clock and Representation of Time

I requires a hardware clock that can be read like a regular
external device

I mostly offered by an OS service, if direct interfacing to the
hardware is not allowed

Example of time representation
(POSIX high resolution clock, counting seconds and nanoseconds since
1970 with known resolution)

20

Delays
In addition to having access to a clock, need ability to
I Delay execution until an arbitrary calendar time

What about daylight saving time changes? Problems with leap seconds.

I Delay execution for a relative period of time
I Delay for t seconds

I Delay for t seconds after event e begins

21

A Repeated Task (An Attempt)

The goal is to do work repeatedly every 100 time units

while(1) {
delay(100);
do_work();

}

Does it work as intended? No, accumulates drift ...

Each turn in the loop will take at least 100 + x milliseconds,
where x is the time taken to perform do_work()

22

A Repeated Task (An Attempt)

The goal is to do work repeatedly every 100 time units

while(1) {
delay(100);
do_work();

}

Does it work as intended? No, accumulates drift ...

Delay is just lower bound, a delaying process is not guaranteed
access to the processor (the delay does not compensate for this)

23

Eliminating (Part of) The Drift: Timers

I Set an alarm clock, do some work, and then wait for
whatever time is left before the alarm rings

I This is done with timers
I Two types of timers

I one-shot
I periodic

I Thread is told to wait until the next ring – accumulating drift
is eliminated

I Even with timers, drift may still occur, but it does not
accumulate (local drift)

24

Timeouts

Synchronous blocking operations can include timeouts
I Synchronization primitives

Semaphores, condition variables, locks, etc.
... timeout usually generates an error/exception

I Networking and other I/O calls
E.g. select() in POSIX

May also provide an asynchronous timeout signal
I Detect time overruns during execution of periodic and

sporadic tasks

25

Deadline specification and real-time scheduling

Clock driven scheduling trivial to implement via cyclic executive

Other scheduling algorithms need OS and/or language support:

I System calls create, destroy, suspend and resume tasks
I Implement tasks as either threads or processes

Threads usually more beneficial than processes (with separate address
space and memory protection):

I Processes not always supported by the hardware
I Processes have longer context switch time
I Threads can communicate using shared data (fast and

more predictable)
I Scheduling support:

I Preemptive scheduler with multiple priority levels
I Support for aperiodic tasks (at least background

scheduling)
I Support for sporadic tasks with acceptance tests, etc.

26

Jobs, Tasks and Threads

I In theory, a system comprises a set of (abstract) tasks,
each task is a series of jobs

I tasks are typed, have various parameters, react to events,
etc.

I Acceptance test performed before admitting new tasks

I A thread (or a process) is the basic unit of work handled by
the scheduler

I Threads are the instantiation of tasks that have been
admitted to the system

How to map tasks to threads?

27

Periodic Tasks

Real-time tasks defined to execute periodically T = (φ,p,e,D)

It is clearly inefficient if the thread is created and destroyed
repeatedly every period

I Some op. systems (funkOS) and programming languages
(Real-time Java & Ada) support periodic threads

I the kernel (or VM) reinitializes such a thread and puts it to
sleep when the thread completes

I The kernel releases the thread at the beginning of the next
period

I This provides clean abstraction but needs support from OS
I Thread instantiated once, performs job, sleeps until next period,

repeats
I Lower overhead, but relies on programmer to handle timing
I Hard to avoid timing drift due to sleep overuns

(see the discussion of delays earlier in this lecture)
I Most common approach

28

Sporadic and Aperiodic Tasks

Events trigger sporadic and aperiodic tasks
I Might be extenal (hardware) interrupts
I Might be signalled by another task

Usual implementation:
I OS executes periodic server thread

(background server, deferrable server, etc.)

I OS maintains a “server queue” = a list of pointers which give
starting addresses of functions to be executed by the server

I Upon the occurrence of an event that releases an aperiodic or
sporadic job, the event handler (usually an interrupt routine)
inserts a pointer to the corresponding function to the list

29

Real-Time Programming & RTOS

Real-Time Operating systems

30

Operating Systems – What You Should Know ...

An operating system is a collection of software that manages
computer hardware resources and provides common services
for computer programs.

