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Discrete Sequences and Systems
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Discrete Sequences and Their Notation

 Signal processing

 Science of analyzing time-varying physical 

processes

 Continuous signal

 Continuous in time

 Continuous range of amplitude values

 Analog (continuous) signal processing

 Discrete-time signal

 Time variable is quantized

 Signal amplitude is quantized

 Because we represent all digital quantities with binary 

numbers, there’s a limit to the resolution

 Digital signal processing
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Discrete Sequences and Their Notation

 Example 

 A continuous sinewave

 Peak amplitude of 1

 Frequency fo

 fo is measured in hertz (Hz) = cycles/second

 t representing time in seconds

 fot has dimensions of cycles

 2πfot is an angle measured in radians

)2sin()( tftx o
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Discrete Sequences and Their Notation

continuous sinewave 

 sample it once 

every ts seconds 

using an analog-to-

digital converter

variable t is continuous

Index variable n is 

discrete and can have 

only integer values

x(n) is a discrete-time 

sequence of individual 

values: There is

nothing between dots 

of x(n)
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x(t) and x(n) are 

referred to as time-

domain signals
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Discrete Sequences and Their Notation

 Discrete system

 A collection of hardware components, or software 

routines, that operate on a discrete-time signal 

sequence

 E.g., 1)(2)(  nxny
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Discrete Sequences and Their Notation

 Given samples of a discrete-time sinewave 

(e.g., Fig. 1-1(b)), find frequency of waveform 

they represent

 Possible to say sinewave repeats every 20 

samples

 Not possible to find exact sinewave frequency

 We need sample period ts to determine absolute 

frequency of discrete sinewave

 If ts = 0.05 milliseconds/sample

 Sinewave’s frequency = 1/(1 ms) = 1 kHz

dsmillisecon 1
sample

dsmillisecon 0.05

period

samples 20
period sinewave 
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Discrete Sequences and Their Notation

 Frequency domain

 To represent frequency content of discrete time-

domain signals

 Called spectrum
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Discrete Sequences and Their Notation

xsum(n) has a frequency 

component of fo Hz and a 

reduced-amplitude 

frequency component of 

2fo Hz

)22sin(4.0)2sin()()()( 21 sososum ntfntfnxnxnx  

Because x1(n) + x2(n) 

sinewaves have a phase 

shift of zero degrees 

relative to each other, no 

need to depict this phase 

relationship in Xsum(m)

(In general, phase 

relationships in 

frequency-domain 

sequences are important)
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Signal Amplitude, Magnitude, Power

 Amplitude of a variable

 Measure of how far, and in what direction, that 

variable differs from zero

 Can be either positive or negative

 Magnitude of a variable

 Measure of how far, regardless of direction, its 

quantity differs from zero

 Always positive
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Signal Amplitude, Magnitude, Power
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Signal Amplitude, Magnitude, Power

 In frequency domain, we are often interested 

in power level of signals

 Power of a signal is proportional to its amplitude 

(or magnitude) squared

 Assuming proportionality constant is one, power 

of a sequence in time or frequency domains are

 Often we want to know the difference in power 

levels of two signals in frequency domain

 Because of squared nature of power, two signals with 

moderately different amplitudes will have a much 

larger difference in their relative powers

22 |)(|)(,|)(|)( mXmXnxnx pwrpwr 
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Signal Amplitude, Magnitude, Power

 Because of their squared nature, plots of 

power values often involve showing both very 

large and very small values on same graph

 To make these plots easier to generate and 

evaluate, decibel scale is usually employed 
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Signal Processing Operational Symbols

 Block diagrams

 Are used to graphically depict the way digital 

signal processing operations are implemented

 Comprise an assortment of fundamental 

processing symbols



14

Signal Processing Operational Symbols
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Discrete Linear Time-Invariant Systems

 Linear time-invariant (LTI) systems 

 Vast majority of discrete systems used in practice 

are LTI systems

 LTI systems are very accommodating when it 

comes to their analysis

 We can use straightforward methods to predict 

performance of any digital signal processing scheme 

as long as it’s linear and time invariant
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Discrete Linear Systems

 Linear

 A linear system’s output resulting from a sum of 

individual inputs is superposition (sum) of 

individual outputs

 Also, if inputs are scaled by constant factors c1

and c2, output sequence parts are scaled by 

those factors too
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Discrete Linear Systems

linearity:

x3(n) input sequence is sum of 

a 1 Hz sinewave and a 3 Hz 

sinewave

thus y3(n) is sample-for-

sample sum of y1(n) and y2(n)

also output spectrum Y3(m) 

is sum of Y1(m) and Y2(m)
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Discrete Linear Systems
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Discrete Linear Systems

 Fig. 1-8(b)

 y1(n) is a cosine wave of 2 Hz and a peak 

amplitude of −0.5, added to a constant value 

(zero Hz) of 1/2

 Fig. 1-8(c)

 y2(n) contains a zero Hz and a 6 Hz component

2

)22cos(

2

1

2

)14cos(

2

)0cos(

2

)1212cos(

2

)1212cos(
)(

2

)cos(

2

)cos(
)sin()sin(

)12sin()12sin()]([)(

)12sin()2sin()(

1

2
11

1

ss

ssss

ss

sso

ntnt

ntntntnt
ny

ntntnxny

ntntfnx




































20

Discrete Linear Systems

 Fig. 1-8(d)

 x3(n) comprises sum of a 1 Hz and a 3 Hz 

sinewave

 Two additional sinusoids are present in y3(n) 

because of system’s nonlinearity, a 2 Hz cosine 

wave (amp=+1), a 4 Hz cosine wave (amp=−1)
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Time-Invariant Systems

 Time-invariant system

 A time delay (or shift) in input sequence causes 

an equivalent time delay in system’s output 

sequence

 k is some integer representing k sample period time 

delays

 For a system to be time invariant, above equation 

must hold true for any integer value of k and any 

input sequence
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Time-Invariant Systems

input sequence x′(n) is equal 

to sequence x(n) shifted to 

right by k = −4 samples

x′(n) = x(n − 4)

system is time invariant 

because y′(n) output sequence 

is equal to y(n) sequence 

shifted to right by four samples

y′(n) = y(n − 4)
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Commutative Property of LTI Systems

 LTI systems have a useful commutative 

property

 Their sequential order can be rearranged with no 

change in their final output
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Analyzing LTI Systems

 Unit impulse response of an LTI system

 System’s time-domain output sequence when 

input is a single unity-valued sample (unit 

impulse) preceded and followed by zero-valued 

samples

 System’s unit impulse response completely 

characterizes the system



25

Analyzing LTI Systems
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Analyzing LTI Systems

 Knowing impulse response, we can 

determine system’s output for any input

 Output is equal to convolution of input sequence 

and system’s impulse response

 Moreover, we can find system’s frequency 

response by taking discrete Fourier transform of 

that impulse response
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Analyzing LTI Systems

a 4-point moving averager
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frequency magnitude response plot 

shows that moving averager has 

characteristic of a lowpass filter:

averager attenuates (reduces 

amplitude of) high-frequency signal 

content applied to its input


