Digital Signal Processing

Periodic Sampling

Moslem Amiri, Václav Přenosil Masaryk University

Understanding Digital Signal Processing, Third Edition, Richard Lyons (0-13-261480-4) © Pearson Education, 2011.

Periodic Sampling

- Periodic sampling
 - Process of representing a continuous signal with a sequence of discrete data values
 - In practice, sampling is performed by applying a continuous signal to an analog-to-digital (A/D) converter
 - Primary concern is how fast a given continuous signal must be sampled to preserve its information content

Example: given following sequence of values

```
x(0) = 0, x(1) = 0.866, x(2) = 0.866, x(3) = 0, x(4) = -0.866, x(5) = -0.866, x(6) = 0
```

- They represent values of a time-domain sinewave taken at periodic intervals
- Draw that sinewave

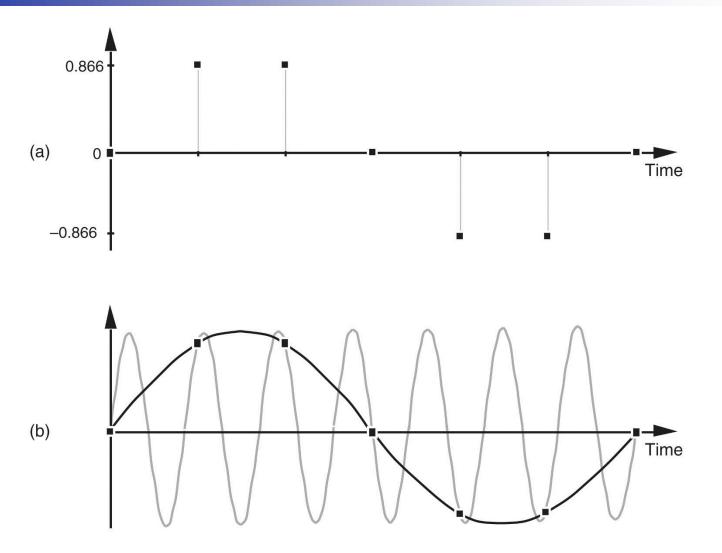


Figure 2-1 Frequency ambiguity: (a) discrete-time sequence of values; (b) two different sinewaves that pass through the points of the discrete sequence.

- Frequency ambiguity
 - If data sequence represents periodic samples of a sinewave, we cannot unambiguously determine frequency of sinewave from those sample values alone

Mathematical origin of frequency ambiguity

$$x(t) = \sin(2\pi f_o t)$$

$$x(n) = \sin(2\pi f_o n t_s) = \sin(2\pi f_o n t_s + 2\pi m) = \sin(2\pi (f_o + \frac{m}{n t_s}) n t_s)$$

$$\xrightarrow{\text{if } m = kn} x(n) = \sin(2\pi (f_o + \frac{k}{t_s}) n t_s)$$

$$\xrightarrow{f_s = 1/t_s} x(n) = \sin(2\pi f_o n t_s) = \sin(2\pi (f_o + k f_s) n t_s)$$

• When sampling at a rate of f_s samples/second, if k is any positive or negative integer, we cannot distinguish between sampled values of a sinewave of f_o Hz and a sinewave of (f_o+kf_s) Hz

- Frequency ambiguity (aliasing) effects
 - Spectrum of any discrete series of sampled values contains periodic replications of original continuous spectrum
 - Period between these replicated spectra in frequency domain is always f_s
 - Spectral replications repeat all the way in both directions of frequency spectrum

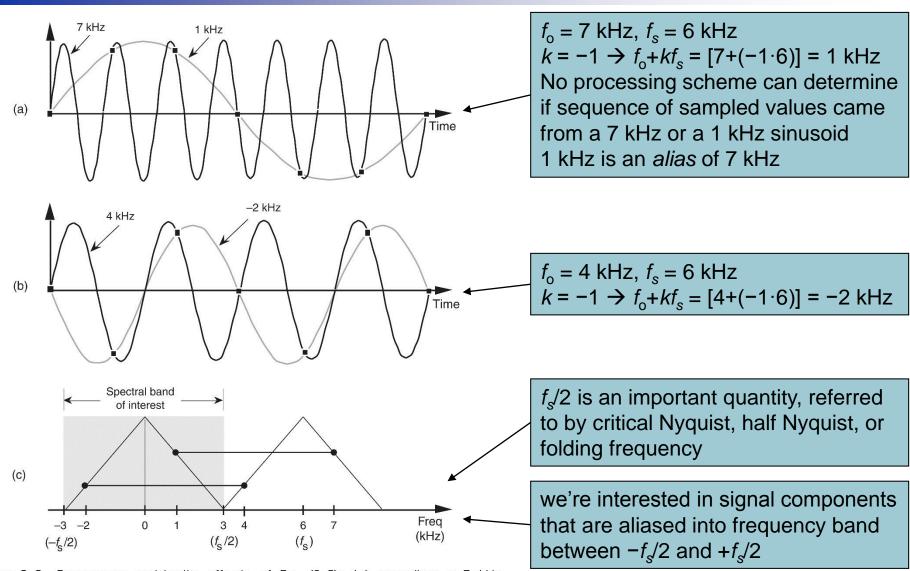


Figure 2-2 Frequency ambiguity effects of Eq. (2-5): (a) sampling a 7 kHz sinewave at a sample rate of 6 kHz; (b) sampling a 4 kHz sinewave at a sample rate of 6 kHz; (c) spectral relationships showing aliasing of the 7 and 4 kHz sinewayes.

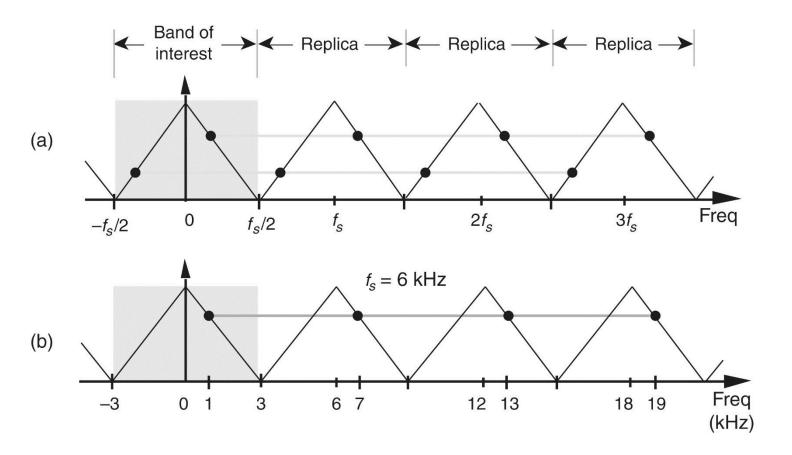


Figure 2-3 Shark's tooth pattern: (a) aliasing at multiples of the sampling frequency; (b) aliasing of the 7 kHz sinewave to 1 kHz, 13 kHz, and 19 kHz.

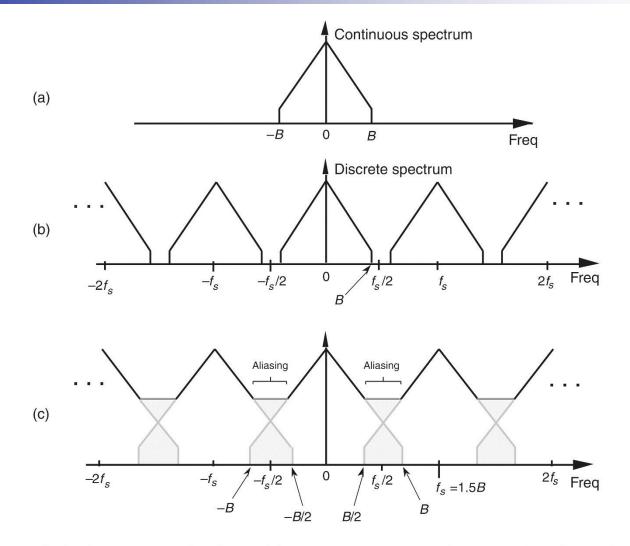


Figure 2-4 Spectral replications: (a) original continuous lowpass signal spectrum; (b) spectral replications of the sampled lowpass signal when $f_s/2 > B$; (c) frequency overlap and aliasing when the sampling rate is too low because $f_s/2 < B$.

