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Basic Ideas and Foundations

Practical Impact of FPT-algorithms

FPT versus W[1]-hard

Comparison of a running time of 2k to a running time of nk by
considering the quotient nk

2k :

n = 50 n = 150
k = 2 625 5625
k = 5 390625 31640625
k = 20 1.8 · 1026 2.1 · 1035



Basic Ideas and Foundations

Practical Impact of FPT-algorithms

fast FPT versus faster FPT

Comparison of a running time of 1.29k to a running time of 2k

by considering the quotient 2k

1.29k = 1.54k :

k 2 10 20 40 80
1.54k 9 80 6240 3.9 · 107 1.5 · 1015
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Bounded Search Tree

Introduction

Recall How We solved MINIMUM VERTEX COVER

Input: Graph G and integer k .

e1 = x1y1

e2 = x2y2

x2 y2

x1 y1

. . .

Running time

at every node there are 2
choices;
every choice decreases k ;
height of the search tree is
at most k ;
complete search possible
in O(2knc)
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Introduction

Detailed Analysis

Algorithm for MINIMUM VERTEX COVER

VC(G, k) {
If |E(G)| = 0 return YES;
If k = 0 return NO;

Let {u, v} ∈ E(G):
return VC(G \ {u}, k − 1) Or VC(G \ {v}, k − 1);

}

Theorem

The algorithm VC(G, k) solves MINIMUM VERTEX COVER in
time (2k − 1)p(n) = O(2kp(n)) = O∗(2k ).
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Introduction

Detailed Analysis

Theorem

The algorithm VC(G, k) solves MINIMUM VERTEX COVER in
time (2k − 1)p(n) = O(2kp(n)) = O∗(2k ).

Proof:

Proof using induction over k :
IB: VC(G,0) solves MINIMUM VERTEX COVER in time O(1);
IS: VC(G, k) needs time

p(n)+2(2k−1−1)p(n−1) ≤ p(n)(1+2k−2) = (2k−1)p(n).
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Introduction

Bounded Search Tree Method

We build a search tree T such that at every node of T the
following holds:

the branching rules are exhausitive, i.e., every solution has
to agree with at least one of the branches;
every branch decreases k by at least 1
the time spend is at most some polynomial p in n



Bounded Search Tree

Introduction

Bounded Search Tree Method

Remarks

The running time of such an algorithm is at most
O(|V (T )|p(n)).
The size of T is at most O(Bk ) where B is the maximum
number of branches of any node of T .
If B can be bounded by a function b of k we obtain an
FPT-algorithm with running time O((b(k))kp(n))
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Bounded Search Tree

MINIMUM VERTEX COVER — revisited

MINIMUM VERTEX COVER — revisited

We have seen that MINIMUM VERTEX COVER can be solved in
time O∗(2k ). Can we do better?

Observation

MINIMUM VERTEX COVER can be solved in polynomial-time on
graphs with maximum degree 2.

Observation

Let G be graph and v ∈ V (G) then every vertex cover S of G
either:

contains v , or
contains all neighbors of v .
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MINIMUM VERTEX COVER — revisited

MINIMUM VERTEX COVER — revisited

As long as G contains a vertex v of degree at least 3 we can
branch as follows:

take v into the vertex cover and decrease k by 1, or
take the neighbors of v into the vertex cover and decrease
k by at least 3.

If G has maximum degree at most 2 we can solve vertex cover
in polynomial-time.

What is the running time of this algorithm?
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MINIMUM VERTEX COVER — revisited

Recall

The running time of a search tree algorithm is proportional to
the number of nodes of the search tree (omitting polynomial
factors).

What is the number of nodes of this search tree?

The number of search tree nodes is given by the following
recurrence function T (k) = T (k − 1) + T (k − 3).
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MINIMUM VERTEX COVER — revisited

Question

How can we find T (k) given that T (k) = T (k − 1) + T (k − 3)?

