Multiprocessor Real-time Systems

- Many embedded systems are composed of many processors (control systems in cars, aircraft, industrial systems etc.)
- Today most processors in computers have multiple cores The main reason is that increasing frequency of a single processor is no more feasible (mostly due to power consumption problems, growing leakage currents, memory problems etc.)

Applications must be developed specifically for multiprocessor systems

In case of real-time systems, multiple processors bring serious difficulties concerning correctness, predictability and efficiency. In particular, old single processor methods often do not work as expected

 A job is a unit of work that is scheduled and executed by a system

(Characterised by the release time r_i , execution time e_i and deadline d_i)

- A *task* is a set of related jobs which jointly provide some system function
- Jobs execute on processors

In this lecture we consider *m* processors

Jobs may use some (shared) passive resources

Schedule

Schedule assigns, in every time instant, processors and resources to jobs

A schedule is *feasible* if *all jobs with hard real-time constraints* complete before their deadlines

A set of jobs is *schedulable* if there is a feasible schedule for the set.

A scheduling algorithm is optimal if it always produces a feasible schedule whenever such a schedule exists (and if a cost function is given, minimizes the cost)

We also consider *online* scheduling algorithms that do not use any knowlede about jobs that will be released in future but are given a complete information about jobs that have been released (e.g. EDF is online)

- Identical processors: All processors identical, have the same computing power
- Uniform processors: Each processor is characterized by its own computing capacity κ, completes κt units of execution after t time units
- Unrelated processors: There is an execution rate r_{ij} associated with each job-processor pair (J_i, P_j) so that J_i completes r_{ij}t units of execution by executing on P_i for t time units

In addition, cost of communication can be included etc.

Throughout this lecture we assume:

- Unless otherwise stated, consider *m identical* processors
- Jobs can be preempted at any time and never suspend themselves
- Context switch overhead is negligibly small
 - i.e. assumed to be zero
- There is an unlimited number of priority levels
- For simplicity, we assume *independent* jobs that do not contend for resources

Multiprocessor scheduling attempts to solve two problems:

- the allocation problem, i.e., on which processor a given job executes
- the priority problem, i.e., when and in what order the jobs execute

Multiprocessor Scheduling Taxonomy

Allocation (migration type)

- ► No migration: each task is allocated to a processor
- Task-level migration: jobs of a task may execute on different processors; however, each job is assigned to a single processor
- Job-level migration: A single job can migrate and execute on different processors

(however, parallel execution of one job is not permitted and migration takes place only when the job is rescheduled)

Priority type

- Fixed task priority
- Fixed job priority
- Dynamic job priority

Partitioned scheduling = No migration **Global** scheduling = job-level migration

Issues

What results from single processor scheduling remain valid in multiprocessor setting?

- Are there simple optimal scheduling algorithms?
- Are there optimal online scheduling algorithms (i.e. those that do not know what jobs come in future)
- Are there efficient tests for schedulability?

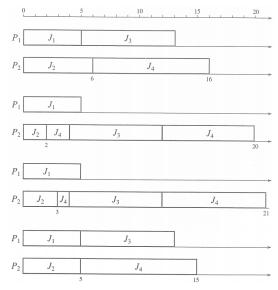
In this lecture we consider:

- Individual jobs
- Periodic tasks

Start with *n* individual jobs $\{J_1, \ldots, J_k\}$

Individual Jobs – Timing Anomalies

Priority order: $J_1 \sqsupset \cdots \sqsupset J_4$



EDF on *m* identical processors: At any time instant, jobs with the earliest absolute deadlines are executed on available processors (Recall: no job can be executed on more than one processor at a given time!)

Is this optimal?NO!

Example:

 J_1, J_2, J_3 where

▶ $r_i = 0$ for $i \in \{1, 2, 3\}$

•
$$e_1 = e_2 = 1$$
 and $e_3 = 5$

•
$$d_1 = 1, d_2 = 2, d_3 = 5$$

Individual Jobs – Online Scheduling

Theorem 1

No optimal **on-line** scheduler can exist for a set of jobs with two or more distinct deadlines on any m > 1 processor system.

Proof.