- Fig. 2-4(a)
 - Spectrum of a continuous real-valued lowpass x(t) signal
 - Spectrum is symmetrical around zero Hz
 - Signal is band-limited
 - Its spectral amplitude is zero above +B Hz and below
 B Hz
 - x(t) time signal is called a *lowpass signal* because its spectral energy is low in frequency
 - Spectrum of a continuous signal cannot be represented in a digital machine in its current band-limited form → replicated form of (b)

- Nyquist criterion
 - f_s ≥ 2B, to separate spectral replications at folding frequencies of ±f_s/2
- Fig. 2-4(c)
 - Sampling frequency is lowered to $f_s = 1.5B \text{ Hz}$
 - Lower edge and upper edge of spectral replications centered at +f_s and −f_s now lie in band of interest
 - Equivalent to original spectrum folding to left at $+f_s/2$ and folding to right at $-f_s/2$
 - Spectral information in bands of −B to −B/2 and B/2 to B Hz is corrupted (aliasing errors)

- A key property of band $\pm f_s/2$ Hz
 - Entire spectral content (any signal energy located above +B Hz and below -B Hz) of original continuous spectrum always ends up in band of interest between - f_s /2 and + f_s /2 after sampling, regardless of sample rate
 - For this reason, continuous (analog) lowpass filters are necessary in practice

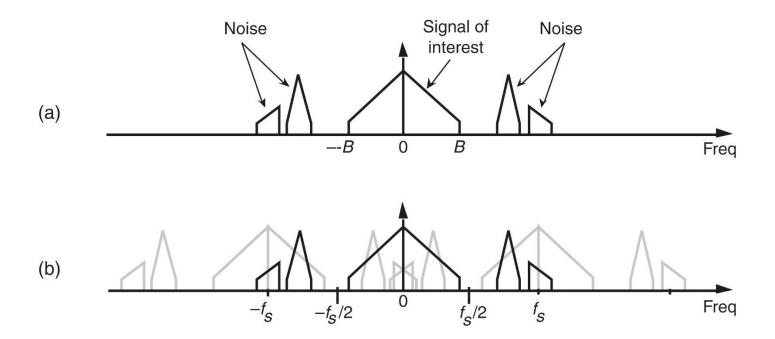


Figure 2-5 Spectral replications: (a) original continuous signal-plus-noise spectrum; (b) discrete spectrum with noise contaminating the signal of interest.

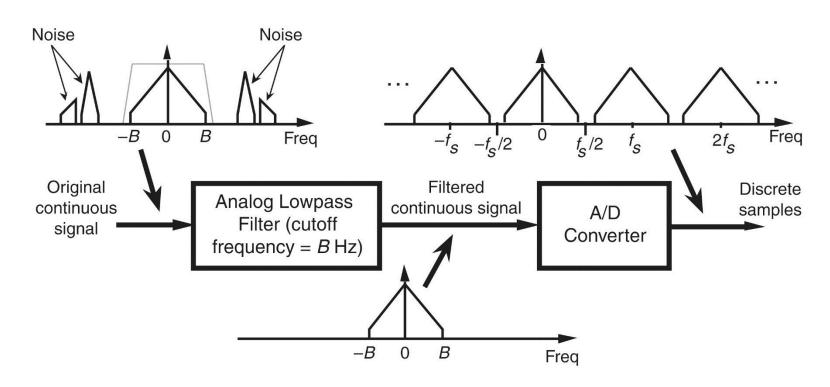


Figure 2-6 Lowpass analog filtering prior to sampling at a rate of f_s Hz.

