Max Genus

Antonin Klima

April 25, 2014
(1) We have said in lecture 4, that all connected closed surfaces are homeomorphic to either:

- S_{h} the sphere with h handles
- where S_{0} is the sphere, S_{1} the torus, S_{2} the double torus, \ldots
- orientable
- N_{k} the sphere with k crosscaps
- which can be seen as a sphere with k holes each closed off by a Moebius strip along the boundary.
- nonorientable

Genus of a graph

(1) For a surface homeomorphic to S_{h} we define its genus to be be h.
(2) For a connected graph G we define its genus 'gamma' $\gamma(G)$ as the smallest h such that the graph embeds in the orientable surface S_{h}.

- Clearly, planar graphs embed in S_{0}, the sphere. So their genus is 0 .
- K_{5} and $K_{3,3}$ are not planar, but embed in S_{1}, so their genus is 1. [example]
(3) Sometimes, this is called the minimum genus, to emphasize the difference from the maximum genus.
(4) Unfortunately, this problem is NP-complete.

Max genus of a graph

(1) For a connected graph G we define its maximum genus $\gamma_{M}(G)$ as the largest h such that the graph has a 2-cell embedding on the orientable surface S_{h}.

- How comes there is such an h ?
(2) Since we demand that the embedding is 2 -cell, where each face is homeomorphic to an open disk, at least one edge goes through every handle. Otherwise we get a contradiction a face that contains a handle \rightarrow it is not homeomprhic to an open disk.
(3) Finding the max genus is solvable in a polynomial time. (Furst, Gross, McGeoch)
(1) From lecture 4 we know the formula for Euler characteristic of orientable surface S_{h} :
- $|V|-|E|+F=\chi\left(S_{h}\right)=2-2 h$
(2) For a given combinatorial embedding Π, the genus h can be expessed as:

$$
\text { - } h=1+\frac{|E|-|V|-F(\Pi)}{2}
$$

(3) Since $f \geq 1$, we can give an easy bound for the maximum genus as:

- $\gamma_{M}(G) \leq\left\lfloor\frac{|E|-|V|+1}{2}\right\rfloor$

Interpolation theorem (Duke) outline of proof

(1) A connected graph G has a 2-cell embedding in S_{k} if and only if $\gamma(G) \leq k \leq \gamma_{M}(G)$.

- Consider the combinatorial embeddings Π, Π^{\prime} corresponding to the genera $\gamma(G)$ and $\gamma_{M}(G)$.
- To get Π^{\prime} from Π, we can modify the local rotations at each vertex one by one.
- We can achieve this by repeatedly exchanging two consecutive edges in the local rotation at each vertex.
- I suppose you can imagine that from algebra. It is sort of like bubble sort.
- This operation can cause either 3 faces to collapse into one, one face split in 3 , or no change on number of faces. [w / o proof]
- By the Euler's formula, this changes the genus by at most one.
- Thus, all genera between $\gamma(G)$ and $\gamma_{M}(G)$ are covered.

Xuong

(1) For a given combinatorial embedding Π, we have the formula:

- $h=1+\frac{|E|-|V|-F(\Pi)}{2}$
(2) Clearly, no matter the embedding $|E|$ and $|V|$ are fixed, thus the embedding needs to minimize $F(\Pi)$ in order to maximize h and achieve $h=\gamma_{M}(G)$.
(3) We will show that $\min _{\Pi} F(\Pi)=\xi(G)+1$, where:
- $\xi(G, T)$ is "deficiency of a spanning tree T for a connected graph $\mathrm{G}^{\prime \prime}$ defined as the number of connected components of G-T that have an odd number of edges.
- $\xi(G)=\min _{T} \xi(G, T)$
- example

Xuong 1 - 3.4.10

- Lemma 1. Let T be a spanning tree for a connected graph G and let $d \neq e$ be adjacent edges in G-T. If furthermore $\xi(G-d-e, T)=0$, then $\xi(G, T)=0$.
(1) Every component adjacent to d or e in G-d-e-T has even number of edges since $\xi(G-d-e, T)=0$.
(2) In G-T one component contains d,e and all components adjacent to d,e in G-d-e-T.
(3) The number of edges in the component of $\mathrm{G}-\mathrm{T}$ that contains the edges d and e is $2+$ sum of all distinct components in (1).
(a) Other components in G-T remain the same, thus $\xi(G, T)=0$. (expl)

Xuong 2 - 3.4.11

- Lemma 2. Let G be a connected graph other than a tree. Let T be a spanning tree of G such that $\xi(G, T)=0$. Then $\exists d, e \in E(G-T)$ adjacent such that $\xi(G-d-e, T)=0$.
(1) Since G is not a tree, there is a component H in $\mathrm{G}-\mathrm{T}$ with at least one edge.
(2) The component H has an even no. of edges, as $\xi(G, T)=0$.
(3) Since H is a connected graph with at least two edges, there are adjacent edges d and e in H such that $H-d-e$ has at most one nontrivial component. Thus, $\xi(H-d-e, T)=0$.
- proof by induction on number of vertices
- I.B. 3 vertices, triangle, OK.
- I.S. Let G have $\mathrm{n}+1$ vertices. Consider arbitary vertex v. By I.H., find d, e in $G-v$. If this is not appropriate, it is because v is connected with a now disconnected vertex (vertices) of G. But then we can use the edge(s) incident to v instead.

