Introduction to Natural Language Processing (600.465)

Markov Models

Dr. Jan Hajič

CS Dept., Johns Hopkins Univ.

hajic@cs.jhu.edu

www.cs.jhu.edu/~hajic

Review: Markov Process

Bayes formula (chain rule):

$$P(W) = P(w_1, w_2, ..., w_T) = \prod_{i=1...T} p(w_i | w_1, w_2, ..., w_{i-n+1}, ..., w_{i-1})$$

- n-gram language models:
 - Markov process (chain) of the order n-1:

$$P(W) = P(w_1, w_2, ..., w_T) = \prod_{i=1..T} p(w_i | w_{i-n+1}, w_{i-n+2}, ..., w_{i-1})$$

Using just <u>one</u> distribution (Ex.: trigram model: $p(w_i|w_{i-2},w_{i-1})$):

Words: My car broke down and within hours Bob's car broke down too.

$$p(,|broke\ down) = p(w_5|w_3,w_4)) = p(w_{14}|w_{12},w_{13})$$

Markov Properties

- Generalize to any process (not just words/LM):
 - Sequence of random variables: $X = (X_1, X_2, ..., X_T)$
 - Sample space S (states), size N: $S = \{s_0, s_1, s_2, ..., s_N\}$
 - 1. Limited History (Context, Horizon):

$$\forall i \in 1..T; P(X_i|X_1,...,X_{i-1}) = P(X_i|X_{i-1})$$

1 7 3 7 9 0 6 7 3 4 5...

1 7 3 7 9 0 6 7 3 4 5...

2. Time invariance (M.C. is stationary, homogeneous)

Long History Possible

• What if we want trigrams:

Formally, use transformation:

Define new variables Q_i , such that $X_i = \{Q_{i-1}, Q_i\}$:

Then

$$P(X_{i}|X_{i-1}) = P(Q_{i-1}, Q_{i}|Q_{i-2}, Q_{i-1}) = P(Q_{i}|Q_{i-2}, Q_{i-1})$$
Predicting (X_i):
$$1 7 3 7 9 0 6 7 3 4 5...$$
History (X_{i,1} = {Q_{i,2},Q_{i,1}}): $\times \times 1 7 ...$ 9 0 6 7 3

Graph Representation: State Diagram

- $S = \{s_0, s_1, s_2, ..., s_N\}$: states
- Distribution P(X_i|X_{i-1}):
 - · transitions (as ares) with probabilities attached to them:

The Trigram Case

- $S = \{s_0, s_1, s_2, ..., s_N\}$: states: pairs $s_i = (x, y)$
- Distribution $P(X_i|X_{i-1})$: (r.v. X: generates pairs s_i)

Finite State Automaton

- States ~ symbols of the [input/output] alphabet ★
 - pairs (or more): last element of the n-tuple
- Arcs ~ transitions (sequence of states)
- [Classical FSA: alphabet symbols on arcs:
 - transformation: arcs ↔ nodes]
- Possible thanks to the "limited history" M'ov Propérty
- So far: *Visible* Markov Models (VMM)

Hidden Markov Models

• The simplest HMM: states generate [observable] output (using the "data" alphabet) but remain "invisible":

Added Flexibility

 So far, no change; but different states may generate the same output (why not?):

Output from Arcs...

 Added flexibility: Generate output from arcs, not states:

... and Finally, Add Output Probabilities

 Maximum flexibility: [Unigram] distribution (sample space: output alphabet) at each output arc:

Slightly Different View

 Allow for multiple arcs from s_i → s_j, mark them by output symbols, get rid of output distributions:

In the future, we will use the view more convenient for the problem at hand.

