Fixed-Parameter Algorithms, IA166

Sebastian Ordyniak

Faculty of Informatics

Masaryk University Brno
Spring Semester 2013

- Dynamic Programming on Trees

Outline

1 Treewidth

■ Dynamic Programming on Trees

- Treewidth: Generalizing Trees - Computing Treewidth

The Party Problem

Party Problem

Problem: Invite some colleagues to a party. Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.
Do not invite a colleague and his direct boss at the same time!

The Party Problem

Party Problem

Input: A tree with weights on the

 vertices.Question: Find an independent set of maximum weight.

The Party Problem

Party Problem

Input: A tree with weights on the vertices.
Question: Find an independent set of maximum weight.

Dynamic Programming on trees (or tree-like structures)

■ A dynamic programming algorithm on a tree (or a tree-like structure) usually computes a set of records for every node of the tree in a bottom-up manner, i.e., we first compute the records for the leaves of the tree and then work our way up the tree.

■ Informally, a record is a compact representation of partial solutions, i.e., solutions obtained for the subtree below the current node.

- Ideally, the solution for the whole problem can be directly inferred from the set of records computed for the root of the tree.

Example: Solving the party problem

Here and in the sequel we use the following notation: Let T be a (rooted) tree and $t \in V(T)$, then:
$\square T(t)$ is the subtree of T rooted at t;
■ $\mathcal{R}(t)$ denotes the set of records for the tree node t.

Solving the party problem: The Records

For the Party Problem a record is a pair (inc, w) where inc is a boolean value and w is a real value. The semantics of a record for a tree node $t \in V(T)$ is as follows:
$\square(0, w) \in \mathcal{R}(t)$ iff w is the maximum weight of an independent set of $T(t)$ that does not contain v;
$\square(1, w) \in \mathcal{R}(t)$ iff w is the maximum weight of an independent set of $T(t)$;
Clearly, the solution of the party problem can be easily obtained from $\mathcal{R}(r)$ as the weight w such that $(1, w) \in \mathcal{R}(r)$.

Solving the party problem: Computing the Records

We need to show that we can compute the records for the
Party Problem for every node of the tree in a bottom-up manner, i.e., we need to show that the set of all records can be computed:
(1) For the leave nodes of the tree.
(2) For every inner node of the tree (given the set of records of all its children).

Solving the party problem: Computing the Records

For the Party Problem this can be done as follows (here T is the given tree with weight function w and $t \in V(T)$):
(1) If t is a leave node of T then $\mathcal{R}(t):=\{(0,0),(1, w(t))\}$.
(2) If t is an inner node of T with children t_{1}, \ldots, t_{t}, then
$\mathcal{R}(t):=\left\{\left(0, w_{o}\right),\left(1, w_{i}\right)\right\}$ where
$w_{0}:=\sum\left\{w: 1 \leq i \leq l\right.$ and $\left.(1, w) \in \mathcal{R}\left(t_{i}\right)\right\}$
and

$$
w_{i}:=\max \left\{w_{o}, w(t)+\sum\left\{w: 1 \leq i \leq I \text { and }(0, w) \in \mathcal{R}\left(t_{i}\right)\right\}\right.
$$

Solving the party problem: Computing the Records

For the Party Problem this can be done as follows (here T is the given tree with weight function w and $t \in V(T)$):
(1) If t is a leave node of T then $\mathcal{R}(t):=\{(0,0),(1, w(t))\}$.
(2) If t is an inner node of T with children t_{1}, \ldots, t_{1}, then
$\mathcal{R}(t):=\left\{\left(0, w_{o}\right),\left(1, w_{i}\right)\right\}$ where
$w_{0}:=\sum\left\{w: 1 \leq i \leq l\right.$ and $\left.(1, w) \in \mathcal{R}\left(t_{i}\right)\right\}$
and

$$
w_{i}:=\max \left\{w_{o}, w(t)+\sum\left\{w: 1 \leq i \leq I \text { and }(0, w) \in \mathcal{R}\left(t_{i}\right)\right\} .\right.
$$

This gives a polynomial time algorithm for the Party Problem on trees!

Treewidth: Generalizing Trees

Outline

1 Treewidth

- Dynamic Programming on Trees

■ Treewidth: Generalizing Trees

- Computing Treewidth

- Treewidth

Treewidth: Generalizing Trees

Treewidth

Introduction

- Treewidth is a measure of how "tree-like" a graph is.

■ Treewidth has become a very successful notion both in structural and algorithmic graph theory.
■ Almost every natural problem on graphs becomes solvable in polynomial time on graphs of bounded treewidth, usually even fixed-parameter tractable when parameterized by treewidth.

- Algorithms on graphs of bounded treewidth usually follow the general dynamic programming approach that we presented for trees.
■ Treewidth is usually defined in terms of a so called tree-decomposition (although many different alternative definitions exist).

Definition

A tree decomposition of a graph G is a pair (T, X) where T is a tree and $X=\{X(t): t \in V(T)\}$ is set of subsets of $V(G)$ such that:
T1 For every $\{u, v\} \in E(G)$ there is a node $t \in V(T)$ such that $\{u, v\} \in X(t)$.
T2 For every $v \in V(G)$, the subgraph of T induced by $X^{-1}(v):=\{t \in V(T): v \in X(t)\}$ is non-empty and connected.
To distinguish between vertices of G and T, the vertices of T are called nodes. The sets $X(t)$ are also called the bags of the tree decompositon.
The width of a tree decomposition is $\left(\max _{t \in V(T)}|X(t)|\right)-1$ and the treewidth of G is the smallest width of any tree decompositon of G.

Treewidth: Generalizing Trees

Example

Basic Properties

A tree decomposition of a graph G is a pair (T, X) where T is a tree and $X=\{X(t): t \in V(T)\}$ is set of subsets of $V(G)$ such that:
T1 For every $\{u, v\} \in E(G)$ there is a node $t \in V(T)$ such that $\{u, v\} \in X(t)$.
T2 For every $v \in V(G)$, the subgraph of T induced by $X^{-1}(v):=\{t \in V(T): v \in X(t)\}$ is non-empty and connected.
Property T2 is often called the "connectedness condition" and can be equivalently formulated as:
T2' For every $t, t^{\prime}, t^{\prime \prime} \in V(T)$ such that t^{\prime} lies on the unique path between t and $t^{\prime \prime}$ in T it holds that: $X(t) \cap X\left(t^{\prime \prime}\right) \subseteq X\left(t^{\prime}\right)$. Furthermore, every vertex of G is contained in some bag of T.

Basic Properties

Observation (-1)

Let G be a graph. Then $\operatorname{tw}(G) \leq|V(G)|-1$.

Observation (0)

 $\mathrm{tw}(G)=0$ iff G contains no edges.Observation (1)
Let H be a subgraph of a graph G. Then $\mathrm{tw}(H) \leq \mathrm{tw}(G)$.

Proof:

Let (T, X) be a tree decomposition of G. Then $\left(T, X^{\prime}\right)$ such that $X(t)^{\prime}:=X(t) \cap V(H)$ for every $t \in V(T)$ is a tree decomposition of H whose width is at most as high as the width of (T, X).

Basic Properties

Observation (2)

Let A and B be 2 graphs and let G be the disjoint union of A and B. Then $\operatorname{tw}(G)=\max \{\operatorname{tw}(A), \operatorname{tw}(B)\}$.

Proof:

Let $\left(T^{A}, X^{A}\right)$ and $\left(T^{B}, X^{B}\right)$ be tree decompositions of A and B, respectively. Then (T, X) such that:

- T is the disjoint union of T^{A} and T^{B} plus an addional node r that is connected to one node of T^{A} and one node of T^{B}.
■ $X(r):=\emptyset, X(t):=X(t)^{A}$ for every $t \in V\left(T^{A}\right)$, and $X(t):=X(t)^{B}$ for every $t \in V\left(T^{B}\right)$.
is a tree decomposition of G of width at most $\max \{\operatorname{tw}(A), \operatorname{tw}(B)\}$.

L Treewidth
 - Treewidth: Generalizing Trees
 Basic Properties

Observation (2)

Let A and B be 2 graphs and let G be the disjoint union of A and B. Then $\mathrm{tw}(G)=\max \{\mathrm{tw}(A), \mathrm{tw}(B)\}$.

Corollary (1)

Let G be a graph. Then the treewidth of G is equal to the maximum treewidth of the connected components of G.