Xuong 3-3.4.9

- Lemma 3. Let G be a connected graph such that every vertex has degree at least 3 . Let G have a one-face orientable embedding Π. Then there exist adjacent edges d and e in G such that G-d-e has a one-face orientable embedding.
(1) Let d be the edge whose two occurences in the single boundary walk of the embedding Π are the closest together.
(2) Boundary walk can be written as $d A d^{-} B$, where no edge appears twice in A.
(3) A is nonempty, because G has no vertex with degree 1 . We choose e as the first edge in A.
(9) Deleting d from G results in a two-face embedding. [picture]
- By going into A and out we visited only one side of each edge in A
- going into B visits the rest including the other sides (it can't visit sides in A else orig. walk would visit an edge twice)
(5) Deleting e from G-d results in a one-face embedding. [picture]

Xuong $4-3.4 .8$

- Lemma 4. Let $d, e \in E(G)$ adjacent edges of a connected graph G such that $G-d-e$ is a connected graph having an orientable one-face embedding. Then the graph G has a one-face orientable embedding.
(1) Let $d=u v, e=v w$
(2) Extend the two-face embedding $(G-d-e) \rightarrow S$ to a two-face embedding $(G-e) \rightarrow S$ by placing the image of d across the single face.
(3) Attach a handle from one face of $(G-e)$ to the other and place the edge e so that it runs across the handle \rightarrow obtain one face embedding.

Xuong $5-3.4 .12$

- Lemma 5. Let G be a connected graph. Then G has a one-face orientable embedding if and only if $\xi(G)=0$.
- proof by induction on $|E|$.
(1) $|E|=0$. Trivially true.
(2) $|E|=n \rightarrow|E|=n+1$.
- G has a vertex v of degree 1 or 2
- Contract an edge e incident on vertex v. Denote resulting graph G'.
- G has one-face orientable embedding if and only if G^{\prime} does.
- $\xi\left(G^{\prime}\right)=0$ if and only if $\xi(G)=0$.
- G' has n edges, thus by I.H, q.e.d.

Xuong 6 - 3.4.12 cont'd

- Each vertex of G has degree at least 3 .
(1) " \Rightarrow " Suppose G has a one-face orientable embedding.
- By lemma 3 there exist adjacent edges $d \neq e$ in G such that G-d-e has a one-face orientable embedding.
- By I.H. $\xi(G-d-e)=0$, so there exists a spanning tree T of G-d-e such that $\xi(G-d-e, T)=0$.
- T also spans G.
- By lemma $1 \xi(G, T)=0$, which implies $\xi(G)=0$.
(2) " \Leftarrow " Assume $\xi(G)=0$.
- There exists a spanning tree T of G such that $\xi(G, T)=0$.
- By lemma 2 there exist adjacent edges $d \neq e$ such that $\xi(G-d-e)=0$. By I.H. G-d-e has a one-face orientable embedding. By lemma 4 , so does G.

Xuong 7 - 3.4.13

- Lemma 6. Let G be a connected graph. Then the minimum number of faces in any orientable imbedding of G is exactly $\xi(G)+1$. (and this minimum is achieved by some embedding)
(1) Prove an equivalent statement
- The graph G has an orientable imbedding with $n+1$ or fewer faces if and only if $\xi(G) \leq n$.
(2) By induction on n.
(3) I.B. for $n=0$ is proven by lemma 5 .
(9) Suppose theorem holds for all $k \leq n \rightarrow n$
- " \Rightarrow " Suppose Π is an orientable embedding with $|F|=n+1$.
- There exists an edge e common to two distinct faces. (otherwise there is only one face)
- Delete this edge \rightarrow the two faces become one, resulting embedding has n faces. By I.H. $\xi(G-e) \leq n-1$.
- Since $\xi(G-e) \leq n-1$, there exists T such that $\xi(G-e, T) \leq n-1$. But T is also a spanning tree of G and $\xi(G, T) \leq \xi(G-e, T)+1 \leq n$. Thus, $\xi(G) \leq n$.

Xuong 7 - 3.4.13

- Lemma 6. - cont'd Let G be a connected graph. Then the minimum number of faces in any orientable imbedding of G is exactly $\xi(G)+1$. (and this minimum is achieved by some embedding)
(1) Prove an equivalent statement
- The graph G has an orientable imbedding with $\mathrm{n}+1$ or fewer faces if and only if $\xi(G) \leq n$.
(2) Suppose theorem holds for all $k \leq n \rightarrow n$
- " \Leftarrow " Suppose $\xi(G)=n$.
- There is a spanning tree T of G such that $\xi(G, T)=n$
- Let H be a component of G-T with an odd number of edges.
- Either there exists an edge e in H such that removing this edge doesn't disconnect $\mathrm{H} \rightarrow \xi(G-e, T)=n-1$ as this makes H have even number of edges.
- Or there H is a tree and there is a leaf that we can disconnect. Again $\rightarrow \xi(G-e, T)=n-1$.
- By I.H. $G-e$ has an orientable embedding with at most n faces. Therefore G has an orientable embedding with at most $\mathrm{n}+1$ faces.

Xuong theorem

- Corollary (Xuong) Let G be a connected graph. Then $\gamma_{M}(G)=\frac{|E|-|V|-\xi(G)+1}{2}=\frac{1}{2}(\beta(G)+\xi(G))$.
- Where $\beta(G)=|E|-|V|+1$ is the first Betti number of G .
- $2-2 h=|V|-|E|+(\xi(G)+1)$
- Altough it looks like we have only proven \geq, assumption that $\min _{\Pi} F(\Pi)<\xi(G)+1$ leads to a contradiction.