- Bandpass sampling
 - A technique to sample a continuous bandpass signal that is centered about some frequency other than zero Hz
 - Reduces speed requirement of A/D converters below that necessary with traditional lowpass sampling
 - Reduces amount of digital memory necessary to capture a given time interval of a continuous signal
 - We're more concerned with a signal's bandwidth than its highest-frequency component

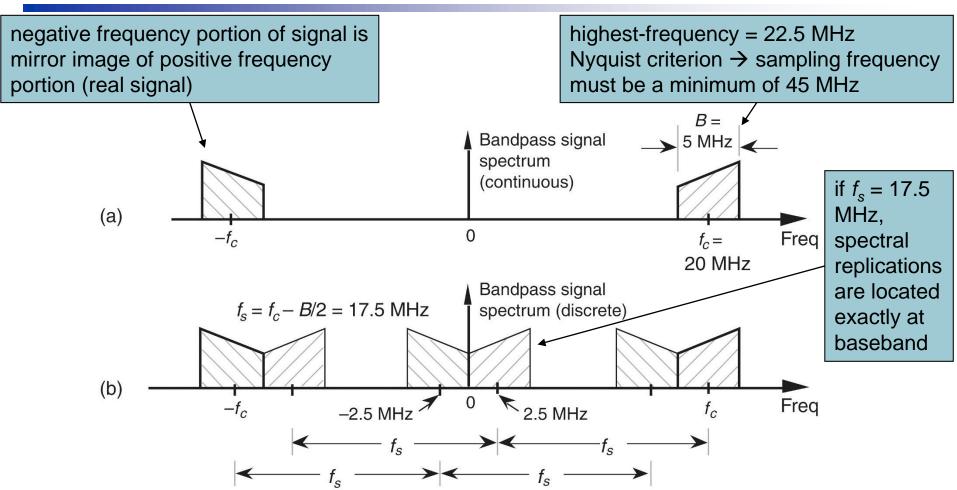


Figure 2-7 Bandpass signal sampling: (a) original continuous signal spectrum; (b) sampled signal spectrum replications when sample rate is 17.5 MHz.

sampling at 45 MHz was unnecessary to avoid aliasing—instead we've used spectral replicating effects to our advantage

- Sampling translation
 - Bandpass sampling performs digitization and frequency translation in a single process
- We can sample at some still lower rate and avoid aliasing

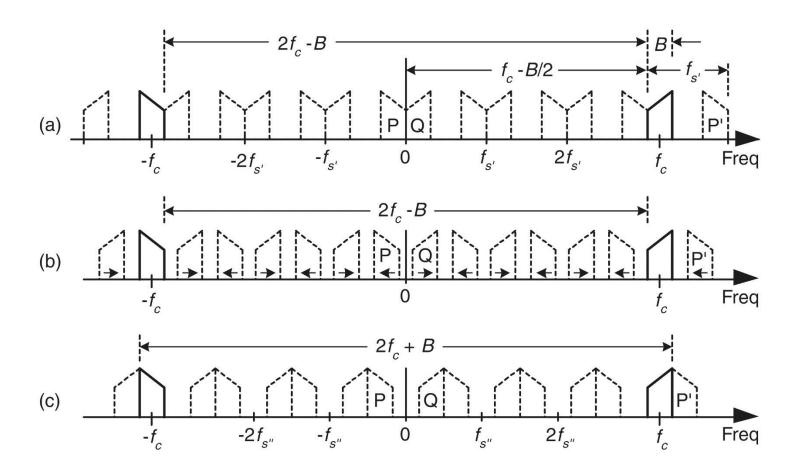


Figure 2-8 Bandpass sampling frequency limits: (a) sample rate $f_{s'} = (2f_C - B)/6$; (b) sample rate is less than $f_{s'}$; (c) minimum sample rate $f_{s''} < f_{s'}$.

