Fixed-Parameter Algorithms, IA166

Sebastian Ordyniak

Faculty of Informatics Masaryk University Brno

Spring Semester 2013

L Dynamic Programming on Trees

1 Treewidth

Dynamic Programming on Trees

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト … ヨ

- Treewidth: Generalizing Trees
- Computing Treewidth

The Party Problem

PARTY PROBLEM

Problem: Invite some colleagues to a party.Maximize: The total fun factor of the invited people.Constraint: Everyone should be having fun.Do not invite a colleague and his direct boss at the same time!

The Party Problem

PARTY PROBLEM

Input: A tree with weights on the vertices. **Question:** Find an independent set of maximum weight.

・ロット (雪) (日) (日)

э

The Party Problem

PARTY PROBLEM

Input: A tree with weights on the vertices. **Question:** Find an independent set of maximum weight.

・ロット (雪) (日) (日)

э

Dynamic Programming on trees (or tree-like structures)

- A dynamic programming algorithm on a tree (or a tree-like structure) usually computes a set of records for every node of the tree in a bottom-up manner, i.e., we first compute the records for the leaves of the tree and then work our way up the tree.
- Informally, a record is a compact representation of partial solutions, i.e., solutions obtained for the subtree below the current node.
- Ideally, the solution for the whole problem can be directly inferred from the set of records computed for the root of the tree.

(日)、(間)、(目)、(日)、(日)

Example: Solving the party problem

Here and in the sequel we use the following notation: Let T be a (rooted) tree and $t \in V(T)$, then:

ヘロン 人間 とくほど 人ほど 一日

- **T**(t) is the subtree of T rooted at t;
- **\square** $\mathcal{R}(t)$ denotes the set of records for the tree node *t*.

Solving the party problem: The Records

For the PARTY PROBLEM a record is a pair (inc, w) where inc is a boolean value and w is a real value. The semantics of a record for a tree node $t \in V(T)$ is as follows:

- (0, w) ∈ R(t) iff w is the maximum weight of an independent set of T(t) that does not contain v;
- $(1, w) \in \mathcal{R}(t)$ iff *w* is the maximum weight of an independent set of T(t);

Clearly, the solution of the party problem can be easily obtained from $\mathcal{R}(r)$ as the weight *w* such that $(1, w) \in \mathcal{R}(r)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Solving the party problem: Computing the Records

We need to show that we can compute the records for the PARTY PROBLEM for every node of the tree in a bottom-up manner, i.e., we need to show that the set of all records can be computed:

- (1) For the leave nodes of the tree.
- (2) For every inner node of the tree (given the set of records of all its children).

Solving the party problem: Computing the Records

For the PARTY PROBLEM this can be done as follows (here *T* is the given tree with weight function *w* and $t \in V(T)$):

- (1) If *t* is a leave node of *T* then $\mathcal{R}(t) := \{(0,0), (1, w(t))\}.$
- (2) If *t* is an inner node of *T* with children t_1, \ldots, t_l , then $\mathcal{R}(t) := \{(0, w_o), (1, w_i)\}$ where $w_o := \sum \{ w : 1 \le i \le l \text{ and } (1, w) \in \mathcal{R}(t_i) \}$ and

$$w_i := \max\{w_o, w(t) + \sum\{w : 1 \le i \le l \text{ and } (0, w) \in \mathcal{R}(t_i)\}.$$

Solving the party problem: Computing the Records

For the PARTY PROBLEM this can be done as follows (here *T* is the given tree with weight function *w* and $t \in V(T)$):

- (1) If *t* is a leave node of *T* then $\mathcal{R}(t) := \{(0,0), (1, w(t))\}.$
- (2) If *t* is an inner node of *T* with children t_1, \ldots, t_l , then $\mathcal{R}(t) := \{(0, w_o), (1, w_i)\}$ where $w_o := \sum \{ w : 1 \le i \le l \text{ and } (1, w) \in \mathcal{R}(t_i) \}$ and

 $w_i := \max\{w_o, w(t) + \sum\{w : 1 \le i \le l \text{ and } (0, w) \in \mathcal{R}(t_i)\}.$ This gives a polynomial time algorithm for the PARTY PROBLEM

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ </p>

on trees!

