
IA159 Formal Verification Methods
Theorem Prover ACL2

Jan Strejček

Department of Computer Science
Faculty of Informatics
Masaryk University



Theorem provers

Theorem provers are software tools, which
assist human experts in construction of formal proofs
can be used in software and hardware verification
work only with statements (and corresponding axioms and
inference rules) in a suitable formal notation

Do they work automatically?
only simple theorems can be proven fully automatically
nearly all proofs result from interaction of a tool and a user
success depends primarily on user’s skill

IA159 Formal Verification Methods: Theorem Prover ACL2 2/28



ACL2

“A Computational Logic for Applicative Common Lisp”

ACL2 is
1 a functional programming language based on

Common Lisp
2 a first-order, quantifier-free mathematical logic
3 a mechanical theorem prover

IA159 Formal Verification Methods: Theorem Prover ACL2 3/28



History of ACL2

1971: Robert S. Boyer and J Strother Moore created
Nqthm - the first theorem prover for Lisp
1989: Boyer and Moore started to work on ACL2
since 1993, ACL2 is systematically developed by Matt
Kaufmann and J Strother Moore
now in version 6.4 (May 2014)
winner of VSTTE 2012 Software Verification Competition

ACL2 is available under a license based on BSD-3-Clause
http://www.cs.utexas.edu/users/moore/acl2/

IA159 Formal Verification Methods: Theorem Prover ACL2 4/28



ACL2 achievements

ACL2 has been used to verify that
the functionality of FPU in AMD K5, Athlon, and Opteron
(described on register-transfer level, RTL) follows the
corresponding IEEE standard
the microarchitectural model of a Motorola DSP processor
implements a given microcode engine and that certain
microcode in ROM implements certain DSP algorithms
the microcode for the Rockwell Collins AAMP7 implements
a given security policy concerning process separation
the bytecode produced by the Sun compiler javac on
certain simple Java classes has the claimed functionality
a BDD package written in Lisp is sound and complete
a Lisp program that checks proofs produced by the Ivy
theorem prover is sound
. . .

IA159 Formal Verification Methods: Theorem Prover ACL2 5/28



Back to the ground

the proof of correctness of the floating point division
microcode in AMD K5 required approx. 1200 lemmas
the verification has not been done directly on RTL of the
FPU, but on its automatically translated Lisp model;
correctness of the translation has been “verified” by
80 000 000 test computations
the proof of correspondence between the Motorola DSP
microarchitecture and its microcode engine involved
formulas of 25 MB per formula; finding one subtle
generalization took Moore many days
. . .

IA159 Formal Verification Methods: Theorem Prover ACL2 6/28



The mechanics of using ACL2

Two buffers in Emacs
1 buffer with definitions and lemmas, typically concluding

with the main theorem we want to prove
2 shell with ACL2

Typical working cycle
1 send the subsequent definition or theorem to ACL2
2 if it succeeds, go to 1
3 inspect the output of ACL2 and analyze the failure
4 if the command is faulty (e.g. with a syntax error), fix it

if the command is a theorem ACL2 is unable to prove, then
suggest, formulate, and prove additional lemmas and then
try to prove the theorem again

IA159 Formal Verification Methods: Theorem Prover ACL2 7/28



Syntax of ACL2

Supported data objects
numbers (integer, rational and complex)
characters
strings ("Hello world!")
symbols (t, nil, ’ok, ’quick-sort,. . . )
ordered pairs

Lists
in fact nested pairs: 〈1, 〈2, 〈3,nil〉〉〉 or 〈1, 〈2,3〉〉
written in list notation: ’(1 2 3) or ’(1 2 . 3)

IA159 Formal Verification Methods: Theorem Prover ACL2 8/28



Syntax of ACL2

Some primitive (built-in) functions

(cons x y) constructs the ordered pair 〈x , y〉
(car x) left component of x , if x is a pair; nil otherwise
(cdr x) right component of x , if x is a pair; nil otherwise
(consp x) t if x is a pair; nil otherwise
(if x y z) z if x is nil; y otherwise
(equal x y) t if x is y ; nil otherwise

Meaning of the single quote mark ′

’(car x) evaluates to the list 〈car, 〈x,nil〉〉
(car x) application of the function car to x

IA159 Formal Verification Methods: Theorem Prover ACL2 9/28



Syntax of ACL2

Function definition
(defun f (a1 a2 . . . an) β)
creates the function f with arguments a1,a2, . . . ,an
and body β