Basic components multi-purpose OS:
I Program execution & process management

processes (threads), IPC, scheduling, ...
I Memory management

segmentation, paging, protection ...
I Storage & other I/O management

files systems, device drivers, ...
I Network management

network drivers, protocols, ...
I Security

user IDs, privileges, ...
I User interface

shell, GUI, ...
31

Operating Systems – What You Should Know ...

32

Implementing Real-Time Systems

I Key fact from scheduler theory: need predictable behavior
I Raw performance less critical than consistent and

predictable performance; hence focus on scheduling
algorithms, schedulability tests

I Don’t want to fairly share resources – be unfair to ensure
deadlines met

I Need to run on a wide range of – often custom – hardware
I Often resource constrained:

limited memory, CPU, power consumption, size, weight, budget
I Closed set of applications

(Do we need a wristwatches to play DVDs?)
I Strong reliability requirements – may be safety critical
I How to upgrade software in a car engine? A DVD player?

33

Implications on Operating Systems

I General purpose operating systems not well suited for
real-time

I Assume plentiful resources, fairly shared amongst
untrusted users

I Serve multiple purposes
I Exactly opposite of an RTOS!

I Instead want an operating system that is:
I Small and light on resources
I Predictable
I Customisable, modular and extensible
I Reliable

... and that can be demonstrated or proven to be so

34

Implications on Operating Systems

I Real-time operating systems typically either cyclic
executive or microkernel designs, rather than a traditional
monolithic kernel

I Limited and well defined functionality
I Easier to demonstrate correctness
I Easier to customise

I Provide rich support for concurrency & real-time control
I Expose low-level system details to the applications

control of scheduling, interaction with hardware devices, ...

35

Cyclic Executive without Interrupts
I The simplest real-time systems use a “nanokernel” design

I Provides a minimal time service: scheduled clock pulse
with a fixed period

I No tasking, virtual memory/memory protection etc.
I Allows implementation of a static cyclic schedule, provided:

I Tasks can be scheduled in a frame-based manner
I All interactions with hardware to be done on a polled basis

I Operating system becomes a single task cyclic executive

36

Microkernel Architecture

I Cyclic executive widely used in low-end embedded devices

I 8 bit processors with kilobytes of memory
I Often programmed in (something like) C via cross-compiler,

or assembler
I Simple hardware interactions
I Fixed, simple, and static task set to execute
I Clock driven scheduler

I But many real-time embedded systems are more complex,
need a sophisticated operating system with priority
scheduling

I Common approach: a microkernel with priority scheduler
Configurable and robust, since architected around interactions between
cooperating system servers, rather than a monolithic kernel with ad-hoc
interactions

37

Microkernel Architecture

I A microkernel RTOS typically provides:
I Timing services, interrupt handling, support for hardware

interaction
I Task management, scheduling
I Messaging, signals
I Synchronization and locking
I Memory management (and sometimes also protection)

38

Latency

(Some) sources of hard to predict latency caused by the
system:
I Interrupts

see next slide

I System calls
RTOS should characterise WCET; kernel should be preemptable

I Memory management: paging
avoid, either use segmentation with a fixed memory management
scheme, or memory locking

I Caches
may introduce non-determinism; there are techniques for computing
WCET with processor caches

I DMA
competes with processor for the memory bus, hard to predict who wins

39

Interrupts

The amount of time required to handle interrupt varies

Thus in most OS, interrupt handling is divided into two steps
I Immediate interrupt service

very short; invokes a scheduled interrupt handling routine

I Scheduled interrupt service
preemptable, scheduled as an ordinary job at a suitable priority

40

Immediate Interrupt Service

Interrupt latency is the time between interrupt request and execution
of the first instruction of the interrupt service routine

The total delay caused by interrupt is the sum of the following factors:

I the time the processor takes to complete the current instruction,
do the necessary chores (flush pipeline and read the interrupt
vector), and jump to the trap handler and interrupt dispatcher

I the time the kernel takes to disable interrupts

I the time required to complete the immediate interrupt service
routines with higher-priority interrupts (if any) that occurred
simultaneously with this one

