
Real-Time Scheduling

Priority-Driven Scheduling

Aperiodic Tasks

1

Current Assumptions

I Single processor
I Fixed number, n, of independent periodic tasks

I Jobs can be preempted at any time and never suspend
themselves

I No resource contentions

I Aperiodic jobs exist
I They are independent of each other, and of the periodic

tasks
I They can be preempted at any time

I There are no sporadic jobs (for now)
I Jobs are scheduled using a priority driven algorithm

2

Scheduling Aperiodic Jobs

Consider:
I A set T = {T1, . . . ,Tn} of periodic tasks
I An aperiodic task A

Recall that:
I A schedule is feasible if all jobs with hard real-time

constraints complete before their deadlines

⇒ This includes all periodic jobs
I A scheduling algorithm is optimal if it always produces a

feasible schedule whenever such a schedule exists, and if
a cost function is given, minimizes the cost

We assume that the periodic tasks are scheduled using a
priority-driven algorithm

3

Background Scheduling of Aperiodic Jobs

I Aperiodic jobs are scheduled and executed only at times
when there are no periodic jobs ready for execution

I Advantages
I Clearly produces feasible schedules
I Extremely simple to implement

I Disadvantages
I Not optimal since the execution of aperiodic jobs may be

unnecessarily delayed

Example: T1 = (3,1), T2 = (10,4)

4

Polled Execution of Aperiodic Jobs

I We may use a polling server
I A periodic job (ps ,es) scheduled according to the periodic

algorithm, generally as the highest priority job
I When executed, it examines the aperiodic job queue

I If an aperiodic job is in the queue, it is executed for up to es

time units
I If the aperiodic queue is empty, the polling server

self-suspends, giving up its execution slot
I The server does not wake-up once it has self-suspended,

aperiodic jobs which become active during a period are not
considered for execution until the next period begins

I Simple to prove correctness, performance less than ideal –
executes aperiodic jobs in particular timeslots

5

Polled Execution of Aperiodic Jobs

Example: T1 = (3,1), T2 = (10,4), poller = (2.5,0.5)

Can we do better?

Yes, polling server is a special case of periodic-server for
aperiodic jobs

6

Periodic Severs – Terminology

periodic server = a task that behaves much like a periodic task,
but is created for the purpose of executing aperiodic jobs

I A periodic server, TS = (pS ,eS)
I pS is a period of the server
I eS is the (maximal) budget of the server

I The budget can be consumed and replenished; the budget
is exhausted when it reaches 0
(Periodic servers differ in how they consume and replenish the budget)

I A periodic server is
I backlogged whenever the aperiodic job queue is non-empty
I idle if the queue is empty
I eligible if it is backlogged and the budget is not exhausted

I When a periodic server is eligible, it is scheduled as any
other periodic task with parameters (pS ,eS)

7

Periodic Severs

Each periodic server is thus specified by
I consumption rules: How the budget is consumed
I replenishment rules: When and how the budget is

replenished

Polling server
I consumption rules:

I Whenever the server executes, the budget is consumed at
the rate one per unit time.

I Whenever the server becomes idle, the budget gets
immediately exhausted

I replenishment rule: At each time instant k · pS replenish
the budget to eS

8

Periodic Severs

Deferrable sever
I Consumption rule:

I The budget is consumed at the rate of one per unit time
whenever the server executes

I Unused budget is retained throughout the period, to be
used whenever there are aperiodic jobs to execute
(i.e. instead of discarding the budget if no aperiodic job to execute
at start of period, keep in the hope a job arrives)

I Replenishment rule:
I The budget is set to eS at multiples of the period

I i.e. time instants k · pS for k = 0,1,2, . . .
(Note that the server is not able tu cumulate the budget over
periods)

We consider both
I Fixed-priority scheduling
I Dynamic-priority scheduling (EDF)

9

Deferrable Server – RM

Here the tasks are scheduled using RM.

Is it possible to increase the budget of the server to 1.5 ?

