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The Discrete Fourier Transform

 Discrete Fourier transform (DFT)

 DFT is a mathematical procedure used to 

determine harmonic, or frequency, content of a 

discrete signal sequence

 DFT’s origin is continuous Fourier transform X(f)

where x(t) is some continuous time-domain signal

 DFT equation (exponential form)

x(n) is sequence of time-domain sampled values
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Understanding the DFT Equation

 DFT equation (rectangular form)

 From Euler’s relationship, e−jø = cos(ø) − jsin(ø)

 m = index of DFT output in frequency domain 

m = 0, 1, 2, 3, . . ., N−1

 n = time-domain index of input samples 

n = 0, 1, 2, 3, . . ., N−1

 N = number of samples of input sequence and 

number of frequency points in DFT output
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Understanding the DFT Equation

 X(m) DFT output

 Each X(m) DFT output term is sum of point-for-

point product between an input sequence of 

signal values and a complex sinusoid of the form 

cos(ø) − jsin(ø)

 Exact frequencies of different sinusoids depend 

on both sampling rate fs at which the original 

signal was sampled, and number of samples N

 The N separate DFT analysis frequencies are
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Understanding the DFT Equation
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Understanding the DFT Equation

 Magnitude and power contained in each X(m) 

term
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Understanding the DFT Equation

 Example

 We want to sample and perform an 8-point DFT 

on a continuous input signal containing 

components at 1 kHz and 2 kHz, expressed as

 The 2 kHz term is shifted in phase by 3π/4 

radians relative to the 1 kHz sinewave
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Understanding the DFT Equation

 Example (cont.)

 N = 8  we need 8 input sample values on which 

to perform DFT

 Sample rate = fs  sampling every 1/fs = ts sec.

 If we sample xin(t) at fs = 8000 samples/second, 

DFT results will indicate what signal amplitude 

exists in x(n) at analysis frequencies of mfs/N, or 

0 kHz, 1 kHz, 2 kHz, . . ., 7 kHz

 We use DFT equation for m = 0, …, 7
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Understanding the DFT Equation
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Understanding the DFT Equation
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Understanding the DFT Equation

 Example (cont.)
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Understanding the DFT Equation

 Example (cont.)

 When m = 0

 X(0) is sum of x(n) samples

 X(0) is proportional to average of x(n)

 = N times x(n)’s average value

 X(0) frequency term is the non-time-varying (DC) 

component of x(n)

 Our x(n) has no DC component
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Understanding the DFT Equation
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Understanding the DFT Equation

 Fig. 3-4

 Indicates that xin(t) has signal components at 1 

kHz (m = 1) and 2 kHz (m = 2)

 1 kHz tone has a magnitude twice that of 2 kHz 

tone

 DFT phase at frequency mfs/N is relative to a 

cosine wave at that same frequency of mfs/N Hz 

where m = 1, 2, 3, ..., N−1

 E.g., phase of X(1) is −90 degrees, so input sinusoid 

whose frequency is 1 · fs/N = 1000 Hz was a cosine 

wave having an initial phase shift of −90 degrees (or a 

sinewave having an initial phase of zero)
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Understanding the DFT Equation

 Fig. 3-4

 When DFT input signals are real-valued, DFT 

phase at 0 Hz (m = 0, DC) is always zero 

because X(0) is always real-only
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DFT Symmetry

 Fig. 3-4

 There is a symmetry in DFT results

 When input sequence x(n) is real, complex DFT 

outputs for m = 1 to m = (N/2) − 1 are redundant 

with frequency output values for m > (N/2)

for m = 1, 2, 3, . . . , N−1

 To obtain DFT of x(n), we need only compute the first 

N/2+1 values of X(m) where 0 ≤ m ≤ (N/2); X(N/2+1) to 

X(N−1) DFT output terms provide no additional 

information about spectrum of real sequence x(n)
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DFT Symmetry

 Proving symmetry of DFT of real input 

sequences

 X(N−m) is merely X(m) with the sign reversed on 

X(m)’s exponent
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DFT Symmetry

 An additional symmetry property of DFT

 Determine DFT of real input functions where 

input index n is defined over both positive and 

negative values

 If real input function is even, x(n) = x(−n), then 

X(m) is always real and even

 Xreal(m) is in general nonzero and Ximag(m) is zero

 If real input function is odd, x(n) = −x(−n), then 

Xreal(m) is always zero and Ximag(m) is, in general, 

nonzero
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DFT Linearity

 DFT has linearity property

 Proof
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DFT Magnitudes

 Output magnitude of DFT

 When a real input signal contains a sinewave 

component of peak amplitude Ao with an integral 

number of cycles over N input samples, output 

magnitude of DFT for that sinewave is

 For real inputs, hardware memory registers must be 

able to hold values as large as N/2 times the maximum 

amplitude of input sample values

 If DFT input is a complex sinusoid of magnitude 

Ao (i.e., Aoe
j2πfnts) with an integer number of cycles 

over N samples, output magnitude of DFT for that 

sinewave is

2/NAM or 
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DFT Magnitudes

 DFT is occasionally defined as

 Some commercial software packages use

 Forward and inverse DFTs

 Scale factors are used so that there’s no scale 

change when transforming in either direction
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Summary