I the time the kernel takes to save the context of the interrupted
thread, identify the interrupting device, and get the starting
address of the interrupt service routine

I the time the kernel takes to start the interrupt service routine

41

Event Latency

42

Example RTOS: FreeRTOS

I RTOS for embedded devices (currently ported to 34
microcontrollers)

I Distributed under GPL
I Written in C, kernel consists of 3+1 C source files

(approx. 9000 lines of code including comments)

I Largely configurable

43

Example RTOS: FreeRTOS

I The OS is (more or less) a library of object modules;
the application and OS modules are linked together in the
resulting executable image

I Prioritized scheduling of tasks
I tasks correspond to threads (share the same address

space; have their own execution stacks)
I highest priority executes; same priority⇒ round robin
I implicit idle task executing when no other task executes⇒

may be assigned functionality of a background server
I Synchronization using semaphores
I Communication using message queues
I Memory management

I no memory protection in basic version (can be extended)
I various implementations of memory management

memory can/cannot be freed after allocation, best fit vs
combination of adjacent memory block into a single one

That’s (almost) all 44

Example RTOS: FreeRTOS

Tiny memory requirements: e.g. IAR STR71x ARM7 port, full
optimisation, minimum configuration, four priorities⇒
I size of the scheduler = 236 bytes
I each queue adds 76 bytes + storage area
I each task 64 bytes + the stack size

45

Real-Time Programming & RTOS

Real-Time Programming Languages

Brief Overview

46

C and POSIX

IEEE 1003 POSIX
I "Portable Operating System Interface"
I Defines a subset of Unix functionality, various (optional)

extensions added to support real-time scheduling, signals,
message queues, etc.

I Widely implemented:
I Unix variants and Linux
I Dedicated real-time operating systems
I Limited support in Windows

Several POSIX standards for real-time scheduling
I POSIX 1003.1b ("real-time extensions")
I POSIX 1003.1c ("pthreads")
I POSIX 1003.1d ("additional real-time extensions")
I Support a sub-set of scheduler features we have discussed

47

POSIX Scheduling API

48

POSIX Scheduling API (Threads)

Thread scheduling API mirrors process scheduling API
same scheduling policies, priorities, etc.

49

Threads: Example I

#include <pthread.h>

pthread_t id;
void *fun(void *arg) {
// Some code sequence

}

main() {
pthread_create(&id, NULL, fun, NULL);
// Some other code sequence

}

50

Threads: Example II

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid)
{
printf("\n%d: Hello World!\n", threadid);
pthread_exit(NULL);

}

int main (int argc, char *argv[])
{
pthread_t threads[NUM_THREADS];
int rc, t;
for(t=0; t<NUM_THREADS; t++){
printf("Creating thread %d\n", t);
rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
if (rc){
printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);

}
}
pthread_exit(NULL);

}

51

POSIX: Synchronization

(Counting) semaphores

Mutexes = variables that can be locked by threads
I pthread_mutex_init(mutex,attr)

I pthread_mutex_lock(mutex) – attempt to lock a mutex, if
the mutex is already locked, this call blocks the thread
(may implement a priority inheritance protocol)

I pthread_mutex_trylock(mutex) – if the mutex is locked,
returns immediately with "busy" error code

I pthread_mutex_unlock(mutex)

Can be used in combination with condition variables to
implement a monitor

52

POSIX: Communication – Signals
Signal is an asynchronous notification sent to a process (or a thread)
in order to notify it of an event that occurred.

When a signal is sent, the operating system interrupts the target
process’s normal flow of execution to deliver the signal.

Execution can be interrupted during any non-atomic instruction.

Moreover,
I Signal can be sent to a process by executing kill(pid,sig)

where pid is the process number (0 means self)
I Signals are also generated by dividing with zero, addresing

outside your address space, etc.
I Each thread can block incoming signals on a per-signal basis,

define signal handlers for each signal it might receive, and
queue signals

I No data transfer
I Can be used to handle exceptions

53

POSIX: Message Passing

I POSIX supports asynchronous, indirect message passing
through the notion of message queues

I A message queue can have many readers and many writers
I Intended for communication between processes (not threads)
I Message queues have attributes which indicate their maximum

size, the size of each message, the number of messages
currently queued etc.

I mq_open (also creates queue), mq_close, mq_send, mq_receive
I Data is read/written from/to a character buffer.
I If the buffer is full or empty, the sending/receiving process is

blocked unless the attribute O_NONBLOCK has been set for the
queue (in which case an error return is given)

I If senders and receivers are waiting when a message queue
becomes unblocked, it is not specified which one is woken up
unless the priority scheduling option is specified

... for more see sys/ipc.h, sys/msg.h, mqueue.h, ... 54

POSIX: Real-Time Support

Getting Time
I time() = seconds since Jan 1 1970
I gettimeofday() = seconds + nanoseconds since Jan 1

1970
I tm = structure for holding human readable time

I POSIX requires at least one clock of minimum resolution
50Hz (20ms)

55

POSIX: High Resolution Time & Timers

High resolution clock. Known clock resolution.

Simple waiting: sleep, or

Sleep for the interval specified. May return earlier due to signal
(in which case remaining gives the remaining delay).

Accuracy of the delay not known (and not necessarily correlated to
clock_getres() value)

56

POSIX: Timers

I type timer_t; can be set:
I relative/absolute time
I single alarm time and an optional repetition period

I timer “rings” by sending a signal

int timer_create(clockid_t clockid, struct sigevent *sevp,
timer_t *timerid);

int timer_settime(timer_t timerid, int flags,
const struct itimerspec *new_value,
struct itimerspec * old_value);

where

struct itimerspec {
struct timespec it_interval; /* Timer interval */
struct timespec it_value; /* Initial expiration */

};

57

POSIX Scheduling API

I Four scheduling policies:
I SCHED_FIFO = Fixed priority, pre-emptive, FIFO on the same

priority level
I SCHED_RR = Fixed priority, pre-emptive, round robin on the

same priority level
I SCHED_SPORADIC = Sporadic server
I SCHED_OTHER = Unspecified (often the default time-sharing

scheduler)
I A process can sched_yield() or otherwise block at any time
I POSIX 1003.1b provides (largely) fixed priority scheduling

I Priority can be changed using sched_set_param(), but this
is high overhead and is intended for reconfiguration rather
than for dynamic scheduling

I No direct support for dynamic priority algorithms (e.g. EDF)
I Limited set of priorities:

I Use sched_get_priority_min(),
sched_get_priority_max() to determine the range

I Guarantees at least 32 priority levels 58

Using POSIX Scheduling: Rate Monotonic

Rate monotonic and deadline monotonic schedules can be
naturally implemented using POSIX primitives

1. Assign priorities to tasks in the usual way for RM/DM
2. Query the range of allowed system priorities
sched_get_priority_min() and
sched_get_priority_max()

3. Map task set onto system priorities
Care needs to be taken if there are large numbers of tasks, since some
systems only support a few priority levels

4. Start tasks using assigned priorities and SCHED_FIFO

There is no explicit support for indicating deadlines, periods

EDF scheduling not supported by POSIX

59

Using POSIX Scheduling: Sporadic Server

POSIX 1003.1d defines a hybrid sporadic/background server

When server has budget, runs at sched_priority, otherwise
runs as a background server at sched_ss_low_priority
Set sched_ss_low_priority to be lower priority than real-time tasks, but
possibly higher than other non-real-time tasks in the system

Also defines the replenishment period and the initial budget
after replenishment

60

POSIX-compliant RTOS

Examples of POSIX-compliant implementations:
I commercial:

I VxWorks
I QNX
I OSE

I Linux-related:
I RTLINUX
I RTAI

61

Java

I object-oriented programming language
I developed by Sun Microsystems in the early 1990s
I compiled to bytecode (for a virtual machine), which is

compiled to native machine code at runtime
I syntax of Java is largely derived from C/C++

62

Concurrency: Threads

I predefined class java.lang.Thread – provides the
mechanism by which threads are created

I to avoid all threads having to be child classes of Thread, it
also uses a standard interface:

public interface Runnable {
public abstract void run();

}

I any class which wishes to express concurrent execution
must implement this interface and provide the run()
method

63

Threads: Creation & Termination

Creation:

I dynamic thread creation, arbitrary data to be passed as
parameters

I thread hierarchies and thread groups can be created

Termination:

I one thread can wait for another thread (the target) to
terminate by issuing the join method call on the target’s
thread object

I the isAlive method allows a thread to determine if the
target thread has terminated

I garbage collection cleans up objects which can no longer
be accessed

I main program terminates when all its user threads have
terminated

64

Synchronized Methods

I monitors are implemented in the context of classes and
objects

I lock associated with each object; lock cannot be accessed
directly by the application but is affected by

I the method modifier synchronized
I block synchronization

I synchronized method – access to the method can only
proceed once the lock associated with the object has been
obtained

I non-synchronized methods do not require the lock, can be
called at any time

65

Waiting and Notifying

I wait() always blocks the
calling thread and releases the
lock associated with the object

I notify() wakes up one
waiting thread
which thread is woken is not defined

I notifyAll() wakes up all
waiting threads

I if no thread is waiting, then
notify() and notifyAll()
have no effect

66

Real-Time Java

I Standard Java is not enough to handle real-time constraints

I Java (and JVM) lacks semantic for standard real-time
programming techniques.

I Embedded Java Specification was there, but merely a subset of
standard Java API.

I There is a gap for a language real-time capable and equipped
with all Java’s powerful advantages.

I IBM, Sun and other partners formed Real-time for Java Expert
Group sponsored by NIST in 1998

I It came up with Real-Time Specification for Java (RTSJ) to fill
this gap for real-time systems

I RTSJ proposed seven areas of enhancements to the standard
Java

67

RTSJ – Areas of Enhancement

1. Thread scheduling and dispatching
see the next slides

2. Memory management
immortal memory (no garbage collection), threads not preemptable by
garbage collector

3. Synchronization and resource sharing
priority inheritance and ceiling protocols

4. Asynchronous event handling, asynchronous transfer of
control, asynchronous thread termination
reaction to OS-level signals (POSIX), hardware interrupts and custom
events defined and fired by the application

5. Physical memory access

The resulting real-time extension needs a modified Java virtual
machine due to changes to memory model, garbage collector
and thread scheduling

68

Real-Time Java: Time

I java.lang.System.currentTimeMilis returns the number
of milliseconds since Jan 1 1970

I Real Time Java adds real time clocks with high resolution
time types

Timers
I one shot timers (javax.realtime.OneShotTimer)
I periodic timers (javax.realtime.PeriodicTimer)

Constructor:
Timer(HighResolutionTime t, Clock c, AsyncEventHandler handler)

... create a timer that fires at time t, according to Clock c and is handled by
the specified handler.

69

Real-Time Thread Scheduling

I Extends Java with a schedulable interface and
RealtimeThread class, and numerous supporting libraries

⇒ Allows definition of timing and scheduling parameters,
and memory requirements of threads

I Abstract Scheduler and SchedulingParameters classes
defined

I Allows a range of schedulers to be developed
I Current standards only allow system-defined schedulers;

cannot write a new scheduler without modifying the JVM
I Current standards provide a pre-emptive fixed priority

scheduler (PriorityScheduler class)
I Allows monitoring of execution times; missed deadlines;

CPU budgets
I Allows thread priority to be changed programatically
I Limited support for acceptance tests (isFeasible())

70

Real-Time Thread Scheduling

I Class hierarchy to express
release timing parameters

I Deadline monitoring:
missHandler if deadline
exceeded

I Execution time monitoring:

I cost = needed CPU time
I overrunHandler if

execution time budget
exceeded

71

Real-Time Thread Scheduling

I The RealtimeThread class extends Thread with extra
methods and parameters

I Direct support for periodic threads
I run() method will be a loop ending in a
waitForNextPeriod() call

I ... i.e. does not have to be implemented using sleep as e.g.
with POSIX API

72

Ada

I designed for United States
Department of Defense during
1977-1983

I targeted at embedded and
real-time systems

I Ada 95 revision
I used in critical systems

(avionics, weapon systems,
spacecrafts)

I free compiler: gnat

Ada Lovelace
(1815-1852)

... see the lecture of Petr Holub.

73

