

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface



# **Chapter 3**

#### **Arithmetic for Computers**

# **Arithmetic for Computers**

- **Operations on integers** 
  - Addition and subtraction
  - Multiplication and division
  - Dealing with overflow
- Floating-point real numbers
  - Representation and operations



#### **Integer Addition**

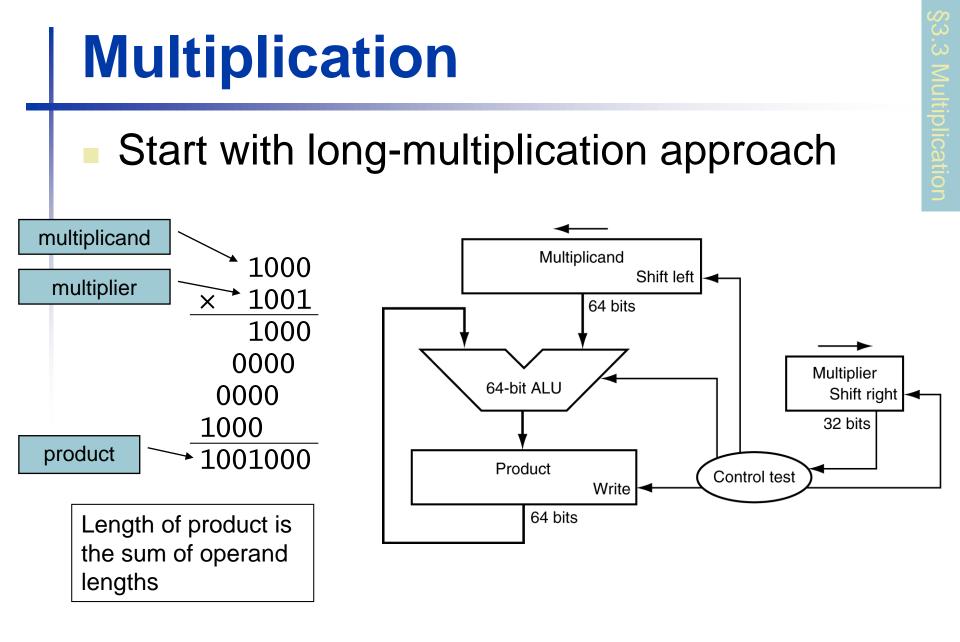


#### Overflow if result out of range

- Adding +ve and -ve operands, no overflow
- Adding two +ve operands
  - Overflow if result sign is 1
- Adding two –ve operands
  - Overflow if result sign is 0

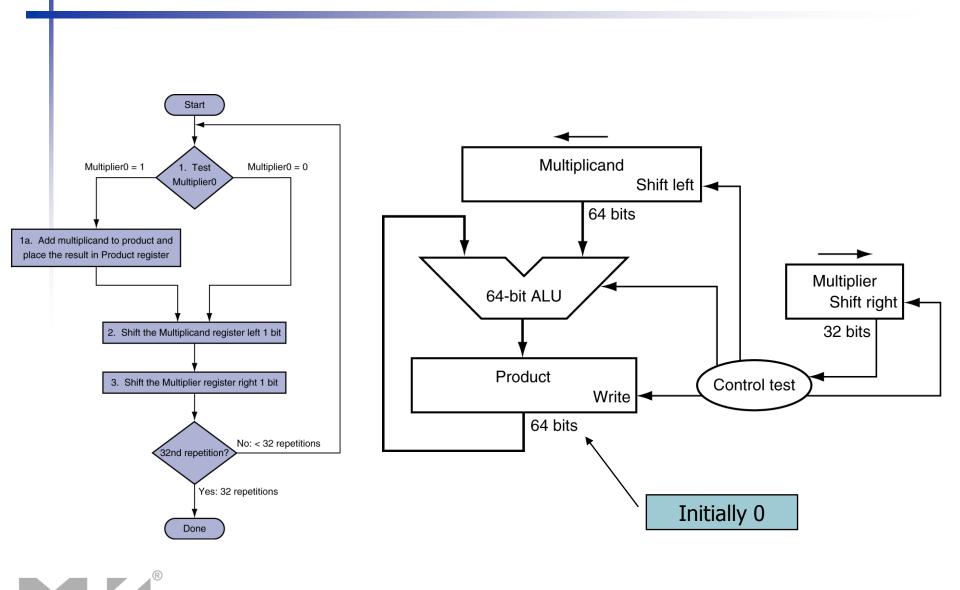
#### **Integer Subtraction**

- Add negation of second operand
- Example: 7 6 = 7 + (-6)
  - +7: 0000 0000 ... 0000 0111
  - <u>-6: 1111 1111 ... 1111 1010</u>
  - +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
  - Subtracting two +ve or two –ve operands, no overflow
  - Subtracting +ve from –ve operand
    - Overflow if result sign is 0
  - Subtracting –ve from +ve operand
    - Overflow if result sign is 1