 To recap what we’ve learned so far

 Each DFT output term is sum of term-by-term 

products of an input time-domain sequence with 

a sine and a cosine wave sequences

 For real inputs, an N-point DFT’s output provides 

only N/2+1 independent terms

 DFT is a linear operation

 Magnitude of DFT results is directly proportional 

to N

 DFT’s frequency resolution (spacing) is fs/N

 X(m = N/2) corresponds to mfs/N = fs/2 = folding 

(Nyquist) frequency
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DFT Shifting Theorem

 Shifting theorem property of DFT

 A shift in time of a periodic x(n) input sequence 

manifests itself as a constant phase shift in 

angles associated with DFT results

 If we sample x(n) starting at n = k (integer), DFT 

of those time-shifted sample values is Xshifted(m) 

where

 If the point where we start sampling x(n) is shifted 

to right by k samples, DFT output spectrum of 

Xshifted(m) is X(m) with each of X(m)’s complex 

terms multiplied by linear phase shift ej2πkm/N, 

which is merely a phase shift of 2πkm/N radians
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DFT Shifting Theorem

 Example

 Suppose we sampled preceding DFT example 

input sequence later in time by k = 3 samples

xin(t) = sin(2π1000t) + 0.5sin(2π2000t+3π/4)
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DFT Shifting Theorem
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DFT Shifting Theorem
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DFT Shifting Theorem

 Fig. 3-6

 Magnitude of Xshifted(m) should be unchanged 

from that of X(m)

 Fig. 3-6(a) is identical to Fig. 3-4(a)

 Phase of DFT result does change depending on 

the instant at which we started to sample xin(t)

 E.g., X(1) from preceding DFT Example had a 

magnitude of 4 at a phase angle of −π/2

 k = 3 and N = 8

 Xshifted(1): magnitude of 4, phase angle of π/4
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Inverse DFT

 Inverse discrete Fourier transform (IDFT)

 We can obtain the original time-domain signal by 

performing IDFT on X(m) frequency-domain 

values

 A discrete time-domain signal can be considered the 

sum of various sinusoidal analytical frequencies and 

that the X(m) outputs of the DFT are a set of N

complex values indicating the magnitude and phase 

of each analysis frequency comprising that sum
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DFT Leakage

 Leakage

 Causes DFT results to be only an approximation 

of the true spectra of the original input signals 

prior to digital sampling

 Although there are ways to minimize leakage, we 

can’t eliminate it entirely
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DFT Leakage

 Leakage

 DFT produces correct results only when input 

data sequence contains energy precisely at 

integral multiples of fundamental frequency fs/N

 If input has a signal component at some 

intermediate frequency between analytical 

frequencies of mfs/N, say 1.5fs/N, this input signal 

will show up to some degree in all of N output 

analysis frequencies of DFT

 We say that input signal energy shows up in all of 

DFT’s output bins

 DFT samples = “bins”
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DFT Leakage
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DFT Leakage
an input sequence having 3.4 

cycles over N = 64 samples

because input sequence 

does not have an integral 

number of cycles over 

64-sample interval, input 

energy has leaked into all 

the other DFT output bins

m = 4 bin, for example, is 

not zero because sum of 

products of input sequence 

and m = 4 analysis 

frequency is no longer zero
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DFT Leakage

 Cause of leakage

 For a real cosine input having k cycles (k need 

not be an integer) in N-point input time sequence, 

amplitude response of an N-point DFT bin in 

terms of bin index m is approximated by sinc 

function

 Ao is peak value of DFT’s input sinusoid

 For our examples here, Ao is unity
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DFT Leakage

the curve comprises a 

main lobe and periodic 

peaks and valleys 

known as sidelobes

DFT output will be a 

sampled version of the 

continuous spectrum

when DFT’s input 

sequence has exactly 

an integral k number of 

cycles (centered 

exactly in the m = k

bin), no leakage occurs
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DFT Leakage

 Example (Fig. 3-10(a))

 A real 8 kHz sinusoid, having unity amplitude, is 

sampled at a rate of fs = 32000 samples/second

 If we take a 32-point DFT of samples, DFT’s

frequency resolution, or bin spacing, is fs/N = 

32000/32 Hz = 1.0 kHz

 We can predict DFT’s magnitude response by 

centering input sinusoid’s spectral curve at positive 

frequency of 8 kHz

 DFT output is a sampled version of continuous 

spectral curve

 DFT outputs reside on continuous spectrum at its 

peak and exactly at curve’s zero crossing points
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DFT Leakage

frequency-domain 

sampling results 

in nonzero 

magnitudes for all 

DFT output bins

results in the 

leaky DFT output 

shown
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DFT Leakage

If the continuous spectra that 

we’re sampling are 

symmetrical, why does DFT 

output in this Figure look so 

asymmetrical?