Formalization

- HMM (the most general case):
 - five-tuple (S, s_0 , Y, P_S , P_V), where:
 - $S = \{s_0, s_1, s_2, ..., s_T\}$ is the set of states, s_0 is the initial state,
 - $Y = \{y_1, y_2, ..., y_V\}$ is the output alphabet,
 - $P_S(s_j|s_i)$ is the set of prob. distributions of transitions,
 - size of $P_S: |S|^2$.
 - * $P_Y(y_k|s_i,s_j)$ is the set of output (emission) probability distributions.
 - size of Pv: |S|2 x |Y|
- Example:

$$-S = \{x, 1, 2, 3, 4\}, s_0 = x$$

$$- Y = \{ t, o, e \}$$

Formalization - Example

• Example (for graph, see foils 11,12):

$$-S = \{x, 1, 2, 3, 4\}, s_0 = x$$

$$- Y = \{ e, o, t \}$$

 $-P_{S}$:

	X	1	2	3	4
x	0	.6	0	.4	0
1	0	0	.12	0	.88
2	0	0	Ö	0	1
3	0	1	0	0	0
4	0	0	1	0	0

 P_Y :

$$\rightarrow \Sigma = 1$$

Using the HMM

- The generation algorithm (of limited value :-)):
 - 1. Start in $s = s_0$.
 - 2. Move from s to s' with probability P_S(s'|s).
 - 3. Output (emit) symbol y_k with probability $P_S(y_k|s,s)$.
 - 4. Repeat from step 2 (until somebody says enough).
- More interesting usage:
 - Given an output sequence $Y = \{y_1, y_2, ..., y_k\}$, compute its probability.
 - Given an output sequence $Y = \{y_1, y_2, ..., y_k\}$, compute the most likely sequence of states which has generated it.
 - ...plus variations: e.g., n best state sequences

Introduction to Natural Language Processing (600.465)

HMM Algorithms: Trellis and Viterbi

Dr. Jan Hajič CS Dept., Johns Hopkins Univ. hajic@cs.jhu.edu

www.cs.jhu.edu/~hajic

HMM: The Two Tasks

- HMM (the general case):
 - five-tuple (S, S_0 , Y, P_S , P_V), where:
 - $S = \{s_1, s_2, ..., s_T\}$ is the set of states, S_0 is the initial state,
 - $Y = \{y_1, y_2, ..., y_V\}$ is the output alphabet,
 - $P_S(s_i|s_i)$ is the set of prob. distributions of transitions,
 - $P_Y(y_k|s_i,s_j)$ is the set of output (emission) probability distributions.
- Given an HMM & an output sequence Y = {y₁,y₂,...,y_k}:
 (Task 1) compute the probability of Y:
 - (Task 1) compute the probability of Y;
 - (Task 2) compute the most likely sequence of states which has generated Y.

Trellis - Deterministic Output

HMM: Trellis:

"rollout"

is: $\frac{\text{time/position } t}{0}$

- trellis state: (HMM state, position)

4 × 1 × 1 = .568

 $p(toe) = 6 \times .88 \times 1 +$

- each state: holds <u>one</u> number (prob): α
- probability or Y: $\Sigma \alpha$ in the last state

 $\alpha(\times,0) = 1$ $\alpha(A,1) = .6$ $\alpha(D,2) = .568$ $\alpha(B,3) = .568$ $\alpha(C,1) = .4$

Creating the Trellis: The Start

- Start in the start state (×),
 - set its $\alpha(\times, \theta)$ to 1.
- · Create the first stage:
 - get the first "output" symbol y₁
 - create the first stage (column)
 - but only those trellis states
 which generate y₁
 - set their $\alpha(state, I)$ to the $P_S(state|\times)$ $\alpha(\times, \theta)$
- ...and forget about the θ -th stage

 \mathbf{y}_1 :

Trellis: The Next Step

- Suppose we are in stage i
- Creating the next stage:
 - create all trellis states in the next stage which generate
 y_{i+1}, but only those reachable from any of the stage-i states
 - set their $\alpha(state, i+1)$ to:

 $P_S(state|prev.state) \times \alpha(prev.state, i)$ (add up all such numbers on arcs going to a common trellis state)

...and forget about stage i

Trellis: The Last Step

- Continue until "output" exhausted
 - -|Y|=3: until stage 3
- Add together all the $\alpha(state, |Y|)$
- That's the P(Y).
- Observation (pleasant):
 - memory usage max: 2|S|
 - multiplications max: |S|2|Y|

$$P(Y) = .568$$

Trellis: The General Case (still, bigrams)

- Start as usual:
 - start state (x), set its $\alpha(x,\theta)$ to 1.