# **Dealing with Overflow**

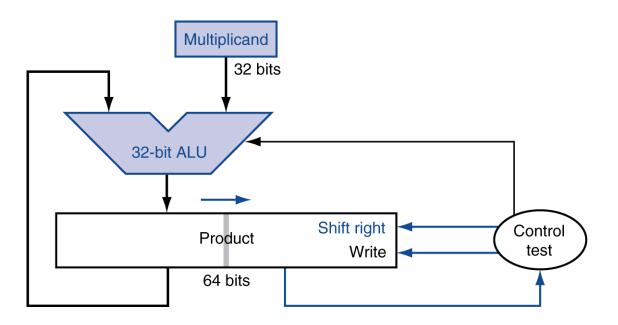
- Some languages (e.g., C) ignore overflow
  Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
  - Use MIPS add, addi, sub instructions
  - On overflow, invoke exception handler
    - Save PC in exception program counter (EPC) register
    - Jump to predefined handler address
    - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action




#### **Arithmetic for Multimedia**

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
  - Use 64-bit adder, with partitioned carry chain
    - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
  - SIMD (single-instruction, multiple-data)
- Saturating operations
  - On overflow, result is largest representable value
    - c.f. 2s-complement modulo arithmetic
  - E.g., clipping in audio, saturation in video

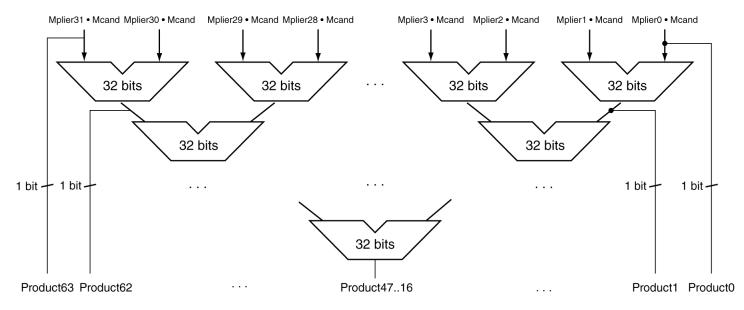



Chapter 3 — Arithmetic for Computers — 7

#### **Multiplication Hardware**



#### **Optimized Multiplier**


#### Perform steps in parallel: add/shift



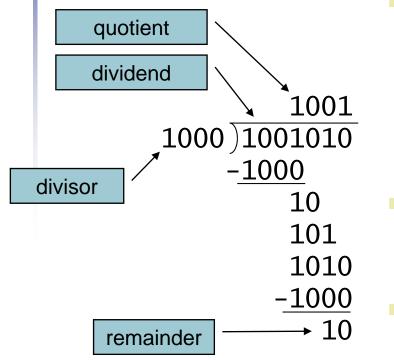
One cycle per partial-product addition
 That's ok, if frequency of multiplications is low