Assume m = 2 and consider three jobs J_1 , J_2 , J_3 are released at time 0 with the following parameters:

•
$$d_1 = d_2 = 4$$
 and $d_3 = 8$

Depending on scheduling in [0, 2], new tasks T_4 , T_5 are released at 2:

- ▶ If J_3 is executed in [0, 2], then at 2 release J_4 , J_5 with $d_4 = d_5 = 4$ and $e_4 = e_5 = 2$.
- ▶ If J_3 is not executed in [0, 2], then at 2 release J_4 , J_5 with $d_4 = d_5 = 8$ and $e_4 = e_5 = 4$.

In both cases, the schedule produced is not feasible. However, if the scheduler is given either of the sets $\{J_1, \ldots, J_5\}$ at the beginning, then there is a feasible schedule.

Individual Jobs – Optimal EDF Scheduling?

Theorem 2

If a set of jobs is feasible on m identical processors, then the same set of jobs will be scheduled to meet all deadlines by EDF on identical processors in which the individual processors are $(2 - \frac{1}{m})$ times as fast as in the original system.

The result is tight for EDF (assuming dynamic job priority):

Theorem 3

There are sets of jobs that can be feasibly scheduled on m identical processors but EDF cannot schedule them on m processors that are only $(2 - \frac{1}{m} - \varepsilon)$ faster for every $\varepsilon > 0$.

... there are also general lower bounds for online algorithms:

Theorem 4

There are sets of jobs that can be feasibly scheduled on *m* (here *m* is even) identical processors but **no online** algorithm can schedule them on *m* processors that are only $(1 + \varepsilon)$ faster for every $\varepsilon < \frac{1}{5}$.

[Optimal Time-Critical Scheduling Via Resource Augmentation, Phillips et al, STOC 1997]

Reactive Systems

Consider fixed number, *n*, of *independent periodic* tasks $\mathcal{T} = \{T_1, \ldots, T_n\}$

i.e. there is no dependency relation among jobs

- Unless otherwise stated, assume no phase and deadlines equal to periods
- Ignore aperiodic tasks
- No sporadic tasks unless otherwise stated

Utilization u_i of a periodic task T_i with period p_i and execution time e_i is defined by $u_i := e_i/p_i$ u_i is the fraction of time a periodic task with period p_i and execution time e_i keeps a processor busy

Total utilization $U^{\mathcal{T}}$ of a set of tasks $\mathcal{T} = \{T_1, \dots, T_n\}$ is defined as the sum of utilizations of all tasks of \mathcal{T} , i.e. by $U^{\mathcal{T}} := \sum_{i=1}^n u_i$

Given a scheduling algorithm *ALG*, the schedulable utilization U_{ALG} of *ALG* is the maximum number *U* such that for all \mathcal{T} : $U_{\mathcal{T}} \leq U$ implies \mathcal{T} is schedulable by *ALG*.

Fundamental Limit

Consider *m* processors and m + 1 tasks $\mathcal{T} = \{T_1, \dots, T_{m+1}\}$, each $T_i = (L, 2L - 1)$

Then $U_{\mathcal{T}} = \sum_{i=1}^{m+1} L/(2L-1) = (m+1)(L/(2L-1))$ For very large L, this number is close to (m+1)/2

The set $\ensuremath{\mathcal{T}}$ is not schedulable using any fixed job-level priority algorithm

In other words, the schedulable utilization of fixed job-level priority algorithms is at most (m + 1)/2, i.e., half of the processors capacity

There are variants of EDF achieving this bound (see later slides)

Most algorithms up to the year 2000 based on *partitioned scheduling* (i.e. no migration)

After 2000, many results concerning *global scheduling* (i.e. job-level migration)

Partitioned Scheduling (No Migration)

The algorithm proceeds in two phases:

- 1. Allocate tasks to processors, i.e., partition the set of tasks into *m* possibly empty *modules* M_1, \ldots, M_m
- 2. Schedule tasks of each *M_i* on the processor *i* according to a given single processor algorithm

The quality of task assignment is determined by the number of assigned processors

Example 5

- Use EDF to schedule modules
- ► Suffices to test whether the total utilization of each module is ≤ 1 (or, possibly, ≤ Û where Û < 1 in order to accomodate aperiodic jobs ...)</p>

Finding an optimal schedule is equivalent to a simple *uniform-size bin-packing problem* (and hence is NP-complete)

Similarly, we may use RM (total utilization in modules $\leq \log 2$, etc.)