Observation

T (k) = ck for some constant c.

Hence, we have to find c such that:

ck = ck−1 + ck−3

, or equivalently

c3 − c2 + 1 = 0
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MINIMUM VERTEX COVER — revisited

We need to find the positive roots of the polynomial:

c3 − c2 + 1 = 0

Remark

Every such polynomial has a unique positive root which can
unfortunately only be found using numerical methods. In
practice one can use an algebra package such as R,
mathematica, or wolfram alpha.

In this case we obtain c = 1.47 and hence our algorithm runs in
time O∗(1.47k ).
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Branching Vectors

Branching Vectors

In the previous example we had 2 branches:
1 branch decreasing the parameter by 1 and
1 branch decreasing the parameter by 3.

This gives rise to the branching vector (1,3).

In general, the branching vector contains the number by which
the parameter is decreased for each of the available branches.
The branching vector is often given in ascending order.

The size of the search tree can be directly computed from its
branching vector (using a numerical tool).



Bounded Search Tree

Branching Vectors

Branching Vector

Example

Consider the branching vector (2,5,6,6,7,7).

The value c > 0 has to satisfy:

ck = 2ck−7 + 2ck−6 + ck−5 + ck−2

or equivalently:

c7 − 2− 2c − c2 − c5 = 0

The unique positive root is 1.4483 and hence the size of the
search tree is at most 1.4483k .

It is hard to compare branching vectors intuitively!
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MINIMUM VERTEX COVER — revisited II

We have seen that MINIMUM VERTEX COVER can be solved in
time O∗(1.47k ). Can we do better?

Yes, by employing different branching rules depending on the
minimum degree of the remaining graph G (let δ(G) denoted
the minimum degree of G):

G has a vertex v with N(v) = {u} (δ(G) = 1)

We show that G has a k -VC iff G \ N[u] has a (k − 1)-VC.

Proof: It suffices to show that G has a minimum VC that
contains u. Let S be a minimum VC that does not contain u.
Hence, v ∈ S and the set S′ = S \ {v} ∪ {u} is a minimum VC
that contains u.

No branching necessary!
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MINIMUM VERTEX COVER — revisited II

G has a vertex v with N(v) = {a,b} (δ(G) = 2)

We distinguish the following cases:

Case 1) {a,b} ∈ E(G): We show that G has a k -VC iff
G \ ({v ,a,b}) has a (k − 2)-VC.

Proof: It suffices to show that G has a minimum VC S that
contains a and b. Clearly S contains either a or b. W.l.o.g. we
can assume it does not contain a. But then v ∈ S and the set
S′ = S \ {v} ∪ {b} is also a minimum VC that contains a and
b.

No branching necessary!
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MINIMUM VERTEX COVER — revisited II

G has a vertex v with N(v) = {a,b} (δ(G) = 2)

Case 2) |N(a) ∪ N(b)| < 3: Hence, N(a) = N(b) = {v ,u} we
show that G has a k -VC iff G \ (N(v) ∪ {u}) has a (k − 2)-VC.

Proof: It suffices to show that G has a minimum VC S that
contains v and u. Suppose not then S contain a and b and
consequently S′ = S \ {a,b} ∪ {v ,u} is a minimum VC that
contains v and u.

No branching necessary!
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show that G has a k -VC iff G \ (N(v) ∪ {u}) has a (k − 2)-VC.

Proof: It suffices to show that G has a minimum VC S that
contains v and u. Suppose not then S contain a and b and
consequently S′ = S \ {a,b} ∪ {v ,u} is a minimum VC that
contains v and u.

No branching necessary!
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MINIMUM VERTEX COVER — revisited II

G has a vertex v with N(v) = {a,b} (δ(G) = 2)

Case 3) |N(a) ∪ N(b)| = d ≥ 3: Then G has a k -VC iff G \ N[v ]
has a (k − 2)-VC or G \ (N[a] ∪ N[b]) has (k − d)-VC with
d = |N(a) ∪ N(b)| ≥ 3.