#### **Faster Multiplier**

# Uses multiple addersCost/performance tradeoff



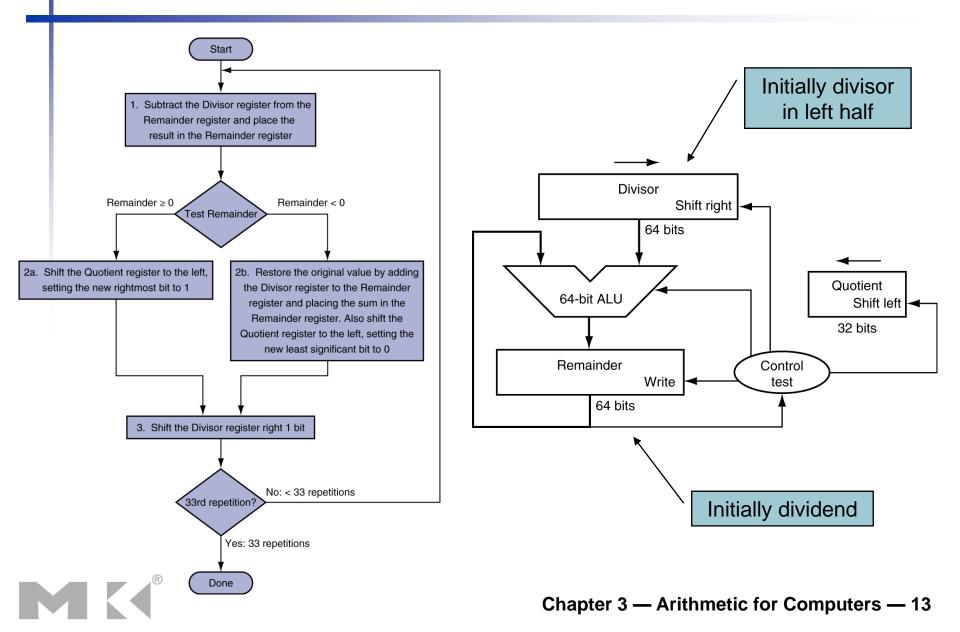
#### Can be pipelined


Several multiplication performed in parallel

Chapter 3 — Arithmetic for Computers — 10

#### **MIPS Multiplication**

- Two 32-bit registers for product
  - HI: most-significant 32 bits
  - LO: least-significant 32-bits
- Instructions
  - mult rs, rt / multu rs, rt
    - 64-bit product in HI/LO
  - mfhi rd / mflo rd
    - Move from HI/LO to rd
    - Can test HI value to see if product overflows 32 bits
  - mul rd, rs, rt
    - Least-significant 32 bits of product -> rd


#### Division



*n*-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
  - If divisor ≤ dividend bits
    - 1 bit in quotient, subtract
  - Otherwise
    - 0 bit in quotient, bring down next dividend bit
- Restoring division
  - Do the subtract, and if remainder goes < 0, add divisor back</li>
  - Signed division
    - Divide using absolute values
    - Adjust sign of quotient and remainder as required

#### **Division Hardware**



### **Division Example**

|                                                                                               | Iteration  | Step                                          | Quotient | Divisor   | Remainder                |
|-----------------------------------------------------------------------------------------------|------------|-----------------------------------------------|----------|-----------|--------------------------|
|                                                                                               | 0          | Initial values                                | 0000     | 0010 0000 | 0000 0111                |
| $ \begin{array}{r} 11\\ 0010)0111\\ -10\\ 11\\ -10\\ 1\\ \end{array} $ n + 1 = 4 + 1<br>steps | 1          | 1: Rem = Rem - Div                            | 0000     | 0010 0000 | <u>1</u> 110 0111        |
|                                                                                               |            | 2b: Rem < 0 $\rightarrow$ +Div, sll Q, Q0 = 0 | 0000     | 0010 0000 | 0000 0111                |
|                                                                                               |            | 3: Shift Div right                            | 0000     | 0001 0000 | 0000 0111                |
|                                                                                               | 2          | 1: Rem = Rem - Div                            | 0000     | 0001 0000 | <u>1</u> 111 0111        |
|                                                                                               |            | 2b: Rem < 0 $\rightarrow$ +Div, sll Q, Q0 = 0 | 0000     | 0001 0000 | 0000 0111                |
|                                                                                               |            | 3: Shift Div right                            | 0000     | 0000 1000 | 0000 0111                |
|                                                                                               | 3          | 1: Rem = Rem - Div                            | 0000     | 0000 1000 | <u><b>1</b></u> 111 1111 |
|                                                                                               |            | 2b: Rem < 0 $\rightarrow$ +Div, sll Q, Q0 = 0 | 0000     | 0000 1000 | 0000 0111                |
|                                                                                               |            | 3: Shift Div right                            | 0000     | 0000 0100 | 0000 0111                |
|                                                                                               | 4          | 1: Rem = Rem - Div                            | 0000     | 0000 0100 | <u>0</u> 000 0011        |
|                                                                                               |            | 2a: Rem $\geq$ 0 $\rightarrow$ sll Q, Q0 = 1  | 0001     | 0000 0100 | 0000 0011                |
|                                                                                               |            | 3: Shift Div right                            | 0001     | 0000 0010 | 0000 0011                |
|                                                                                               | <b>•</b> 5 | 1: Rem = Rem - Div                            | 0001     | 0000 0010 | <u>0</u> 000 0001        |
|                                                                                               |            | 2a: Rem $\geq$ 0 $\rightarrow$ sll Q, Q0 = 1  | 0011     | 0000 0010 | 0000 0001                |
|                                                                                               |            | 3: Shift Div right                            | 0011     | 0000 0001 | 0000 0001                |