General Trellis: The Next Step

- We are in stage i:
 - Generate the next stage i+1 as before (except now arcs generate output, thus use only those ares marked by the output symbol yi+1)

- For each generated state, compute $\alpha(state, i+1) =$

..088

...and forget about stage i as usual.

 $y_1: t$

Trellis: The Complete Example

Stage:

The Case of Trigrams

- Like before, but:
 - states correspond to bigrams,
 - output function always emits the second output symbol of the pair (state) to which the arc goes:

Multiple paths not possible → trellis not really needed

Trigrams with Classes

- More interesting:
 - n-gram class LM: $p(w_i|w_{i-2},w_{i-1}) = p(w_i|c_i) p(c_i|c_{i-2},c_{i-1})$
 - \rightarrow states are pairs of classes (c_{i-1}, c_i) , and emit "words":

Class Trigrams: the Trellis

Trellis generation (Y = "toy"):

Overlapping Classes

- Imagine that classes may overlap
 - e.g. 'r' is sometimes vowel sometimes consonant, belongs to V as well as C:

Overlapping Classes: Trellis Example

Trellis: Remarks

- So far, we went left to right (computing α)
- Same result: going right to left (computing β)
 - supposed we know where to start (finite data)
- In fact, we might start in the middle going left and right
- Important for parameter estimation (Forward-Backward Algortihm alias Baum-Welch)
- Implementation issues:
 - scaling/normalizing probabilities, to avoid too small numbers
 addition problems with many transitions

The Viterbi Algorithm

- Solving the task of finding the most likely sequence of states which generated the observed data
- i.e., finding

$$S_{best} = argmax_S P(S|Y)$$

which is equal to (Y is constant and thus P(Y) is fixed):

$$\begin{split} \mathbf{S}_{\text{best}} &= \text{argmax}_{\text{S}} \mathbf{P}(\mathbf{S}, \mathbf{Y}) = \\ &= \text{argmax}_{\text{S}} \mathbf{P}(\mathbf{s}_{0}, \mathbf{s}_{1}, \mathbf{s}_{2}, ..., \mathbf{s}_{k}, \mathbf{y}_{1}, \mathbf{y}_{2}, ..., \mathbf{y}_{k}) = \\ &= \text{argmax}_{\text{S}} \Pi_{i=1..k} \, \mathbf{p}(\mathbf{y}_{i} | \mathbf{s}_{i}, \mathbf{s}_{i-1}) \mathbf{p}(\mathbf{s}_{i} | \mathbf{s}_{i-1}) \end{split}$$

The Crucial Observation

 Imagine the trellis build as before (but do not compute the αs yet; assume they are o.k.); stage i:

this is certainly the "backwards" maximum to (D,2)... but it cannot change even whenever we go forward (M. Property: Limited History)

Viterbi Example

• 'r' classification (C or V?, sequence?):

$$p(t|C) = .3$$

 $p(r|C) = .7$
 $p(o|V) = .1$
 $p(e|V) = .3$
 $p(y|V) = .4$
 $p(r|V) = .2$

 $\operatorname{argmax}_{XYZ} p(rry|XYZ) = ?$

Possible state seq.: $(\times V)(V,C)(C,V)[VCV]$, $(\times C)(C,C)(C,V)[CCV]$, $(\times C)(C,V)(V,V)[CVV]$

Viterbi Computation

<u>n</u>-best State Sequences

Keep track
 of <u>n</u> best
 "back pointers":

Y:

Ex.: n= 2:
 Two "winners":
 VCV (best)
 CCV (2nd best)

Tracking Back the n-best paths

- Backtracking-style algorithm:
 - · Start at the end, in the best of the n states (sbest)
 - Put the other n-1 best nodes/back pointer pairs on stack, except those leading from s_{best} to the same best-back state.
- Follow the back "beam" towards the start of the data, spitting out nodes on the way (backwards of course) using always only the <u>best</u> back pointer.
- At every beam split, push the diverging node/back pointer pairs onto the stack (node/beam width is sufficient!).
- When you reach the start of data, close the path, and pop the topmost node/back pointer(width) pair from the stack.
- Repeat until the stack is empty; expand the result tree if necessary.

Pruning

Sometimes, too many trellis states in a stage:

