
IA167: String Algorithms Spring 2014

Lecture 7: April 7
Lecturer: Alex Popa Scribes: Dominik Szalai

7.1 Brief history

With arrival of computing mankind needed some way of formal description of systems, algorithms and
problems. At this time researchers started to realize that several problems are algorithmically unsolvable.
First foundations were set by Alonzo Church and Alan Turing. In 1936 independently from each other they
have shown in their works answer for Hillbert’s so called Entscheidungsproblem. They have shown that
testing whether an assertion has a proof is algorithmically unsolvable. [EPW,SM92] Later on the concept of
NP-completness was developed in the early 1970 in parallel by researchers in the US and the USSR. In 1971
Stephen Cook published paper “The complexity of theorem proving procedures” which included so called
Cook-Levin theorem, stating that Boolean satisfiability1 problem is NP-complete. [CLTW]

7.2 NP-Completness

In these scribes we will refer to three main classes of problems: P, NP and NP − C. The class P consists of
problems that are solvable (by deterministic Turing machine) in polynomial time O(nk) for constant k and
n which denotes the input size of the problem. Formally the definition of P class is following:

Definition 7.1 A language L is in P if and only if there exists a deterministic Turing machine M, such
that

• M runs for polynomial time on all inputs

• ∀x ∈ L, M outputs 1

• ∀x /∈ L, M outputs 0

The class NP2 consists of problems, that are verifiable in polynomial time. By verification we mean we have
a proof of solution stating that the problem can be solved in polynomial time. The formal definition of class
NP is following:

Definition 7.2 A language L is in NP if and only if there exist polynomials p and q, and a deterministic
Turing machine M, such that

• ∀(x ∧ y) ∈ L, the machine M runs in time p(|x|) on input (x, y)

• ∀x ∈ L, there exists a string y of length q(|x|) such that M(x, y) = 1

• ∀x /∈ L and all strings y of length q(|x|), M(x, y) = 0

1Also known as SAT problem
2from word non-detereministic

7-1

7-2 Lecture 7: April 7

The last class, that is important for further reading consists of NP-complete problems.

Definition 7.3 Problem A is NP-complete if two following conditions are satisfied:

1. A is in NP

2. every problem in NP is reducible to A in polynomial time.3

We can describe reduction in definition 7.3 above in following way: Lets suppose that we have a procedure
that transforms problem A into problem B with two conditions. The first one is that the transformation
takes polynomial time, and the other one states that the answers for both problems are same. That is, the
answer for A is yes, if and only if the answer for B is also yes. [CT09] Some of the well known NP-complete
problems with brief description taken from related Wikipedia articles are:

Boolean satisfiability problem Given boolean formula consisting of variables, conjunctions, disjunction
negation and parentheses, written in conjunctive normal form we can say wheter there exists an inter-
pretation that makes formula true.

Knapsack problem Given a set of items, each with a mass and a value, determine the number of each
item to include in a collection so that the total weight is less than or equal to a given limit and the
total value is as large as possible.

Hamiltonian path problem Problem determining whether a Hamiltonian path, a path that visits each
vertex exactly once, exists in the given graph.

Travelling salesman problem Given a list of cities and the distances between each pair of cities, what is
the shortest possible route that visits each city exactly once and returns to the origin city?

Subgraph isomorphism problem Given two graphs G and H on input, decide whether G contains a
subgraph that is isomorphic to H.

Subset sum problem Given a set (or multiset) of integers, is there a non-empty subset whose sum is zero?

Clique problem There are more variation of this problem e.g. maximum clique. In maximum clique we
have to find clique of the largest possible size in given graph.

Vertex cover One of the classical NP-complete problem. The problem is to find in given graph set of
vertices such that each edge of the graph is incident to at least one vertex of the set.

Graph coloring Assigning labels (colors) to elements of graphs (vertices, edges) with certain constraint.
For example in vertex coloring, assign color to vertices such that no two adjacent vertices have the
same color.