- Fig. 2-8(a)
 - Continuous input bandpass signal of bandwidth B
 - Carrier frequency (signal is centered at) = f_c Hz
 - Sample rate = $f_{s'}$ Hz \rightarrow spectral replications of positive and negative bands, Q and P, butt up against each other at zero Hz

$$mf_{s'} = 2f_c - B$$
 or $f_{s'} = \frac{2f_c - B}{m}$

- m =an arbitrary number of replications in the range of $2f_c B$
 - m can be any positive integer so long as $f_{s'}$ is never less than 2B

- Fig. 2-8
 - If $f_{s'}$ is increased, original spectra (bold) do not shift, but all replications will shift
 - At zero Hz, P band shifts to right, and Q band shifts to left
 - These replications will overlap and aliasing occurs
 - Thus, for an arbitrary m, there is a frequency that sample rate must not exceed

$$f_{s'} \le \frac{2f_c - B}{m}$$

- Fig. 2-8(b) and (c)
 - If we reduce sample rate below $f_{s'}$ shown in (a), spacing between replications will decrease in direction of arrows in (b)
 - Original spectra do not shift
 - At some sample rate $f_{s''}$ ($f_{s''} < f_{s'}$), replication P' will butt up against positive original spectrum at f_c as shown in (c)

$$(m+1)f_{s''} = 2f_c + B$$
 or $f_{s''} = \frac{2f_c + B}{m+1}$

• $f_{s''}$ decreased \rightarrow aliasing occurs

$$f_{s''} \ge \frac{2f_c + B}{m + 1}$$

To avoid aliasing, f_s may be chosen anywhere in the range

$$\frac{2f_c - B}{m} \ge f_s \ge \frac{2f_c + B}{m + 1} \tag{1}$$

■ m is an arbitrary, positive integer ensuring $f_s \ge 2B$

- Example (Fig. 2-7(a))
 - $f_c = 20 \text{ MHz}, B = 5 \text{ MHz}$

m	(2f _c -B) / m	(2f _c +B) / (m+1)	Optimum sampling rate
1	35.0 MHz	22.5 MHz	22.5 MHz
2	17.5 MHz	15.0 MHz	17.5 MHz
3	11.66 MHz	11.25 MHz	11.25 MHz
4	8.75 MHz	9.0 MHz	
5	7.0 MHz	7.5 MHz	

- Sample rates below 11.25 MHz unacceptable
 - Will not satisfy Eq. (1) as well as $f_s \ge 2B$
- Optimum sampling frequency is the frequency where spectral replications butt up against each other at zero Hz

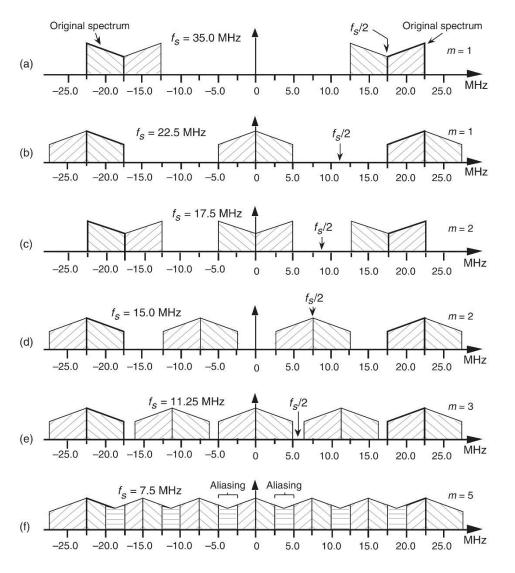


Figure 2-9 Various spectral replications from Table 2-1: (a) $f_s=35$ MHz; (b) $f_s=22.5$ MHz; (c) $f_s=17.5$ MHz; (d) $f_s=15$ MHz; (e) $f_s=11.25$ MHz; (f) $f_s=7.5$ MHz.