Proof: It suffices to show that G has a minimum VC S that
contains either a and b or all neighbors of a and b. Clearly, if S
contains neither a nor b then S has to contain all neighbors of a
and b. Hence, we can assume that w.l.o.g. S contains a but not
b. It follows that S contains all neighbors of b. In particular
v ∈ S. But then S′ = (S \ {v}) ∪ {b} is a minimum VC that
contains a and b.
Branching vector is (2,3). Branching number less than
1.33.
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MINIMUM VERTEX COVER — revisited II

G has a vertex v with N(v) = {a,b, c} (δ(G) = 3)

We distinguish the following cases:

Case 1){a,b} ∈ E(G) (Triangle): Then G has a k -VC iff
G \ N[v ] has a (k − 3)-VC or G \ N[c] has a (k − d)-VC where
d = |N(c)|.

Proof: The reverse direction is trivial.
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MINIMUM VERTEX COVER — revisited II

G has a vertex v with N(v) = {a,b, c} (δ(G) = 3)

Case 1){a,b} ∈ E(G) (Triangle): Then G has a k -VC iff
G \ N[v ] has a (k − 3)-VC or G \ N[c] has a (k − d)-VC where
d = |N(c)|.

Proof, continued: For the forward direction it suffices to show
that G has a minimum VC that contains N(v) or N(c).

Let S be a minimum VC of G. If v /∈ S then N(v) ⊆ S. So we
may assume that v ∈ S.
Because {a,b} ∈ E(G) either a ∈ S or b ∈ S. W.l.o.g. we can
assume that a ∈ S. If in addition c ∈ S then S′ = S \ {v} ∪ {b}
is also a minimum VC with N(v) ⊆ S′. If c /∈ S′ then N(c) ⊆ S′.
This shows that G has a minimum VC that contains either N(v)
or N(c).
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MINIMUM VERTEX COVER — revisited II

G has a vertex v with N(v) = {a,b, c} (δ(G) = 3)

Case 1){a,b} ∈ E(G) (Triangle):

Branching vector is (3,3). Branching Number less than
1.27.
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MINIMUM VERTEX COVER — revisited II

G has a vertex v with N(v) = {a,b, c} (δ(G) = 3)

Case 2){v ,d} ⊆ N(a) ∩ N(b) (4-cycle): Then G has a k -VC iff
G \ N[v ] has a (k − 3)-VC or G \ {v ,d} has a (k − 2)-VC.

Proof (sketch): A minimum VC that contains v but not d must
contain a and b. But then S′ = S \ {v} ∪ {x} is also a minimum
VC. Therefore G has a minimum VC that contains N(v) or
{v ,d}.

Branching vector is (2,3). Branching number less than
1.33.
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MINIMUM VERTEX COVER — revisited II

G has a vertex v with N(v) = {a,b, c} (δ(G) = 3)

Case 3)otherwise, i.e., there are no edges between a, b, and c
and {a,b, c} pairwise have only v as a common neighbor
(Tree-neighborhood):

Then G has a k -VC iff either:
(1) G \ N[v ] has a (k − 3)-VC, or
(2) G \ N[c] has a (k − 3)-VC, or
(3) G \ N[a] \ N[b] \ {c} has a (k − y)-VC with

y = |N(a) ∪ N(b)|+ 1 ≥ 6.
Branching vector is (3,3,6). Branching number less than
1.35.
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MINIMUM VERTEX COVER — revisited II

G has a vertex v with N(v) = {a,b, c} (δ(G) = 3)

Case 3)Tree-neighborhood:Then G has a k -VC iff either: (1)
G \ N[v ] has a (k − 3)-VC, or (2) G \ N[c] has a (k − 3)-VC, or
(3) G \ N[a] \ N[b] \ {c} has a (k − y)-VC with
y = |N(a) ∪ N(b)|+ 1 ≥ 6.

Proof: Let S be a minimum VC of G. If v /∈ S or c /∈ S case (1)
or (2) applies, so suppose v ∈ S and c ∈ S.
If a ∈ S then S − {v} ∪ {b} is also a minimum VC so case (1)
again applies. The case b ∈ S is similar. So suppose a,b /∈ S.
This shows that N(a) ∪ N(b) ∪ {c} ⊆ S so case (3) applies.
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MINIMUM VERTEX COVER — revisited II

G has a vertex v with N(v) = {a,b, c,d} (δ(G) = 4)

In this case G has a k -VC iff either G \ {v} has a (k − 1)-VC or
G \ N[v ] has a (k − 4)-VC.

Branching vector is (1,4). Branching number less than
1.39.

Now we have a branching rule for every case (If different
choices are possible rules with lower branching number should
be preferred).
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MINIMUM VERTEX COVER — revisited II

Summary of the cases

degree 1, no branching only reduction;
degree 2, 1.33;
degree 3, 1.27, 1.33, 1.35;
degree ≥ 4, 1.39.

Theorem

The algorithm solves MINIMUM VERTEX COVER in time
O∗(1.39k ).
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MINIMUM VERTEX COVER — revisited II

Further Improvements

As one might expect the above search tree algorithm can be
improved with more detailed and longer case studies. The
current fastest algorithm has running time O∗(1.28k ).

Improvements are obtained by:
More branching rules: consider larger vertex
neighborhoods and distiguish more cases.
Making smarter choices for the branching vertex
(neighborhood), e.g., choose a degree 3 vertex with a high
degree neighbor instead of just any degree 3 vertex.
Analyze subsequent recursive calls: note that the degree 4
rule is a bottleneck, which therefore should only be applied
when every vertex has degree 4. But this means that
subsequently a degree 1, 2, or 3 rule may be applied.
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Tutorial – Topics

The following is just a small selection of possible topics
(papers) for the tutorial.
Please ask for papers on topics you are interested in (you
mind find out which topics these are during the curse of
this lecture).
If you know you are more interested in applications do not
hesitate to ask as well!



Tutorial

Tutorial – Topics

Jianer Chen, Iyad A. Kanj, Ge Xia: Improved upper
bounds for vertex cover. Theor. Comput. Sci.
411(40-42): 3736-3756 (2010);
Yixin Cao, Jianer Chen, Yang Liu: On Feedback Vertex
Set New Measure and New Structures. SWAT 2010:
93-104;
Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, Igor
Razgon: A fixed-parameter algorithm for the directed
feedback vertex set problem. J. ACM 55(5): (2008);
Dániel Marx, Igor Razgon: Fixed-parameter tractability
of multicut parameterized by the size of the cutset.
STOC 2011: 469-478;
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Tutorial – Topics

Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier,
Sebastian Wernicke: Compression-based
fixed-parameter algorithms for feedback vertex set and
edge bipartization. J. Comput. Syst. Sci. 72(8):
1386-1396 (2006);
Stefan Kratsch, Magnus Wahlström: Compression via
Matroids: A Randomized Polynomial Kernel for Odd
Cycle Transversal. SODA 2012: 94-103;
Hans L. Bodlaender, Bart M. P. Jansen, Stefan Kratsch:
Kernel Bounds for Path and Cycle Problems. IPEC
2011: 145-158;
Hans L. Bodlaender, Bart M. P. Jansen, Stefan
Kratsch:Cross-Composition: A New Technique for
Kernelization Lower Bounds. STACS 2011: 165-176;
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Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh,
Dimitrios M. Thilikos: Bidimensionality and Kernels.
SODA 2010: 503-510;
Torben Hagerup: Simpler Linear-Time Kernelization for
Planar Dominating Set. IPEC 2011: 181-193.

I will put a txt-file containing the titles of the papers on IS. If you
want I can also upload the papers there!
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