(Built-in) Lisp definitions of standard logic connectives
(defun not (p) (if p nil t))

(defun and (p q) (if p q nil))

(defun or (p q) (if p p q))

(defun implies (p q) (if p (if q t nil) t))

(defun iff (p q) (and (implies p q)
(implies q p)))

IA159 Formal Verification Methods: Theorem Prover ACL2 10/28



Examples of recursive function definitions

dup - duplicates each element in a list
(defun dup (x)
(if (consp x)

(cons (car x)
(cons (car x)

(dup (cdr x))))
nil))

app - concatenates two lists
(defun app (x y)
(if (consp x)

(cons (car x) (app (cdr x) y))
y))

IA159 Formal Verification Methods: Theorem Prover ACL2 11/28



Axioms in ACL2

Some primitive (built-in) axioms
1 t 6= nil

2 x 6= nil → (if x y z) = y

3 x = nil → (if x y z) = z

4 (equal x y) = nil ∨ (equal x y) = t

5 x = y ↔ (equal x y) = t

6 (consp x) = nil ∨ (consp x) = t

7 (consp (cons x y)) = t

8 (consp nil) = (consp t) = (consp ’ok) =
(consp 0) = . . . = nil

9 (car (cons x y)) = x

10 (cdr (cons x y)) = y

11 (consp x) = t → (cons (car x) (cdr x)) = x

IA159 Formal Verification Methods: Theorem Prover ACL2 12/28



Proofs in ACL2 (a sketch)

ACL2 contains
ordinals up to ωωω···

a well-founded relation o< on such ordinals
axioms definining the size of ACL2 objects (measured with
the function acl2-count)

and particularly
definition principle
induction principle
simplification based on

rewrite rules
linear arithmetic rules (inequality chaining)
. . . (approx. 12 kinds of rules in total)

IA159 Formal Verification Methods: Theorem Prover ACL2 13/28



Definition principle

when a recursive function definition is submitted, ACL2
must prove that a there is a well-founded measure such
that arguments of recursive calls are decreasing with
respect to this measure
existence of such a measure ensures that the evaluation of
the function terminates after a finite number of steps.
the definition is admitted by ACL2 (as a new axiom) only if
the existence of such a measure is proven; a user can
assist with the proof

IA159 Formal Verification Methods: Theorem Prover ACL2 14/28



Induction principle (a sketch)

Structural induction on lists and binary trees

If we want to prove ϕ(x , y), it is sufficient to prove
1 base case
ϕ(x , y) holds in the case that x is an empty tree

2 induction step
if x = (l , r) and ϕ(l , y) and ϕ(r , y), then ϕ(x , y)

IA159 Formal Verification Methods: Theorem Prover ACL2 15/28



Induction principle (a sketch)

Induction on binary trees in ACL2

If we want to prove (ϕ x y), it is sufficient to prove
1 base case
(implies (not (consp x)) (ϕ x y))

2 induction step
(implies (and (consp x)

(ϕ (car x) y) ;induction hypothesis 1
(ϕ (cdr x) y)) ;induction hypothesis 2

(ϕ x y)) ;induction conclusion

induction hypothesis can be any (ϕ δ α) such that we
can prove
(implies (consp x)

(o< (acl2-count δ) (acl2-count x))

axioms imply that (car x), (cdr x) are smaller than x

IA159 Formal Verification Methods: Theorem Prover ACL2 16/28



A proof

(defun treecopy (x)
(if (consp x)

(cons (treecopy (car x))
(treecopy (cdr x)))

x))

Theorem: (equal (treecopy x) x).

Proof: Name the formula above *1.
Perhaps we can prove *1 by induction. One induction scheme
is suggested by this conjecture - namely the one that unwinds
the recursion in treecopy.

IA159 Formal Verification Methods: Theorem Prover ACL2 17/28



A proof

If we let (ϕ x) denote *1 above then the induction scheme
we’ll use is

(and (implies (not (consp x)) (ϕ x))
(implies (and (consp x)

(ϕ (car x))
(ϕ (cdr x)))

(ϕ x))).

IA159 Formal Verification Methods: Theorem Prover ACL2 18/28



A proof

This induction is justified by the same argument used to admit
treecopy, namely, the size of x is decreasing according to a
certain well-founded relation. When applied to the goal at hand
the above induction scheme produces the following two
nontautological subgoals.
Subgoal *1/2

(implies (not (consp x))
(equal (treecopy x) x)).