Partitioned Scheduling – Fixed Job Priority

Consider algorithms that allocate tasks to modules so that total utilization of every module is at most one

An allocation algorithm is *reasonable* (RA) if it fails to allocate a task only when there is no module to which the task can be allocated

A reasonable allocation algorithm is *decreasing* (RAD) if it allocates tasks to modules sequentially in non-increasing order of utilization

Theorem 6

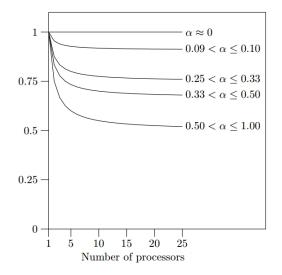
Given a set of tasks \mathcal{T} , denote by β the number $\lfloor 1 / \max_i u_i \rfloor$ where $\max_i u_i$ is the maximum utilization of tasks in \mathcal{T} .

- **1.** Let AA be a RAD algorithm and assume $n > \beta m$. If $U_{\mathcal{T}} \leq \frac{\beta m+1}{\beta+1}$, then \mathcal{T} is schedulable using any EDF-AA algorithm.
- 2. For every $\varepsilon > 0$ there is a set of $n > \beta m$ tasks \mathcal{T} such that $U_{\mathcal{T}} = \frac{\beta m + 1}{\beta + 1} + \varepsilon$ and \mathcal{T} is not schedulable by any EDF-AA.

The theorem covers: First Fit Ordered, Best Fit Ordered, etc.

Similar result can be obtained for First Fit, Best Fit, even OPT!

The Bound – EDF-RAD



The value $\left(\frac{\beta m+1}{\beta+1} / m\right)$ (vertical axis) w.r.t. the number of processors *m* (horizontal axis), here $\alpha = \max_i u_i$ is the maximum utilization

Partitioned Scheduling – Fixed Task Priority

Consider algorithms that allocate tasks to modules so that total utilization of every module *M* is at most $n_M(2^{1/n_M} - 1)$ where n_M is the number of tasks in the module *M*

An allocation algorithm is *reasonable* (RA) if it fails to allocate a task only when there is no module to which the task can be allocated

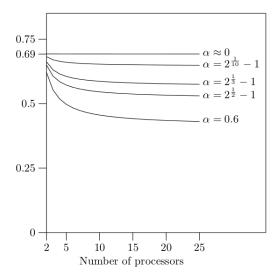
A reasonable allocation algorithm is *decreasing* (RAD) if it allocates tasks to modules sequentially in non-increasing order of utilization

Theorem 7

Given a set of task \mathcal{T} , denote by β' the number $\lfloor 1/\log_2(\max_i u_i) \rfloor$ where $\max_i u_i$ is the maximum utilization of tasks in \mathcal{T} .

- 1. Let AA be a RAD algorithm and assume $n > \beta' m$. If $U_T \le (m\beta' + 1)(2^{1/\beta'} 1)$, then T is schedulable using any RM-AA algorithm.
- 2. For every $\varepsilon > 0$ there is a set of $n > \beta' m$ tasks \mathcal{T} such that $U_{\mathcal{T}} = (m\beta' + 1)(2^{1/\beta'} 1) + \varepsilon$ and \mathcal{T} is not schedulable by any RM-AA.

The Bound – RM-RAD



 $(m\beta' + 1)(2^{1/\beta'} - 1)/m$ (vertical axis) w.r.t. the number of processors *m*, here $\alpha = \max_i u_i$ is the maximum utilization

- All ready jobs are kept in a global queue
- When selected for execution, a job can be assigned to any processor
- When preempted, a job goes to the global queue (i.e., forgets on which processor it executed)

Global Scheduling (Job-level migration)

Dhall's effect:

- Consider m > 1 processors
- ▶ Let ε > 0
- Consider a set of tasks $\mathcal{T} = \{T_1, \ldots, T_m, T_{m+1}\}$ such that

•
$$T_i = (2\varepsilon, 1)$$
 for $1 \le i \le m$

- $T_{m+1} = (1, 1 + \varepsilon)$
- \mathcal{T} is schedulable
- RM, EDF etc. schedules are not feasible on *m* processors (whiteb.)