#### Chapter 3 — Arithmetic for Computers — 14

#### **Optimized Divider**



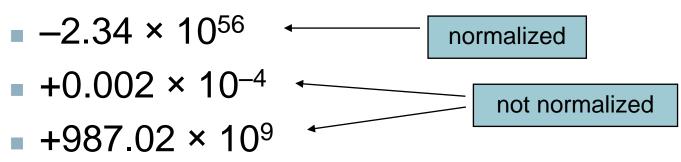
- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
  - Same hardware can be used for both

#### **Faster Division**

 Can't use parallel hardware as in multiplier
 Subtraction is conditional on sign of remainder
 Faster dividers (e.g. SRT devision) generate multiple quotient bits per step
 Still require multiple steps



#### **MIPS** Division


#### Use HI/LO registers for result

- HI: 32-bit remainder
- LO: 32-bit quotient
- Instructions
  - div rs, rt / divu rs, rt
  - No overflow or divide-by-0 checking
    - Software must perform checks if required
  - Use mfhi, mflo to access result



# **Floating Point**

- Representation for non-integral numbers
   Including very small and very large numbers
- Like scientific notation



In binary

- $\pm 1.xxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

## **Floating Point Standard**

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
  - Portability issues for scientific code
- Now almost universally adopted
- Two representations
  - Single precision (32-bit)
  - Double precision (64-bit)



# **IEEE Floating-Point Format**

|   | single: 8 bits<br>double: 11 bit | single: 23 bits double: 52 bits |
|---|----------------------------------|---------------------------------|
| S | Exponent                         | Fraction                        |

 $x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$ 

- S: sign bit ( $0 \Rightarrow$  non-negative,  $1 \Rightarrow$  negative)
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
  - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
  - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
  - Ensures exponent is unsigned
  - Single: Bias = 127; Double: Bias = 1023

# **Single-Precision Range**

- Exponents 00000000 and 11111111 reserved
- Smallest value
  - Exponent: 00000001
    - $\Rightarrow$  actual exponent = 1 127 = -126
  - Fraction:  $000...00 \Rightarrow$  significand = 1.0
  - ±1.0 × 2<sup>-126</sup> ≈ ±1.2 × 10<sup>-38</sup>
- Largest value
  - exponent: 11111110 $\Rightarrow$  actual exponent = 254 - 127 = +127
  - Fraction:  $111...11 \Rightarrow$  significand  $\approx 2.0$
  - $\pm 2.0 \times 2^{\pm 127} \approx \pm 3.4 \times 10^{\pm 38}$

#### **Double-Precision Range**

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
  - Exponent: 0000000001
    - $\Rightarrow$  actual exponent = 1 1023 = -1022
  - Fraction:  $000...00 \Rightarrow$  significand = 1.0
  - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
  - Exponent: 1111111110
     ⇒ actual exponent = 2046 1023 = +1023
  - Fraction:  $111...11 \Rightarrow$  significand  $\approx 2.0$
  - $\pm 2.0 \times 2^{\pm 1023} \approx \pm 1.8 \times 10^{\pm 308}$

#### **Floating-Point Precision**

- **Relative precision** 
  - all fraction bits are significant
  - Single: approx 2<sup>-23</sup>
    - Equivalent to 23 × log<sub>10</sub>2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
  - Double: approx 2<sup>-52</sup>
    - Equivalent to 52 × log<sub>10</sub>2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision



#### **Floating-Point Example**

- Represent -0.75
  - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
  - S = 1
  - Fraction =  $1000...00_2$
  - Exponent = -1 + Bias
    - Single:  $-1 + 127 = 126 = 01111110_2$
    - Double:  $-1 + 1023 = 1022 = 0111111110_2$
- Single: 1011111101000...00
- Double: 10111111110100...00

#### **Floating-Point Example**

- What number is represented by the singleprecision float
  - 1100000101000...00
    - S = 1
    - Fraction = 01000...00<sub>2</sub>
    - Exponent =  $1000001_2 = 129$

• 
$$X = (-1)^{1} \times (1 + .01_{2}) \times 2^{(129 - 127)}$$
  
=  $(-1) \times 1.25 \times 2^{2}$   
=  $-5.0$ 

#### **Denormal Numbers**

Exponent = 
$$000...0 \Rightarrow$$
 hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

Smaller than normal numbers

- allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$
  
Two representations  
of 0.0!

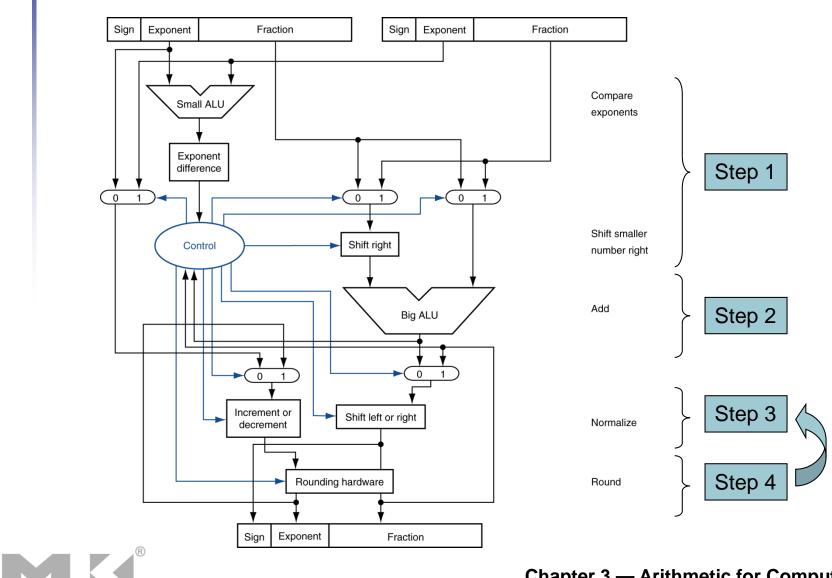
#### **Infinities and NaNs**

- Exponent = 111...1, Fraction = 000...0
  - ±Infinity
  - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
  - Not-a-Number (NaN)
  - Indicates illegal or undefined result
     e.g., 0.0 / 0.0
  - Can be used in subsequent calculations

#### **Floating-Point Addition**

- Consider a 4-digit decimal example
  - 9.999 × 10<sup>1</sup> + 1.610 × 10<sup>-1</sup>
- 1. Align decimal points
  - Shift number with smaller exponent
  - 9.999 × 10<sup>1</sup> + 0.016 × 10<sup>1</sup>
- 2. Add significands
  - $9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalize result & check for over/underflow
  - 1.0015 × 10<sup>2</sup>
- 4. Round and renormalize if necessary
  - 1.002 × 10<sup>2</sup>

#### **Floating-Point Addition**


- Now consider a 4-digit binary example
  - $\bullet 1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
  - Shift number with smaller exponent
  - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
  - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
  - $1.000_2 \times 2^{-4}$ , with no over/underflow
- 4. Round and renormalize if necessary
  - $1.000_2 \times 2^{-4}$  (no change) = 0.0625

#### **FP Adder Hardware**

- Much more complex than integer adder
  Doing it in one clock cycle would take too long
  - Much longer than integer operations
  - Slower clock would penalize all instructions
- FP adder usually takes several cycles
  - Can be pipelined



#### **FP Adder Hardware**



#### Chapter 3 — Arithmetic for Computers — 31

# **Floating-Point Multiplication**

- Consider a 4-digit decimal example
  - 1.110 × 10<sup>10</sup> × 9.200 × 10<sup>-5</sup>
- 1. Add exponents
  - For biased exponents, subtract bias from sum
  - New exponent = 10 + -5 = 5
- 2. Multiply significands
  - $1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^5$
- 3. Normalize result & check for over/underflow
  - 1.0212 × 10<sup>6</sup>
- 4. Round and renormalize if necessary
  - 1.021 × 10<sup>6</sup>
- 5. Determine sign of result from signs of operands
  - +1.021 × 10<sup>6</sup>

### **Floating-Point Multiplication**

- Now consider a 4-digit binary example
  - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
  - Unbiased: -1 + -2 = -3
  - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
  - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
  - $1.110_2 \times 2^{-3}$  (no change) with no over/underflow
- 4. Round and renormalize if necessary
  - $1.110_2 \times 2^{-3}$  (no change)
- 5. Determine sign: +ve × –ve  $\Rightarrow$  –ve
  - $-1.110_2 \times 2^{-3} = -0.21875$