But simplification reduces this to t, using the definition of
treecopy and the primitive axioms.

IA159 Formal Verification Methods: Theorem Prover ACL2 19/28



A proof

Subgoal *1/1

(implies (and (consp x)
(equal (treecopy (car x)) (car x))
(equal (treecopy (cdr x)) (cdr x)))

(equal (treecopy x) x)).

But simplification reduces this to t, using the definition of
treecopy, and the primitive axioms.
That completes the proof of *1.
Q.E.D.

IA159 Formal Verification Methods: Theorem Prover ACL2 20/28



Simplification of Subgoal *1/1

(implies (and (consp x) ;hypothesis 1
(equal (treecopy (car x)) (car x)) ;hypothesis 2
(equal (treecopy (cdr x)) (cdr x))) ;hypothesis 3

(equal (treecopy x) x)).

(treecopy x) = (if (consp x) ;treecopy definition
(cons (treecopy (car x))

(treecopy (cdr x)))
x)

= (if t ;hypothesis 1
(cons (treecopy (car x))

(treecopy (cdr x)))
x)

= (cons (treecopy (car x)) ;axioms 1 and 2
(treecopy (cdr x)))

= (cons (car x) ;hypothesis 2
(treecopy (cdr x)))

= (cons (car x) ;hypothesis 3
(cdr x))

= x ;axiom 11 and
;hypothesis 1

IA159 Formal Verification Methods: Theorem Prover ACL2 21/28



Proofs in ACL2: induction

ACL2 uses heuristics to choose a suitable induction
scheme
induction scheme is based on recursively defined function
occurring in the theorem
the resulting scheme can be a combination of two or more
recursive schemes used in the theorem
the user can specify an induction scheme with a hint
choosing the right induction is crucial to a successful proof
even more important is to choose the right theorem to
prove by induction - the theorem has to be general enough
in order to provide a sufficiently strong induction hypothesis

IA159 Formal Verification Methods: Theorem Prover ACL2 22/28



Proofs in ACL2: simplification via rewriting

simplification means the reduction of the formula to some
preferred form by the use of rewrite rules
rules are derived from axioms, definitions, and previously
proved theorems
a definition generates the rule rewriting function calls by
the instantiated body of the function
a formula of the form

(implies (and hyp1 . . . hypn) (equal l r))
generates the rule replacing instances of l by the
corresponding instance of r , provided the corresponding
instances of hyp1, . . . , hypn rewrite to t

equivalent formulae (like (equal l r) and (equal r l));
may give rise to radically different rules
some rule combinations can lead to cyclic rewriting

IA159 Formal Verification Methods: Theorem Prover ACL2 23/28



Proofs in ACL2: simplification via inequality chaining

there is a large set of rewrite rules allowing to put
arithmetic expressions into a preferred form
there are books (i.e. collections of such rules) for
elementary algebraic properties of numbers, modulo
arithmetic, floating point arithmetic, . . .

ACL2 also maintains a graph of terms involved in the
current formula, where edges correspond to inequalities
edges are added by a decision procedure for linear
arithmetics
when submitting a theorem, we can specify what kind of
rule should be generated when the theorem is proved (it is
a rewrite rule by default)

IA159 Formal Verification Methods: Theorem Prover ACL2 24/28



Proofs in ACL2: simplification via inequality chaining

Example
consider a theorem concluding with (<= O (* x x))

if it is used to generate a rewrite rule, the rule replace
certain instances of (<= O (* x x)) by t
this rule cannot be used to prove
(implies (and (< 0 a) (rationalp b))

(< 0 (+ a (* b b))))

if we say that an arithmetic rule should be gerenated from
the theorem, the the rule can be used to add some edges
to the graph of inequalities

There are many other kinds of simplification.

IA159 Formal Verification Methods: Theorem Prover ACL2 25/28



ACL2 working cycle

when ACL2 receives a syntactically correct theorem, it
1 simplifies the theorem
2 uses an induction
3 go to 1

it exits the cycle if
the simplification results in t, or
there is no suggested induction scheme

if the theorem is proved, a corresponding rule is derived
. . . and everything is vividly commented

IA159 Formal Verification Methods: Theorem Prover ACL2 26/28



ACL2

Demonstration

IA159 Formal Verification Methods: Theorem Prover ACL2 27/28



Coming next week

Model checking: quick overview

Model checking once again?
Yes, but very quickly.

IA159 Formal Verification Methods: Theorem Prover ACL2 28/28