L Treewidth: Generalizing Trees

1 Treewidth

- Dynamic Programming on Trees
- Treewidth: Generalizing Trees
- Computing Treewidth

L Treewidth

L Treewidth: Generalizing Trees

Treewidth

Introduction

- Treewidth is a measure of how "tree-like" a graph is.
- Treewidth has become a very successful notion both in structural and algorithmic graph theory.
- Almost every natural problem on graphs becomes solvable in polynomial time on graphs of bounded treewidth, usually even fixed-parameter tractable when parameterized by treewidth.
- Algorithms on graphs of bounded treewidth usually follow the general dynamic programming approach that we presented for trees.
- Treewidth is usually defined in terms of a so called tree-decomposition (although many different alternative definitions exist).

Definition

A tree decomposition of a graph G is a pair (T, X) where T is a tree and $X = \{ X(t) : t \in V(T) \}$ is set of subsets of V(G) such that:

- T1 For every $\{u, v\} \in E(G)$ there is a node $t \in V(T)$ such that $\{u, v\} \in X(t).$
- T2 For every $v \in V(G)$, the subgraph of T induced by $X^{-1}(v) := \{ t \in V(T) : v \in X(t) \}$ is non-empty and connected.

To distinguish between vertices of G and T, the vertices of T are called nodes. The sets X(t) are also called the bags of the tree decompositon.

The width of a tree decomposition is $(\max_{t \in V(T)} |X(t)|) - 1$ and the treewidth of G is the smallest width of any tree decompositon of G. < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

L Treewidth

L Treewidth

A tree decomposition of a graph G is a pair (T, X) where T is a tree and $X = \{ X(t) : t \in V(T) \}$ is set of subsets of V(G) such that:

- T1 For every $\{u, v\} \in E(G)$ there is a node $t \in V(T)$ such that $\{u, v\} \in X(t).$
- T2 For every $v \in V(G)$, the subgraph of T induced by $X^{-1}(v) := \{ t \in V(T) : v \in X(t) \}$ is non-empty and connected.

Property T2 is often called the "connectedness condition" and can be equivalently formulated as:

T2' For every $t, t', t'' \in V(T)$ such that t' lies on the unique path between t and t'' in T it holds that: $X(t) \cap X(t'') \subseteq X(t')$. Furthermore, every vertex of G is contained in some bag of T.

Observation (-1)

Let G be a graph. Then $tw(G) \le |V(G)| - 1$.

Observation (0)

tw(G) = 0 iff G contains no edges.

Observation (1)

Let *H* be a subgraph of a graph *G*. Then $tw(H) \le tw(G)$.

Proof:

Let (T, X) be a tree decomposition of *G*. Then (T, X') such that $X(t)' := X(t) \cap V(H)$ for every $t \in V(T)$ is a tree decomposition of *H* whose width is at most as high as the width of (T, X). \Box

Observation (2)

Let *A* and *B* be 2 graphs and let *G* be the disjoint union of *A* and *B*. Then $tw(G) = max{tw(A), tw(B)}$.

Proof:

Let (T^A, X^A) and (T^B, X^B) be tree decompositions of *A* and *B*, respectively. Then (T, X) such that:

T is the disjoint union of T^A and T^B plus an addional node r that is connected to one node of T^A and one node of T^B.

•
$$X(r) := \emptyset$$
, $X(t) := X(t)^A$ for every $t \in V(T^A)$, and $X(t) := X(t)^B$ for every $t \in V(T^B)$.

is a tree decomposition of G of width at most $\max{tw(A), tw(B)}$.

Basic Properties

Observation (2)

Let *A* and *B* be 2 graphs and let *G* be the disjoint union of *A* and *B*. Then $tw(G) = max{tw(A), tw(B)}$.

Corollary (1)

Let G be a graph. Then the treewidth of G is equal to the maximum treewidth of the connected components of G.

Basic Properties

Observation (2)

Let *A* and *B* be 2 graphs and let *G* be the disjoint union of *A* and *B*. Then $tw(G) = max{tw(A), tw(B)}$.

Corollary (1)

Let G be a graph. Then the treewidth of G is equal to the maximum treewidth of the connected components of G.

Observation (3)

If G is a forest and contains at least one edge then tw(G) = 1.

Proof:

Because of Observation (0) it holds that $tw(G) \ge 1$. Furthermore, it follows from Corollary (1) that we only need to consider the treewidth of *G*'s connected components, i.e., we need to show that every tree has a tree decomposition of width 1. Suppose that *G* is a tree. W.I.o.g. we can assume that *G* is rooted in some arbitrary vertex and that p(t) denotes the parent of a vertex $t \in V(G)$. Then (G, X) such that $X(t) := \{t, p(t)\}$ is a tree decomposition of *G* of width at most 1.

Small Tree Decompositons

Definition

A tree decomposition (T, X) is small if $X(t) \nsubseteq X(t')$ for every distinct $t, t' \in V(T)$.

Proposition (1)

Given a tree decomposition of a graph G. Then in polynomial time we can construct a small tree decompositon of G (of the same width).

Proposition (2)

Let (X, T) be a small tree decomposition of G. Then $|V(T)| \le |V(G)|$.

・ コット (雪) (小田) (コット 日)

Small Tree Decompostions

Proposition (1)

Given a tree decomposition of a graph G. Then in polynomial time we can construct a small tree decompositon of G.

Proof:

Let (T, X) be a tree decomposition of G with $X(t) \subseteq X(t')$ for some distinct $t, t' \in V(T)$. By considering the unique path from t to t' in T we can find adjacent nodes with this property. Hence, w.l.o.g. we can assume that $\{t, t'\} \in E(T)$. Consequently, contracting the edge $\{t, t'\}$ into a new node t''and setting X(t'') := X(t') gives a smaller tree decomposition of G. Hence, we can continue this process until a small tree decomposition of G is obtained.

Small Tree Decompositons

Proposition (2)

Let (X, T) be a small tree decomposition of G. Then $|V(T)| \le |V(G)|$.

Proof:

By induction over n = |V(G)|. If n = 1 then |V(T)| = 1, as required.

If n > 1 then consider a leaf l of T with neighbor l'. Deleting l from T yields a small tree decomposition (T', X') of $G' := G \setminus (X(l) \setminus X(l'))$. Because $X(l) \setminus X(l') \neq \emptyset$ we obtain by induction: $|V(T)| = |V(T')| + 1 \le |V(G')| + 1 \le |V(G)|$, as required.

Minors

Observation (4)

Let *H* be obtained from *G* by contracting an edge $\{v, w\}$ into *z*. Then tw(*H*) \leq tw(*G*).

Proof:

Let (T, X) be a tree decomposition of *G*. Then (T, X') such that $X(t)' := X(t) \cup \{z\}$ for every $t \in V(T)$ with $\{v, w\} \cap X(t) \neq \emptyset$ and X(t)' := X(t), otherwise, is a tree decomposition of *H* whose width is at most the width of (T, X).

- Treewidth

L Treewidth: Generalizing Trees

Minors

Definition

A graph H is a minor of a graph G if H can be obtained from a subgraph of G via edge contractions.

Because of Observation (1) and (4) we obtain:

Observation (5)

Let *H* be a minor of *G*. Then $tw(H) \le tw(G)$.

Tree Decompositions and Cuts

Definitions

■ Let (T, X) be a tree decomposition, $\{t, t'\} \in E(T)$, and $U \subseteq V(T)$. We denote by T_t and $T_{t'}$ the 2 components of $T - \{t, t'\}$ (such that T_t contains t and $T_{t'}$ contains t'). Furthermore, we denote by X(U) the set of vertices $\bigcup_{t \in U} X(t)$.

Let G be a connected graph and S, T ⊆ V(G) be disjoint and non-empty vertex sets of G. A set C ⊆ V(G) is a cut if G \ C is disconnected. It is a k-cut if |C| ≤ k. Furthermore, C is an (S, T)-cut or a cut separating S and T if G \ C contains no paths with end vertices in both S and T.

Tree Decompositions and Cuts

Lemma

Tree Decompositions and Cuts

Lemma

Let (T, X) be a tree decomposition of a graph G and $\{t, t'\} \in E(T)$. Furthermore, let $C := X(t) \cap X(t')$, $S_t := X(T_t) \setminus X(T_{t'})$ and $S_{t'} := X(T_{t'}) \setminus X(T_t)$. Then C is an $(S_t, S_{t'})$ -cut in G.

Proof:

Because of Property T2 of a tree decomposition we obtain $C = X(t) \cap X(t') = X(T_t) \cap X(T_{t'}).$ Hence, $\{S_t, C, S_{t'}\}$ is a partition of V(G). It hence suffices to show that $G \setminus C$ contains no edge $\{u, v\}$ with $u \in S_t$ and $v \in S_{t'}.$

Tree Decompositions and Cuts

Lemma (1)

Let (T, X) be a tree decomposition of a graph G and $\{t, t'\} \in E(T)$. Furthermore, let $C := X(t) \cap X(t')$, $S_t := X(T_t) \setminus X(T_{t'})$ and $S_{t'} := X(T_{t'}) \setminus X(T_t)$. Then C is an $(S_t, S_{t'})$ -cut in G.

Proof, continued:

Let $\{u, v\} \in E(G)$. Because of Property T1 of a tree decomposition we know that there is a $t'' \in V(T)$ such that $\{u, v\} \subseteq X(t'')$. If $t'' \in V(T_t)$ then $u, v \in X(T_t)$ and hence $u, v \notin X(T_{t'})$. If $t'' \in V(T_{t'})$ then $u, v \in X(T_{t'})$ and hence $u, v \notin X(T_t)$.

3

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Tree Decompositions and Cuts

Lemma (2)

Let *G* be a connected graph with $tw(G) \le k$. Then |V(G)| = k + 1 or *G* has a *k*-cut.

Proof:

Consider a small tree decomposition (T, X) of G of width at most k. If |V(G)| > k + 1, then $|V(T)| \ge 2$, so we may consider any two adjacent nodes $t, t' \in V(T)$. Because (T, X) is small it holds that $X(t) \setminus X(t') \ne \emptyset$ and $X(t') \setminus X(t) \ne \emptyset$, and $|X(t) \cap X(t')| \le k$. Then, by the previous lemma, $C = X(t) \cap X(t')$ is a k-cut in G. - Treewidth

L Treewidth: Generalizing Trees

Tree Decompositions and Cuts

As an immediate consequence of Lemma (2) we obtain:

Corollary

If tw(G) = 1, then G is a forest.

Corollary

Let K_n be the complete graph on *n* vertices. Then $tw(K_n) = n - 1$.

Tree Decompositions and Cuts

A $k \times l$ -grid, denoted $G_{k \times l}$, is the graph with vertex set:

$$\{(i, j) : 1 \le i \le k \text{ and } 1 \le j \le l\}$$

and edge set:

$$\{ \{ (i,j), (i,j+1) \} : 1 \le i \le k, 1 \le j < I \} \cup \\ \{ \{ (i,j), (i+1,j) : 1 \le i < k, 1 \le j \le I \} \}$$

Tree Decompositions and Cuts

Proposition

 $\mathsf{tw}(G_{k\times l}) \leq \min\{k, l\}.$

As an immediate consequence of Lemma (2) we obtain:

Proposition

 $\mathsf{tw}(G_{k\times I}) \geq \min\{k, I\}.$

Computing Treewidth

1 Treewidth

- Dynamic Programming on Trees
- Treewidth: Generalizing Trees
- Computing Treewidth

Computing Treewidth

Computing Treewidth

The following problem is NP-hard:

k-TREEWIDTH

Parameter: k

Input: A graph *G* and a natural number *k*. **Question:** Is $tw(G) \le k$ (and if so compute a tree decomposition of width at most *k*)

Theorem

k-TREEWIDTH is fixed-parameter tractable, i.e., there are 2 FPT-algorithms for *k*-TREEWIDTH: (1) $O(2^{O(k^3)}|V(G)|)$ and (2) $O(3^{3k}k(|V(G)|)^2)$.

Theorem

Treewidth can be approximated to within $k\sqrt{\log k}$.

Computing Treewidth

Computing Treewidth

Remark

Because k-TREEWIDTH is fixed-parameter tractable we can always assume that we are given a tree decomposition of optimal width when designing fixed-parameter algorithms for problems parameterized by treewidth.