#### **FP** Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
  - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
  - Addition, subtraction, multiplication, division, reciprocal, square-root
  - FP  $\leftrightarrow$  integer conversion
- Operations usually takes several cycles
  - Can be pipelined

#### **FP Instructions in MIPS**

- FP hardware is coprocessor 1
  - Adjunct processor that extends the ISA
- Separate FP registers
  - 32 single-precision: \$f0, \$f1, ... \$f31
  - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
    - Release 2 of MIPs ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
  - Programs generally don't do integer ops on FP data, or vice versa
  - More registers with minimal code-size impact
- FP load and store instructions
  - ]wc1, ]dc1, swc1, sdc1
    - e.g., ldc1 \$f8, 32(\$sp)

#### **FP Instructions in MIPS**

Single-precision arithmetic add.s, sub.s, mul.s, div.s e.g., add.s \$f0, \$f1, \$f6 Double-precision arithmetic add.d, sub.d, mul.d, div.d e.g., mul.d \$f4, \$f4, \$f6 Single- and double-precision comparison c.xx.s, c.xx.d (xx is eq, lt, le, ...) Sets or clears FP condition-code bit e.g. c.lt.s \$f3, \$f4 Branch on FP condition code true or false bc1t, bc1f e.g., bc1t TargetLabel

## **FP Example: °F to °C**

C code:

```
float f2c (float fahr) {
    return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1 $f16, const5($gp)
  lwc2 $f18, const9($gp)
  div.s $f16, $f16, $f18
  lwc1 $f18, const32($gp)
  sub.s $f18, $f12, $f18
  mul.s $f0, $f16, $f18
  jr $ra
```

## **FP Example: Array Multiplication**

$$X = X + Y \times Z$$

- All 32 × 32 matrices, 64-bit double-precision elements
- C code:

 Addresses of x, y, z in \$a0, \$a1, \$a2, and i, j, k in \$s0, \$s1, \$s2

### **FP Example: Array Multiplication**

#### MIPS code:

...

|     | li   | \$t1, | 32         | # | <pre>\$t1 = 32 (row size/loop end)</pre>    |
|-----|------|-------|------------|---|---------------------------------------------|
|     | li   | \$s0, | 0          | # | <pre>i = 0; initialize 1st for loop</pre>   |
| L1: | li   | \$s1, | 0          | # | <pre>j = 0; restart 2nd for loop</pre>      |
| L2: | li   | \$s2, | 0          | # | k = 0; restart 3rd for loop                 |
|     | s]]  | \$t2, | \$s0, 5    | # | <pre>\$t2 = i * 32 (size of row of x)</pre> |
|     | addu | \$t2, | \$t2, \$s1 | # | \$t2 = i * size(row) + j                    |
|     | s]]  | \$t2, | \$t2, 3    | # | <pre>\$t2 = byte offset of [i][j]</pre>     |
|     | addu | \$t2, | \$a0, \$t2 | # | <pre>\$t2 = byte address of x[i][j]</pre>   |
|     | 1.d  | \$f4, | 0(\$t2)    | # | f4 = 8 bytes of x[i][j]                     |
| L3: | s]]  | \$t0, | \$s2, 5    | # | t0 = k * 32 (size of row of z)              |
|     | addu | \$t0, | \$t0, \$s1 | # | <pre>\$t0 = k * size(row) + j</pre>         |
|     | s]]  | \$t0, | \$t0, 3    | # | <pre>\$t0 = byte offset of [k][j]</pre>     |
|     | addu | \$t0, | \$a2, \$t0 | # | <pre>\$t0 = byte address of z[k][j]</pre>   |
|     | 1.d  | \$f16 | , 0(\$t0)  | # | f16 = 8 bytes of $z[k][j]$                  |

### **FP Example: Array Multiplication**

| sll \$t0, \$s0, 5  # \$t0 = i*32 (size of row of the second s | of y) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| addu $t0, t0, s2$ # $t0 = i*size(row) + k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| sll \$t0, \$t0, 3  # \$t0 = byte offset of [i]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [k]   |
| addu \$t0, \$a1, \$t0  # \$t0 = byte address of y[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i][k] |
| <pre>1.d \$f18, 0(\$t0)  # \$f18 = 8 bytes of y[i][k]</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ]     |
| <pre>mul.d \$f16, \$f18, \$f16 # \$f16 = y[i][k] * z[k][j]</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| add.d \$f4, \$f4, \$f16  # f4=x[i][j] + y[i][k]*z[k]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ][j]  |
| addiu \$s2, \$s2, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| bne \$s2, \$t1, L3 # if (k != 32) go to L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| s.d \$f4, 0(\$t2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| addiu \$s1, \$s1, 1  # \$j = j + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| bne \$s1, \$t1, L2 # if (j != 32) go to L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| addiu \$s0, \$s0, 1  # \$i = i + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| bne \$s0, \$t1, L1 # if (i != 32) go to L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |

## **Accurate Arithmetic**

- IEEE Std 754 specifies additional rounding control
  - Extra bits of precision (guard, round, sticky)
  - Choice of rounding modes
  - Allows programmer to fine-tune numerical behavior of a computation
  - Not all FP units implement all options
    - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements



## **Interpretation of Data**

#### **The BIG Picture**

#### Bits have no inherent meaning

- Interpretation depends on the instructions applied
- Computer representations of numbers
  - Finite range and precision
  - Need to account for this in programs



## Associativity

Parallel programs may interleave operations in unexpected orders

Assumptions of associativity may fail

|   |           | (x+y)+z  | x+(y+z)   |
|---|-----------|----------|-----------|
| X | -1.50E+38 |          | -1.50E+38 |
| У | 1.50E+38  | 0.00E+00 |           |
| Z | 1.0       | 1.0      | 1.50E+38  |
|   |           | 1.00E+00 | 0.00E+00  |

Need to validate parallel programs under varying degrees of parallelism

## **x86 FP Architecture**

- Originally based on 8087 FP coprocessor
  - 8 × 80-bit extended-precision registers
  - Used as a push-down stack
  - Registers indexed from TOS: ST(0), ST(1), …
- FP values are 32-bit or 64 in memory
  - Converted on load/store of memory operand
  - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
  - Result: poor FP performance



## **x86 FP Instructions**

| Data transfer                                              | Arithmetic                                                                                          | Compare                           | Transcendental                                              |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------|
| FILD mem/ST(i)<br>FISTP mem/ST(i)<br>FLDPI<br>FLD1<br>FLDZ | <pre>FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT</pre> | FICOMP<br>FIUCOMP<br>FSTSW AX/mem | FPATAN<br>F2XMI<br>FCOS<br>FPTAN<br>FPREM<br>FPSIN<br>FYL2X |

- Optional variations
  - I: integer operand
  - P: pop operand from stack
  - R: reverse operand order
  - But not all combinations allowed

#### **Streaming SIMD Extension 2 (SSE2)**

- Adds 4 × 128-bit registers
  - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
  - 2 × 64-bit double precision
  - 4 × 32-bit single precision
  - Instructions operate on them simultaneously
    - Single-Instruction Multiple-Data



# **Right Shift and Division**

- Left shift by *i* places multiplies an integer by 2<sup>i</sup>
- Right shift divides by 2<sup>i</sup>?
  - Only for unsigned integers
- For signed integers
  - Arithmetic right shift: replicate the sign bit
  - e.g., -5 / 4
    - $11111011_2 >> 2 = 11111110_2 = -2$

■ Rounds toward —∞

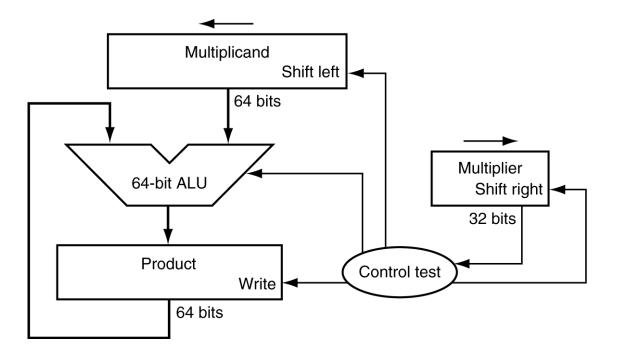
c.f. 11111011<sub>2</sub> >>> 2 = 00111110<sub>2</sub> = +62

## Who Cares About FP Accuracy?

- Important for scientific code
  - But for everyday consumer use?
    - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug
  - The market expects accuracy
  - See Colwell, *The Pentium Chronicles*