However,

$$U_{\mathcal{T}} = m \frac{2\varepsilon}{1} + \frac{1}{1+\varepsilon}$$

which means that for small ε the utilization U_T is close to 1 (i.e., very small for m >> 0 processors)

- Note that RM and EDF only account for task periods and ignore the execution time!
- (Partial) Solution: Dhall's effect can be avoided by giving high priority to tasks with high utilization

Then in the previous example, T_{m+1} is executed whenever it comes and the other tasks are assigned to the remaining processors – produces a feasible schedule

Theorem 8

A set of periodic tasks \mathcal{T} with deadlines equal to periods can be EDF-scheduled upon m unit-speed identical processors, provided its cumulative utilization is bounded from above as follows:

 $U_{\mathcal{T}} \leq m - (m-1) \max_{i} u_i$

This holds also for systems with relative deadlines bounded by periods – just substitute utilizations with densities e_i/D_i

Apparently there is a problem with long jobs due to Dhall's effect There is an improved version of EDF called EDF-US(1/2) which

- assigns the highest priority to tasks with $u_i \ge 1/2$
- assigns priorities to the rest according to deadlines

which reaches the generic schedulable utilization bound (m + 1)/2.

The previous bound on EDF is tight:

Theorem 9

Let m > 1. For every $0 < u_{max} < 1$ and small $0 < \varepsilon << u_{max}$ there is a set of tasks T such that

- maximum utilization in \mathcal{T} is u_{max} ,
- $U_{\mathcal{T}} = U_{\mathcal{T}} \leq m (m 1)u_{\max} + \varepsilon$,
- \mathcal{T} is not schedulable by EDF.

[Priority-Driven Scheduling of Periodic Task Systems on Multiprocessors, Goossens et al, Real-Time Systems, 2003]

Global Scheduling – Fixed Task Priority

RM algorithm - always execute the jobs with highest rate

Lemma 10

If for every $u_i \le m/(3m-2)$ for all $1 \le i \le n$ and $U_T \le m^2/(3m-2)$, then T is schedulabe by RM.

There is a problem with long jobs due to Dhall's effect

Solution: Deal with long jobs separately which gives RM-US:

- ► Assign the same maximum priority to all T_i with u_i > m/(3m - 2), break ties arbitrarily
- ▶ If $u_i \le m/(3m-2)$ assign rate-monotonic priority

Theorem 11

If $U_{\mathcal{T}} \leq m^2/(3m-2)$, then \mathcal{T} is schedulabe by RM-US.

Note that for large *m* this bound is close to m/3 (i.e., the utilization is 33%).

The *priority fair* (PFair) algorithm is optimal for periodic systems with deadlines equal to periods

Idea (of PFair): In any interval (0, t] jobs of a task T_i with utilization u_i execute for amount of time W so that $u_it - 1 < W < u_it + 1$ (Here every parameter is assumed to be a natural number)

There are other optimal algorithms, all of them suffer from a large number of preemptions/migrations

No optimal algorithms are known for more general settings: deadlines bounded by periods, arbitrary deadlines

Recall, that no optimal on-line scheduling possible

Advantages of the global scheduling:

- Load is automatically balanced
- Better average response time (follows from queueing theory)

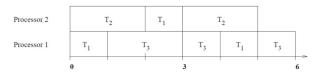
Disadvantages of the global scheduling:

- Problems caused by migration (e.g. increased cache misses)
- Schedulability tests more difficult (active area of research)

Is either of the approaches better from the schedulability standpoint?

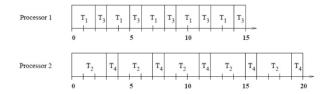
There are sets of tasks schedulable only with global scheduler:

▶ $T = \{T_1, T_2, T_3\}$ where $T_1 = (1, 2), T_2 = (2, 3), T_3 = (2, 3),$ can be scheduled using a global scheduler:



No feasible partitioned schedule exists, always at least one processor gets tasks with total utilization higher than 1 There are task sets that can be scheduled only with partitioned scheduler (assuming fixed task-level priority assignment):

•
$$\mathcal{T} = \{T_1, \dots, T_4\}$$
 where
 $T_1 = (2,3), T_2 = (3,4), T_3 = (5,15), T_4 = (5,20),$ can be
scheduled using a fixed task-level priority partitioned schedule:



No one of 4! global fixed task-level priority schedules is feasible