7.3 Approximation Algorithms

Lot of practical problems that computer science deals with are NP-complete. We don’t know how to find
algorithm that has optimal polynomial running time. There are several ways how to deal with this problem.
First one might be, if the input is raletively small, we don’t have worry with performance, thanks to the
speed of nowadays computers. It makes really small difference if algorithm runs in O(n2) or O(2n) for small
input n e.g n ≤ 5. The other option is to reduce our entire problem, or at least parts of it into something
already known like Satisfiability problem mentioned above. Third option is to find near-optimal solution in
polynomial time. These algorithms are called approximation algorithms. [CT09]

3Also known as NP-hardness

Lecture 7: April 7 7-3

Definition 7.4 Let X be a minimization (respectively, maximization) problem. Let ε > 0, and set c = 1 + ε
(reespectively, c = 1 − ε). An algorithm A is called a c-approximation algorithm for problem X , if for all
instances I of X it delivers a feasible solution with objective value A(I) such that

|A(I)−OPT (I)| ≤ ε ·OPT (I). (7.1)

In this case, the value c is called the performance guarantee or the worst case ratio of the approximation
algorithm A.

The value c can be viewed as the quality measure of the approximation algorithm. The closer c is to 1, the
better the algorithm is.

Definition 7.5 Let X be a minimization (respectively, maximization) problem.

APX An approximation scheme for problem X is a family of (1 + ε)-approximation algorithms Aε (respec-
tively, (1− ε)-approximation algorithms Aε) for problem X over all 0 < ε < 1.

PTAS A polynomial time approximation scheme for problem X is an approximation scheme whose time
complexity is polynomial in the input size. For example if if algorithm runs in O(n

1
ε) then with in-

creasing of ε the power of n decreases, which bring us decreased running time.

FPTAS A fully polynomial time approximation scheme for problem X is an approximation scheme whose
time complexity is polynomial in the input size and also polynomial in 1

ε . For example running time
might be in O((1

ε)3n2).

Previous two definitions were taken from [SP07]. To show real values of c-approximation we may choose for
example problems from section 7.2 such as Vertex-cover which is polynomial time 2-approximation, Travelling
salesman problem with triangle inequalities which is also a polynomial time 2-approximation. For Set cover
we have polynomial time (ln |X |+ 1)-approximation.

7.4 Shortest common superstring

Problem 7.6 Given a finite alphabet Σ, and a set of n strings, S = {s1, · · · , sn} ⊆ Σ+, find a shortest
possible string s that contains each si as a substring.

Example 7.7 Given set S = {s1 = abaab, s2 = baba, s3 = aabbb, s4 = bbab} find the shortest common
superstring s.

Solution

If we merge strings as is shown below we will get the result s = bbabaabbb

s = b b a b a a b b b

s4 = b b a b
s2 = b a b a
s1 = a b a a b
s3 = a a b b b

Shortest common superstring problem belongs to NP-complete class of problems. The exact algorithm for
finding shortest common superstring is in O(2n) class as has been shown by Held & Karp in [HM61]. In
following few sections we will show how several algorithms for obtaining Shortest common superstring.

7-4 Lecture 7: April 7

7.4.1 Greedy algorithm

Greedy algorithm repeatedly merges two strings from input set S with maximum overlap until one merged
string remains which is the result shortest common superstring. By overlap we mean function ov(si, sj)
where two strings are written as si = u.v and sj = v.w, then ov(si, sj) = |v|. The algorithm with defined
steps is following:

Input: Set of input string S = {s1, · · · , sn}
Output: Shortest common superstring s

function Greedy(S)
while |S| 6= 1 do

sij = si · sj such that ∀i, j > 0 ∧ i 6= j : ov(sj , si) is maximal.
S = S ∪ sij
S = S \ {si ∪ sj}

end while
return s ∈ S

end function

When the algorithm has been defined we may apply it on following example.

Example 7.8 Given set of strings S = {s1 = alf, s2 = ate, s3 = half, s4 = lethal, s5 = alpha, s6 =
alfalfa} find the shortest common superstring s.

Solution

Because s1 is already substring to s4 and s6 we can remove it from original set leaving us
modified one S = {s2 = ate, s3 = half, s4 = lethal, s5 = alpha, s6 = alfalfa}. The biggest
overlap from strings s1, · · · , s6 is betweeen s3 = half and s4 = lethal, with length of overlaping
ov(lethal, half) = 3. Merging these two strings results in new string s43 = lethalf . We repeat
the step and find out which of strings s2, s43, s5, s6 gives the biggest overlap. After computing
all combination we will get to the result that ov(s43, s6) = 3. Merging these two strings results
in s436 = lethalfalfa. Our set now looks as S = {s436 = lethalfalfa, s2 = ate, s5 = alpha}.
Another repetition of merging step gives Greedy algorithm two choices because ov(s436, s2) =
ov(s436, s5) = 1. With human intuition we would rather merge s436 with s5 because of later
possible overlap between s5 and s2, resulting in s4365 = lethalfalfalpha. Final merge of s4365
with s2 results in s43652 = lethalfalfalphate which is the shortest common superstring. If we
would merge s436 with s2 the result in final step would be then s43625 = lethalfalfatealpha.
The major problem is that the length difference of |s43625|− |s43652| = 1 thus the second possible
result is one character longer.

Another example where Greedy algorithm may fail is set of strings S = {c(ab)k, (ba)k, (ab)kc}, with result
of string twice as long as the optimal one.

7.4.2 4-approxmiation aglorithm

Graph GS = (V,E, d) has m vertices V = {1, · · · , n}, and n2 edges E = {(i, j) : 1 ≤ i, j ≤ n}. String si is
then associated with vertex i and edge (i, j) is then prefix between strings si and sj . The d is the weight
function defined as distance between to vertices. Distance is calculated as prefix between strings si = u · v
and sj = v · w defined pref(si, sj) = |u| = d(si, sj). Constructing such graph where vertices are strings

Lecture 7: April 7 7-5

from input set and edges are lengths of prefixes we see similarity between travelling salesman problem where
we have to visit all vertices at lowest cost. By [VV001] and [BA91] the key idea is to lower-bound optimal
version of algorithm to cycle cover of the prefix graph.

Definition 7.9 Algorithm Concat-Cycles

1. On input S, create graph Gs and find a minimum weight assignment C on Gs. Let C be the collection
of cycles {c1, · · · , cp}.

2. for each cycle ci = i1 → · · · ir → i1, let s̃i = 〈si1 , · · · , sir 〉 be the string obtained by opening ci, where
i1 is arbitrarily chosen. The string s̃i has length at most d(ci) + |si1 |.

3. Concatenate together the strings s̃i and produce the resulting string s̃ as output.

For detailed proof with additional theorems and lemmas see page 61 in [VV001].

7.4.3 3-approxmiation aglorithm

3-approximation algorithm uses same steps as 4-approximation algorithm. The only difference is that in step
instead of concatenation of strings s̃1, · · · , s̃n greedy algorithm from subsection 7.4.1 is used.

Notes examples and definintions from previous sections were taken from [BA91]. For proofs and more
detailed explanation how Greedy, 3 or 4-approximation algorithms work refer to [BA91] aswell.

7.4.4 3.5-approxmiation aglorithm

The bound of 3.5 is made by Kaplan with improvement in greedy algorithm shown by Blum in [BA91]. The
improvement is done by defining culprits, the special intervals of cycles. For more details with proofs refer
to [KH05].

7.4.5 2.59-approxmiation aglorithm

The bound 2 25
42 ≈ 2.569 is made by constructing a superstring by computing optimal cycle covers on the

distance graph. For more details refer to [BD97].

References

[BA91] BLUM, Avrim, Tao JIANG, Ming LI, John TROMP a Mihalis YANNAKAKIS. Linear approx-
imation of shortest superstrings. Journal of the ACM [online]. vol. 41, issue 4, pp. 630-647 [cit.
2014-05-04]. DOI: 10.1145/179812.179818. Available at: http://portal.acm.org/citation.

cfm?doid=179812.179818

[BD97] BRESLAUER, Dany, Tao JIANG a Zhigen JIANG. Rotations of Periodic Strings and Short Su-
perstrings. Journal of Algorithms [online]. 1997, vol. 24, issue 2, pp. 340-353 [cit. 2014-05-04].
DOI: 10.1006/jagm.1997.0861. Available at: http://linkinghub.elsevier.com/retrieve/

pii/S0196677497908610

http://portal.acm.org/citation.cfm?doid=179812.179818
http://portal.acm.org/citation.cfm?doid=179812.179818
http://linkinghub.elsevier.com/retrieve/pii/S0196677497908610
http://linkinghub.elsevier.com/retrieve/pii/S0196677497908610

7-6 Lecture 7: April 7

[CT009] CORMEN, Thomas H. Introduction to algorithms. 3rd ed. Cambridge: MIT Press, c2009, xix,
1292 pp. ISBN 978-0-262-03384-8.