- Spectral Inversion in Bandpass Sampling
 - Some of permissible f_s values from Eq. (1) provide a sampled baseband spectrum (located near zero Hz) that is inverted from original analog signal's positive and negative spectral shapes
 - Happens when m, in Eq. (1), is an odd integer
 - We can invert spectrum back to its original orientation
 - Discrete spectrum of any digital signal can be inverted by multiplying signal's discrete-time samples by (-1)ⁿ
 - Center of flipping is $f_s/4$ Hz (and $-f_s/4$ Hz)
 - When original positive spectral bandpass components are symmetrical about f_c frequency, spectral inversion presents no problem

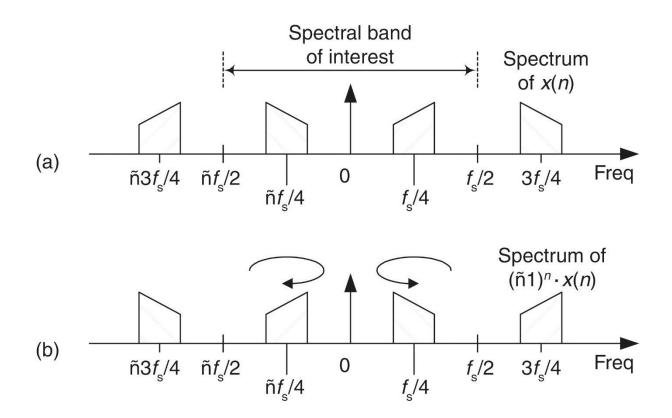


Figure 2-10 Spectral inversion through multiplication by $(-1)^n$: (a) spectrum of original x(n); (b) spectrum of $(-1)^n \cdot x(n)$.

- Positioning sampled spectra at f_s/4
 - In many signal processing applications it is useful to use an f_s bandpass sampling rate that forces sampled spectra to be centered exactly at ±f_s/4
 - To ensure that sampled spectra reside at $\pm f_s/4$, select f_s using

$$f_s = \frac{4f_c}{2k-1}$$
, where $k = 1,2,3,...$

- Noise in bandpass-sampled signals
 - Signal-to-noise ratio (SNR) is ratio of power of a signal over total background noise power
 - Negative aspect of bandpass sampling
 - SNR of digitized signal is degraded
 - All of background spectral noise (Fig. 2-11(b)) resides in range of $-f_s/2$ to $f_s/2$ (Fig. 2-11(c))
 - Bandpass-sampled background noise power increases by a factor of m + 1 (denominator of right-side ratio in Eq. (1)) while signal power P remains unchanged
 - Bandpass-sampled signal's SNR is reduced by

$$D_{SNR} = 10 \cdot \log_{10}(m+1) dB$$

below SNR of original analog signal

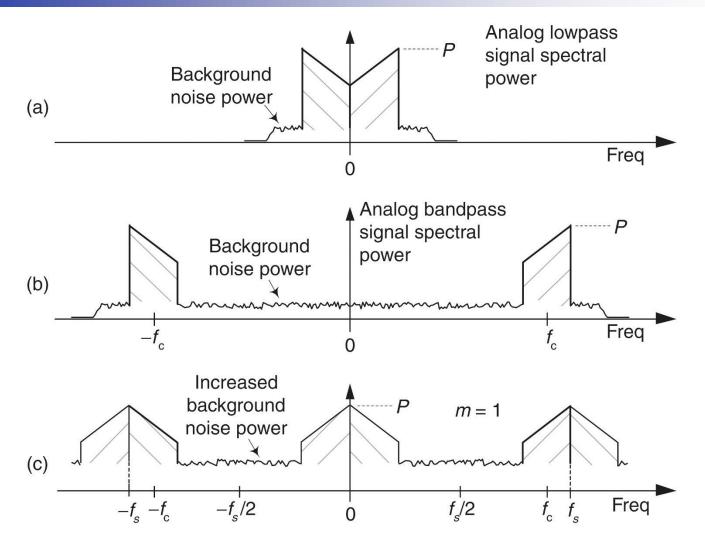


Figure 2-11 Sampling SNR degradation: (a) analog lowpass signal spectral power; (b) analog bandpass signal spectral power; (c) bandpass-sampled signal spectral power when m=1.