10

Deferrable Server – RM

Consider T1 = (3.5,1.5), T2 = (6.5,0.5) and TDS = (3,1)

A critical instant for T1 = (3.5,1.5) looks as follows:

i.e. increasing the budget above 1 may cause T1 to miss its
deadline

11

Deferrable Server – Critical Instant

Lemma 1
Assume a fixed-priority scheduling algorithm. Assume that
Di ≤ pi and that the deferrable server (pS ,eS) has the highest
priority among all tasks. Then a critical instant of every periodic
task Ti occurs at a time t0 when all of the following are true:
I One of its jobs Ji,c is released at t0
I A job in every higher-priority periodic task is released at t0
I The budget of the server is eS at t0, one or more aperiodic

jobs are released at t0, and they keep the server
backlogged hereafter

I The next replenishment time of the server is t0 + eS

12

Deferrable Server – Critical Instant

Assume T1 A T2 A · · · A Tn
(i.e. T1 has the highest pririty and Tn lowest)

13

Deferrable Server – Time Demand Analysis

Assume that the deferrable server has the highest priority
I The definition of critical instant is identical to that for the

periodic tasks without the deferrable server +
the worst-case requirements for the server

I Thus the expression for the time-demand function
becomes

wi(t) = ei +

i−1∑
k=1

⌈
t

pk

⌉
ek +eS +

⌈
t − eS

pS

⌉
eS for 0 < t ≤ pi

I To determine whether the task Ti is schedulable, we simply
check whether wi(t) ≤ t for some t ≤ Di
Remember, this is a sufficient condition, not necessary

I Check whether wi(t) ≤ t for some t equal either
I to Di , or
I to j · pk where k = 1,2, . . . , i and j = 1,2, . . . , bDi/pk c, or
I to eS ,eS + pS ,eS + 2pS , . . . ,eS +

⌊
(Di − ei)/pS

⌋
pS

14

Deferrable Server – Time Demand Analysis

T1 = (2,3.5,1.5), T2 = (6.5,0.5) and TS = (3,1.0)

15

Deferrable Server – Schedulable Utilization

I No maximum schedulable utilization is known in general
I A special case:

I A set T of n independent, preemptable periodic tasks
whose periods satisfy pS < p1 < · · · < pn < 2pS and
pn > pS + eS and whose relative deadlines are equal to
their respective periods, can be scheduled according to RM
with a deferrable server provided that

UT
≤ URM/DS(n) := (n − 1)

(uS + 2
uS + 1

) 1
n−1

− 1

where uS = eS/pS

16

Deferrable Server – EDF

Here the tasks are scheduled using EDF.
T1 = (2,3.5,1.5), T2 = (6.5,0.5) and TDS = (3,1)

17

Deferrable Server – EDF – Schedulability

Theorem 2
A set of n independent, preemptable, periodic tasks satisfying
pi ≤ Di for all 1 ≤ i ≤ n is schedulable with a deferrable server
with period pS , execution budget eS and utilization uS = eS/pS
according to the EDF algorithm if:

n∑
k=1

uk + uS

(
1 +

pS − eS

mini Di

)
≤ 1

18

Sporadic Server – Motivation

I Problem with polling server: TPS = (pS ,eS) executes
aperiodic tasks at the multiples of pS

I Problem with deferrable server: TDS = (pS ,eS) may delay
lower priority jobs longer than periodic task (pS ,eS)
therefore special version of time-demand analysis and utilization
bounds were needed

I Sporadic server TSS = (eS ,pS)
I may execute jobs “in the middle” of its period
I never delays periodic tasks for longer time than the periodic

task (pS ,eS)
thus can be tested for schedulability as an ordinary periodic task

Originally proposed by Sprunt, Sha, Lehoczky in 1989
original version contains a bug which allows longer delay of lower priority jobs

Part of POSIX standard
also incorrect as observed and (probably) corrected by Stanovich in 2010

19

Very Simple Sporadic Server
For simplicity, we consider only fixed priority scheduling, i.e. assume
T1 A T2 A · · · A Tn and consider a sporadic server TSS = (pS ,eS) with
the highest priority

Notation:
I tr = the latest replenishment time
I tf = first instant after tr at which server begins to execute
I nr = a variable representing the next replenishment

I Consumption rule: The budget is consumed (at the rate of one
per unit time) at any time t ≥ tf

I Replenishment rules: At the beginning, tr = nr = 0
I Whenever the current time is equal to nr , the budget is set

to eS and tr is set to the current time
I At the first instant tf after tr at which the server starts

executing, nr is set to tf + pS

(Note that such server resembles a periodic task with the highest priority
whose jobs are released at times tf and execution times are at most eS) 20

Very Simple Sporadic Server
T1 A T2 A · · · A Tn and TSS = (pS ,eS) has the highest priority

We say that T = {T1, . . . ,Tn} is idle at t if no task Ti is ready for
execution, or executing at t

Notation:
I tr = the latest replenishment time
I tf = first instant after tr at which server begins to execute
I nr = a variable representing the next replenishment

I Consumption rule: The budget is consumed (at the rate of one
per unit time) at any time t ≥ tf

I Replenishment rules: At the beginning, tr = nr = 0
I Whenever the current time is equal to nr , the budget is set

to eS and tr is set to the current time
I At the first instant tf after tr at which the server starts

executing, nr is set to tf + pS
I IMPROVEMENT: If T becomes idle before nr = tf + pS , and

becomes busy again at tb , then nr is set to min{tf + pS , tb } 21

Very Simple Sporadic/Background Server

Another improvement:
I Consumption rule: The budget is consumed (at the rate of one

per unit time) at any time t ≥ tf whenever T is not idle

I Replenishment rules: At the beginning, tr = nr = 0

I Whenever the current time is equal to nr , the budget is set
to eS and tr is set to the current time

I At the first instant tf after tr at which the server starts
executing and T is not idle, nr is set to tf + pS

I At the beginning of an idle interval of T , the budget is set to
eS and nr is set to the end of this interval

This server combines the idea of the very simple sporadic server with
background scheduling

22

Very Simple Sporadic Server

Correctness (informally):

Assuming that T never idles, the sporadic server resembles a
periodic task with the highest priority whose jobs are released
at times tf and execution times are at most eS

Whenever T idles, the sporadic server executes in the
background, i.e. does not block any periodic task, hence does
not consume the budget

Whenever an idle interval of T ends, we may treat this situation
as a restart of the system with possibly different phases of
tasks (so that it is safe to have the budget equal to eS)

Note that in all versions of the sporadic server, eS units of
execution time are available for aper. jobs every pS units of time
This means that if the server is always backlogged, then it executes for eS

time units every pS units of time

23

Real-Time Scheduling

Priority-Driven Scheduling

Sporadic Tasks

24

Current Assumptions

I Single processor
I Fixed number, n, of independent periodic tasks, T1, . . . ,Tn

where Ti = (ϕi ,pi ,ei ,Di)
I Jobs can be preempted at any time and never suspend

themselves
I No resource contentions

I Sporadic tasks
I Independent of the periodic tasks
I Jobs can be preempted at any time

I Aperiodic tasks
For simplicity scheduled in the background – i.e. we may ignore them

I Jobs are scheduled using a priority driven algorithm

A sporadic job = a job of a sporadic task

25

Our situation

I Based on the execution time and deadline of each newly arrived
sporadic job, decide whether to accept or reject the job

I Accepting the job implies that the job will complete within its
deadline, without causing any periodic job or previously
accepted sporadic job to miss its deadline

I Do not accept a sporadic job if cannot guarantee it will meet its
deadline 26

Scheduling Sporadic Jobs – Correctness and
Optimality

I A correct schedule is one where all periodic tasks, and all
sporadic tasks that have been accepted, meet their deadlines

I A scheduling algorithm supporting sporadic jobs is a correct
algorithm if it only produces correct schedules for the system

I A sporadic job scheduling algorithm is optimal if it accepts a new
sporadic job, and schedules that job to complete by its deadline,
iff the new job can be correctly scheduled to complete in time

27

Model for Scheduling Sporadic Jobs with EDF

I Assume that all jobs in the system are scheduled
according to EDF

I if more sporadic jobs are released at the same time their
acceptance test is done in the EDF order

I Definitions:
I Sporadic jobs are denoted by S(r ,d,e) where r is the

release time, d the (absolute) deadline, and e is the
maximum execution time

I The density of S(r ,d,e) is defined by e/(d − r)
I The total density of a set of sporadic jobs is the sum of

densities of these jobs
I The sporadic job S(r ,d,e) is active at time t iff t ∈ (r ,d]

Note that each job of a periodic task (ϕ,p,e,D) can be seen as a
sporadic job

For every job of this task released at r with abs. deadline d, we obtain
the density e/(d − r) = e/D

28

Schedulability of Sporadic Jobs with EDF

Theorem 3
A set of independent preemptable sporadic jobs is schedulable
according to EDF if at every time instant t the total density of all
jobs active at time t is at most one.

Proof.
By contradiction, suppose that a job misses its deadline at t , no
deadlines missed before t
Let t−1 be the supremum of time instants before t when either the
system idles, or a job with a deadline after t executes
Suppose that jobs J1, . . . , Jk execute in [t−1, t] and that they are
ordered w.r.t. increasing deadline (Jk misses its deadline at t)
Let L be the number of releases and completions in [t−1, t], denote by
ti the i-th time instant when i-th such event occurs (then t−1 = t1, we
denote by tL+1 the time instant t)
Denote by Xi the set of all jobs that are active during the interval
(ti , ti+1] and let ∆i be their total density

The rest on whiteboard �
29

Sporadic Jobs with EDF – Example

Note that the above theorem includes both the periodic as well
as sporadic jobs

This test is sufficient but not a necessary

Example 4
Three sporadic jobs: S1(0,2,1), S2(0.5,2.5,1), S3(1,3,1)

Total density at time 1.5 is 1.5
Yet, the jobs are schedulable by EDF

30

Admission Control for Sporadic Jobs with EDF

Let ∆ be the total density of periodic tasks
Assume that a new sporadic job S(t ,d,e) is released at time t
I At time t there are n active sporadic jobs in the system
I The EDF scheduler maintains a list of the jobs, in

non-decreasing order of deadline
I The deadlines partition the time from t to ∞ into n + 1

discrete intervals I1, I2, . . . , In+1
I I1 begins at t and ends at the earliest sporadic job deadline
I For each 1 ≤ k ≤ n, each Ik+1 begins when the interval Ik

ends, and ends at the next deadline in the list (or ∞ for In+1)
I The scheduler maintains the total density ∆S ,k of tasks

active in each interval Ik
I Let I` be the interval containing the deadline d of the new

sporadic job S(t ,d,e)
I The scheduler accepts the job if e/(d − t) + ∆S ,k ≤ 1 −∆

for all k = 1,2, . . . , `
I i.e. accept if the new sporadic job can be added, without

increasing density of any intervals past 1

31

32

Admission Control for Sporadic Jobs with EDF

This acceptance test is not optimal: a sporadic job may be
rejected even though it could be scheduled
I The test is based on the density and hence is sufficient but

not necessary
I It is possible to derive a – much more complex –

expression for schedulability which takes into account slack
time, and is optimal. Unclear if the complexity is worthwhile

33

Sporadic Jobs in Fixed-Priority Systems

I One way to schedule sporadic jobs in a fixed-priority system is to
use a sporadic server to execute them

I Because the server (pS ,eS) has eS units of processor time
every pS units of time, the scheduler can compute the least
amount of time available to every sporadic job in the system
I Assume that sporadic jobs are ordered among themselves

according to EDF
I When first sporadic job S1(t ,dS ,1,eS ,1) arrives, there is at

least⌊
(dS ,1 − t)/pS

⌋
eS

units of processor time available to the server before the
deadline of the job

I Therefore it accepts S1 if the slack of the job

σS ,1(t) =
⌊
(dS ,1 − t)/pS

⌋
eS − eS ,1 ≥ 0

34

Sporadic Jobs in Fixed-Priority Systems

I To decide if a new job Si(t ,dS ,i ,eS ,i) is acceptable when
there are n sporadic jobs in the system, the scheduler first
computes the slack σS ,i(t) of Si :

σS ,i(t) =
⌊
(dS ,i − t)/pS

⌋
eS − eS ,i −

∑
dS ,k<dS ,i

(eS ,k − ξS ,k)

where ξS ,k is the execution time of the completed part of
the existing job Sk
Note that the sum is taken over sporadic jobs with earlier deadline as Si

since sporadic jobs are ordered according to EDF
I The job cannot be accepted if σS ,i(t) < 0
I If σS ,i(t) ≥ 0, the scheduler checks if any existing sporadic

job Sk with deadline equal to, or

after dS ,i may be adversely affected by the acceptance of
Si , i.e. check if σS ,k (t) ≥ eS ,i

35