[KH005] KAPLAN, Haim a Nira SHAFRIR. The greedy algorithm for shortest superstrings. Infor-
mation Processing Letters [online]. 2005, vol. 93, issue 1, pp. 13-17 [cit. 2014-05-04].
DOI: http://dx.doi.org/10.1016/j.ipl.2004.09.012. Available at: http://www.cs.tau.ac.il/

~haimk/papers/greedy3.5.2.ps

[HM61] HELD, Michael a Richard M. KARP. A dynamic programming approach to sequencing prob-
lems. Proceedings of the 1961 16th ACM national meeting on [online]. New York, New York,
USA: ACM Press, 1961, 71.201-71.204 [cit. 2014-05-03]. DOI: 10.1145/800029.808532. Avail-
able at: http://portal.acm.org/citation.cfm?doid=800029.808532

[VV001] VAZIRANI, Vijay V. Approximation Algorithms [online]. Berlin: Springer, 2001, 378 s. [cit.
2014-05-05]. ISBN 35-406-5367-8. Available at: www.cc.gatech.edu/fac/Vijay.Vazirani/

book.pdf

[SM92] SIPSER, Michael. The history and status of the P versus NP question. Proceedings of the
twenty-fourth annual ACM symposium on Theory of computing - STOC ’92 [online]. New York,
New York, USA: ACM Press, 1992, pp. 603-618 [cit. 2014-05-03]. DOI: 10.1145/129712.129771.
Available at: http://portal.acm.org/citation.cfm?doid=129712.129771

[SP007] SCHUURMAN, Petra a Gerhard J. WOEGINGER. Approximation Schemes: A Tutorial [on-
line]. 2007 [cit. 2014-05-03]. Available at: http://www.win.tue.nl/~gwoegi/papers/ptas.

pdf

[SZ000] SWEEDYK, Z. A 21
2

-Approximation Algorithm for Shortest Superstring. SIAM Journal on
Computing [online]. 2000, vol. 29, issue 3, pp. 954-986 [cit. 2014-05-04]. DOI: 10.1137/S0097539
796324661. Available at: http://epubs.siam.org/doi/abs/10.1137/S0097539796324661

[WCLT] CookLevin theorem. In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wiki-
media Foundation, 2001- [cit. 2014-05-03]. Available at: http://en.wikipedia.org/wiki/

Cook%27s_theorem

[WEP] Entscheidungsproblem. In: Wikipedia: the free encyclopedia [online]. San Francisco (CA):
Wikimedia Foundation, 2001- [cit. 2014-05-03]. Available at: http://en.wikipedia.org/

wiki/Entscheidungsproblem

[WNP] NP (complexity). In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikime-
dia Foundation, 2001- [cit. 2014-05-03]. Available at: http://en.wikipedia.org/wiki/NP_

(complexity)

[WP] P (complexity). In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikime-
dia Foundation, 2001- [cit. 2014-05-03]. Available at: http://en.wikipedia.org/wiki/P_

(complexity)

http://www.cs.tau.ac.il/~haimk/papers/greedy3.5.2.ps
http://www.cs.tau.ac.il/~haimk/papers/greedy3.5.2.ps
http://portal.acm.org/citation.cfm?doid=800029.808532
www.cc.gatech.edu/fac/Vijay.Vazirani/book.pdf
www.cc.gatech.edu/fac/Vijay.Vazirani/book.pdf
http://portal.acm.org/citation.cfm?doid=129712.129771
http://www.win.tue.nl/~gwoegi/papers/ptas.pdf
http://www.win.tue.nl/~gwoegi/papers/ptas.pdf
http://epubs.siam.org/doi/abs/10.1137/S0097539796324661
http://en.wikipedia.org/wiki/Cook%27s_theorem
http://en.wikipedia.org/wiki/Cook%27s_theorem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/P_(complexity)

	Brief history
	NP-Completness
	Approximation Algorithms
	Shortest common superstring
	Greedy algorithm
	4-approxmiation aglorithm
	3-approxmiation aglorithm
	3.5-approxmiation aglorithm
	2.59-approxmiation aglorithm