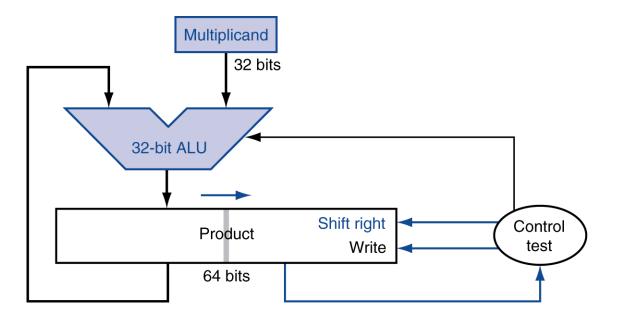


# **Concluding Remarks**


- ISAs support arithmetic
  - Signed and unsigned integers
  - Floating-point approximation to reals
- Bounded range and precision
  - Operations can overflow and underflow
- MIPS ISA
  - Core instructions: 54 most frequently used
     100% of SPECINT, 97% of SPECFP
  - Other instructions: less frequent

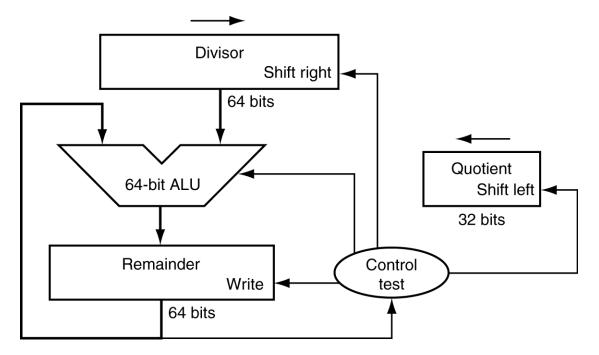
 Answer the following exercises, and send your answers as a PDF attachment to the email address listed below

xamiri@fi.muni.cz

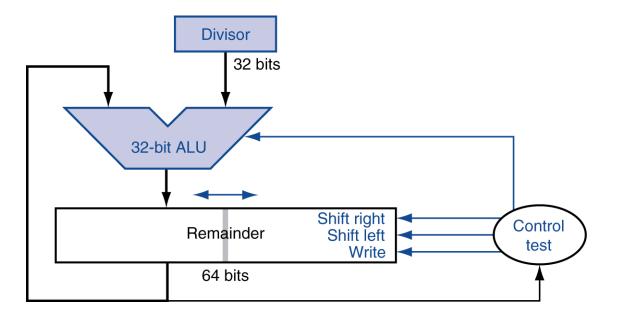

- Leave body of the email blank
- Deadline is March 31<sup>st</sup>

 Calculate the product of the octal unsigned 6-bit integers A = 50 and B = 23 using the hardware described below (adjust the register sizes). You should show the contents of each register on each step.






 Calculate the product of the hexadecimal unsigned 8-bit integers A = 66 and B = 04 using the hardware described below (adjust the register sizes). You should show the contents of each register on each step.






 Calculate A = 50 divided by B = 23 using the hardware described below. You should show the contents of each register on each step. Assume A and B are octal unsigned 6-bit integers (adjust the register sizes in the hardware).



 Calculate A = 50 divided by B = 23 using the hardware described below. You should show the contents of each register on each step. Assume A and B are octal unsigned 6-bit integers (adjust the register sizes in the hardware).



What decimal number does the following bit pattern represent if it is a floating-point number? Use the IEEE 754 standard.

0xAFBF0000



Write down the binary representation of the following decimal number:

- 938.8125

- a) assuming the IEEE 754 single precision format.
- b) assuming the IEEE 754 double precision format.



- NVIDIA has a "half" format, which is similar to IEEE 754 except that it is only 16 bits wide. The leftmost bit is still the sign bit, the exponent is 5 bits wide (exponent bias = 01111<sub>2</sub> = 15), and the mantissa is 10 bits long. A hidden 1 is assumed.
- a) Calculate the sum of the following decimal numbers A and B by hand, assuming A and B are stored in the 16-bit NVIDIA format. Assume one guard bit, one round bit and one sticky bit, and round to the nearest even. Show all the steps.

 $A = 2.3109375 \times 10^{1}$   $B = 6.391601562 \times 10^{-1}$ 

b) Calculate the product of the following decimal numbers A and B by hand, assuming A and B are stored in the 16-bit NVIDIA format. Assume one guard bit, one round bit and one sticky bit, and round to the nearest even. Show all the steps; however, do the multiplication in human-readable format instead of using any techniques. Write your answer as a 16-bit pattern. How accurate is your result?

 $A = 6.18 \times 10^2 \qquad B = 5.796875 \times 10^1$ 

Chapter 1 — Computer Abstractions and Technology — 57