L Treewidth
 - Treewidth: Generalizing Trees
 Basic Properties

Observation (2)

Let A and B be 2 graphs and let G be the disjoint union of A and B. Then $\mathrm{tw}(G)=\max \{\mathrm{tw}(A), \mathrm{tw}(B)\}$.

Corollary (1)

Let G be a graph. Then the treewidth of G is equal to the maximum treewidth of the connected components of G.

Basic Properties

Observation (3)

If G is a forest and contains at least one edge then $\operatorname{tw}(G)=1$.

Proof:

Because of Observation (0) it holds that $\operatorname{tw}(G) \geq 1$.
Furthermore, it follows from Corollary (1) that we only need to consider the treewidth of G's connected components, i.e., we need to show that every tree has a tree decomposition of width 1. Suppose that G is a tree. W.I.o.g. we can assume that G is rooted in some arbitrary vertex and that $p(t)$ denotes the parent of a vertex $t \in V(G)$. Then (G, X) such that $X(t):=\{t, p(t)\}$ is a tree decomposition of G of width at most 1.

Small Tree Decompostions

Definition

A tree decomposition (T, X) is small if $X(t) \nsubseteq X\left(t^{\prime}\right)$ for every distinct $t, t^{\prime} \in V(T)$.

Proposition (1)

Given a tree decomposition of a graph G. Then in polynomial time we can construct a small tree decompositon of G (of the same width).

Proposition (2)

Let (X, T) be a small tree decomposition of G. Then $|V(T)| \leq|V(G)|$.

Small Tree Decompostions

Proposition (1)

Given a tree decomposition of a graph G. Then in polynomial time we can construct a small tree decompositon of G.

Proof:

Let (T, X) be a tree decomposition of G with $X(t) \subseteq X\left(t^{\prime}\right)$ for some distinct $t, t^{\prime} \in V(T)$. By considering the unique path from t to t^{\prime} in T we can find adjacent nodes with this property. Hence, w.l.o.g. we can assume that $\left\{t, t^{\prime}\right\} \in E(T)$.
Consequently, contracting the edge $\left\{t, t^{\prime}\right\}$ into a new node $t^{\prime \prime}$ and setting $X\left(t^{\prime \prime}\right):=X\left(t^{\prime}\right)$ gives a smaller tree decomposition of G. Hence, we can continue this process until a small tree decomposition of G is obtained.

Small Tree Decompostions

Proposition (2)

Let (X, T) be a small tree decomposition of G. Then
$|V(T)| \leq|V(G)|$.

Proof:

By induction over $n=|V(G)|$. If $n=1$ then $|V(T)|=1$, as required.
If $n>1$ then consider a leaf I of T with neighbor I^{\prime}. Deleting I from T yields a small tree decomposition $\left(T^{\prime}, X^{\prime}\right)$ of
$G^{\prime}:=G \backslash\left(X(I) \backslash X\left(I^{\prime}\right)\right)$.
Because $X(I) \backslash X\left(I^{\prime}\right) \neq \emptyset$ we obtain by induction: $|V(T)|=\left|V\left(T^{\prime}\right)\right|+1 \leq\left|V\left(G^{\prime}\right)\right|+1 \leq|V(G)|$
, as required.

Minors

Observation (4)

Let H be obtained from G by contracting an edge $\{v, w\}$ into z. Then $\mathrm{tw}(H) \leq \mathrm{tw}(G)$.

Proof:

Let (T, X) be a tree decomposition of G. Then $\left(T, X^{\prime}\right)$ such that $X(t)^{\prime}:=X(t) \cup\{z\}$ for every $t \in V(T)$ with $\{v, w\} \cap X(t) \neq \emptyset$ and $X(t)^{\prime}:=X(t)$, otherwise, is a tree decomposition of H whose width is at most the width of (T, X).

L Treewidth
 - Treewidth: Generalizing Trees

 Minors

 Minors}

Definition

A graph H is a minor of a graph G if H can be obtained from a subgraph of G via edge contractions.

Because of Observation (1) and (4) we obtain:

Observation (5)

Let H be a minor of G. Then $\mathrm{tw}(H) \leq \mathrm{tw}(G)$.

Tree Decompositions and Cuts

Definitions

\square Let (T, X) be a tree decomposition, $\left\{t, t^{\prime}\right\} \in E(T)$, and $U \subseteq V(T)$. We denote by T_{t} and $T_{t^{\prime}}$ the 2 components of $T-\left\{t, t^{\prime}\right\}$ (such that T_{t} contains t and $T_{t^{\prime}}$ contains t^{\prime}). Furthermore, we denote by $X(U)$ the set of vertices $\bigcup_{t \in U} X(t)$.

- Let G be a connected graph and $S, T \subseteq V(G)$ be disjoint and non-empty vertex sets of G. A set $C \subseteq V(G)$ is a cut if $G \backslash C$ is disconnected. It is a k-cut if $|C| \leq k$. Furthermore, C is an (S, T)-cut or a cut separating S and T if $G \backslash C$ contains no paths with end vertices in both S and T.

Tree Decompositions and Cuts

Lemma

Let (T, X) be a tree decomposition of a graph G and $\left\{t, t^{\prime}\right\} \in E(T)$. Furthermore, let $C:=X(t) \cap X\left(t^{\prime}\right)$, $S_{t}:=X\left(T_{t}\right) \backslash X\left(T_{t^{\prime}}\right)$ and $S_{t^{\prime}}:=X\left(T_{t^{\prime}}\right) \backslash X\left(T_{t}\right)$. Then C is an $\left(S_{t}, S_{t^{\prime}}\right)$-cut in G.

Tree Decompositions and Cuts

Lemma

Let (T, X) be a tree decomposition of a graph G and $\left\{t, t^{\prime}\right\} \in E(T)$. Furthermore, let $C:=X(t) \cap X\left(t^{\prime}\right)$, $S_{t}:=X\left(T_{t}\right) \backslash X\left(T_{t^{\prime}}\right)$ and $S_{t^{\prime}}:=X\left(T_{t^{\prime}}\right) \backslash X\left(T_{t}\right)$. Then C is an $\left(S_{t}, S_{t^{\prime}}\right)$-cut in G.

Tree Decompositions and Cuts

Lemma

Let (T, X) be a tree decomposition of a graph G and $\left\{t, t^{\prime}\right\} \in E(T)$. Furthermore, let $C:=X(t) \cap X\left(t^{\prime}\right)$, $S_{t}:=X\left(T_{t}\right) \backslash X\left(T_{t^{\prime}}\right)$ and $S_{t^{\prime}}:=X\left(T_{t^{\prime}}\right) \backslash X\left(T_{t}\right)$. Then C is an $\left(S_{t}, S_{t^{\prime}}\right)$-cut in G.

Tree Decompositions and Cuts

Lemma

Let (T, X) be a tree decomposition of a graph G and $\left\{t, t^{\prime}\right\} \in E(T)$. Furthermore, let $C:=X(t) \cap X\left(t^{\prime}\right)$, $S_{t}:=X\left(T_{t}\right) \backslash X\left(T_{t^{\prime}}\right)$ and $S_{t^{\prime}}:=X\left(T_{t^{\prime}}\right) \backslash X\left(T_{t}\right)$. Then C is an $\left(S_{t}, S_{t^{\prime}}\right)$-cut in G.

Tree Decompositions and Cuts

Lemma

Let (T, X) be a tree decomposition of a graph G and
$\left\{t, t^{\prime}\right\} \in E(T)$. Furthermore, let $C:=X(t) \cap X\left(t^{\prime}\right)$,
$S_{t}:=X\left(T_{t}\right) \backslash X\left(T_{t^{\prime}}\right)$ and $S_{t^{\prime}}:=X\left(T_{t^{\prime}}\right) \backslash X\left(T_{t}\right)$. Then C is an $\left(S_{t}, S_{t^{\prime}}\right)$-cut in G.

Proof:

Because of Property T2 of a tree decomposition we obtain $C=X(t) \cap X\left(t^{\prime}\right)=X\left(T_{t}\right) \cap X\left(T_{t^{\prime}}\right)$.
Hence, $\left\{S_{t}, C, S_{t^{\prime}}\right\}$ is a partition of $V(G)$. It hence suffices to show that $G \backslash C$ contains no edge $\{u, v\}$ with $u \in S_{t}$ and $v \in S_{t^{\prime}}$.

Tree Decompositions and Cuts

Lemma (1)

Let (T, X) be a tree decomposition of a graph G and
$\left\{t, t^{\prime}\right\} \in E(T)$. Furthermore, let $C:=X(t) \cap X\left(t^{\prime}\right)$,
$S_{t}:=X\left(T_{t}\right) \backslash X\left(T_{t^{\prime}}\right)$ and $S_{t^{\prime}}:=X\left(T_{t^{\prime}}\right) \backslash X\left(T_{t}\right)$. Then C is an
$\left(S_{t}, S_{t^{\prime}}\right)$-cut in G.

Proof, continued:

Let $\{u, v\} \in E(G)$. Because of Property T1 of a tree decomposition we know that there is a $t^{\prime \prime} \in V(T)$ such that $\{u, v\} \subseteq X\left(t^{\prime \prime}\right)$.
If $t^{\prime \prime} \in V\left(T_{t}\right)$ then $u, v \in X\left(T_{t}\right)$ and hence $u, v \notin X\left(T_{t^{\prime}}\right)$. If $t^{\prime \prime} \in V\left(T_{t^{\prime}}\right)$ then $u, v \in X\left(T_{t^{\prime}}\right)$ and hence $u, v \notin X\left(T_{t}\right)$.

Tree Decompositions and Cuts

Lemma (2)

Let G be a connected graph with $t w(G) \leq k$. Then
$|V(G)|=k+1$ or G has a k-cut.

Proof:

Consider a small tree decomposition (T, X) of G of width at most k. If $|V(G)|>k+1$, then $|V(T)| \geq 2$, so we may consider any two adjacent nodes $t, t^{\prime} \in V(T)$. Because (T, X) is small it holds that $X(t) \backslash X\left(t^{\prime}\right) \neq \emptyset$ and $X\left(t^{\prime}\right) \backslash X(t) \neq \emptyset$, and $\left|X(t) \cap X\left(t^{\prime}\right)\right| \leq k$. Then, by the previous lemma, $C=X(t) \cap X\left(t^{\prime}\right)$ is a k-cut in G.

L Treewidth
 - Treewidth: Generalizing Trees
 Tree Decompositions and Cuts

As an immediate consequence of Lemma (2) we obtain:

Corollary

If $\operatorname{tw}(G)=1$, then G is a forest.

Corollary

Let K_{n} be the complete graph on n vertices. Then $\mathrm{tw}\left(K_{n}\right)=n-1$.

Tree Decompositions and Cuts

A $k \times l$-grid, denoted $G_{k \times 1}$, is the graph with vertex set:

$$
\{(i, j): 1 \leq i \leq k \text { and } 1 \leq j \leq I\}
$$

and edge set:

$$
\begin{array}{r}
\{\{(i, j),(i, j+1)\}: 1 \leq i \leq k, 1 \leq j< \\
I\} \cup \\
\{\{(i, j),(i+1, j): 1 \leq i<k, 1 \leq j \leq I\}
\end{array}
$$

L Treewidth
 - Treewidth: Generalizing Trees

 Tree Decompositions and Cuts

 Tree Decompositions and Cuts}

Proposition

$\operatorname{tw}\left(G_{k \times I}\right) \leq \min \{k, I\}$.
As an immediate consequence of Lemma (2) we obtain:
Proposition $\operatorname{tw}\left(G_{k \times I}\right) \geq \min \{k, I\}$.
-Computing Treewidth

Outline

1 Treewidth

- Dynamic Programming on Trees - Treewidth: Generalizing Trees

■ Computing Treewidth

Computing Treewidth

The following problem is NP-hard:
k-TREEWIDTH
Parameter: k
Input: A graph G and a natural number k.
Question: Is $\mathrm{tw}(G) \leq k$ (and if so compute a tree decomposition of width at most k)

Theorem

k-TREEWIDTH is fixed-parameter tractable, i.e., there are 2
FPT-algorithms for k-TREEWIDTH: (1) $O\left(2^{O\left(k^{3}\right)}|V(G)|\right)$ and (2) $O\left(3^{3 k} k(|V(G)|)^{2}\right)$.

Theorem
Treewidth can be approximated to within $k \sqrt{\log k}$.

Computing Treewidth

Remark

Because k-TrEEWIDTH is fixed-parameter tractable we can always assume that we are given a tree decomposition of optimal width when designing fixed-parameter algorithms for problems parameterized by treewidth.