Bins to the right of third bin 

are decreasing in amplitude 

faster than bins to the left of 

third bin

With k = 3.4 and m = 3, from 

sinc function the X(3) bin’s 

magnitude should be 24.2—

but Fig. (b) shows X(3) bin 

magnitude to be greater than 

25. Why?
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DFT Leakage
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DFT Leakage

 Fig. 3-11

 When examining a DFT output, we’re normally 

interested only in m = 0 to m = (N/2−1) bins

 Thus, only the first 32 bins are shown in Fig. 3-8(b)

 DFT is periodic in frequency domain

 Upon examining DFT’s output for higher frequencies, 

we end up going in circles, and spectrum repeats itself 

forever

 Fig. 3-11 shows cyclic representation of 64-point DFT 

shown in Fig. 3-8(b)

 The more conventional way to view a DFT output 

is to unwrap the spectrum in Fig. 3-11 to get the 

spectrum in Fig. 3-12
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DFT Leakage
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DFT Leakage

 Fig. 3-12

 As some of the input 3.4-cycle signal amplitude 

leaks into 2nd bin, 1st bin, and 0th bin, leakage 

continues into −1st bin, −2nd bin, −3rd bin, etc

 63rd bin = −1st bin, 62nd bin = −2nd bin, and so on

 These bin equivalencies allow us to view DFT output 

bins as if they extend into negative-frequency range, 

as shown in Fig. 3-13(a)

 Result is that the leakage wraps around m = 0, as 

well as around m = N

 m = 0 frequency is m = N frequency

 Leakage wraparound at m = 0 accounts for the 

asymmetry around DFT’s m = 3 bin in Fig. 3-8(b)
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DFT Leakage
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DFT Leakage

 Fig. 3-13(b)

 when a DFT input sequence x(n) is real, DFT 

outputs from m = 0 to m = (N/2−1) are redundant 

with frequency bin values for m > (N/2)

 |X(m)| = |X(N−m)|

 This means that leakage wraparound also occurs 

around m = N/2 bin

 This can be illustrated using an input of 28.6 cycles per 

sample interval (32 − 3.4) whose spectrum is shown in 

Fig. 3-13(b)

 Figs. 3-13(a) and (b) are similar
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DFT Leakage
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DFT Leakage

 Fig. 3-14

 DFT exhibits leakage wraparound about m = 0 

and m = N/2 bins

 Minimum leakage asymmetry will occur near 

N/4th bin
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Windows

 Windowing

 Windowing reduces DFT leakage by minimizing 

magnitude of sinc function’s sidelobes

 Done by forcing amplitude of input time sequence at 

both beginning and end of sample interval to go 

smoothly toward a single common amplitude value
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Windows
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Windows

 Fig. 3-15

 Considering infinite-duration time signal shown in 

(a), a DFT can only be performed over a finite-

time sample interval like that shown in (c)

 We can think of DFT input signal in (c) as product 

of (a), and rectangular window whose magnitude 

is 1 over sample interval shown in (b)

 Anytime we take DFT of a finite-extent input 

sequence, we are, by default, multiplying that 

sequence by a window of all ones

 Sinc function’s sin(x)/x shape is caused by this 

rectangular window because CFT of rectangular 

window in (b) is sinc function
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Windows

 Fig. 3-15

 Rectangular window’s abrupt changes between 

one and zero cause sidelobes in sinc function

 To minimize spectral leakage caused by those 

sidelobes, we have to reduce sidelobe amplitudes by 

using window functions other than rectangular window

 If we multiply DFT input, (c), by triangular window 

function, (d), to obtain windowed input signal, (e), 

values of final input signal appear to be the same 

at beginning and end of sample interval in (e)

 Reduced discontinuity decreases level of relatively 

high-frequency components in overall DFT output; that 

is, DFT bin sidelobe levels are reduced in magnitude 

using a triangular window



50

Windows

 Fig. 3-15

 There are window functions that reduce leakage 

even more than triangular window

 Hanning window in (f)

 Product of window in (f) and input sequence provides 

signal shown in (g) as input to DFT

 Hamming window in (h)

 It’s much like Hanning window, but it’s raised on a 

pedestal
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Windows
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Windows
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Windows

 Fig. 3-16

 Hamming, Hanning, and triangular give reduced 

sidelobe levels relative to rectangular

 Because Hamming, Hanning, and triangular 

reduce time-domain signal levels, their main lobe 

peak values are reduced relative to rectangular

 Log magnitude response (normalized)
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Windows

 Fig. 3-16(b)

 Main lobe of rectangular window’s magnitude 

response is the most narrow, fs/N

 However, its first sidelobe level is only −13 dB below 

main lobe peak, which is not good

 Various nonrectangular windows’ wide main 

lobes degrade the windowed DFT’s frequency 

resolution by almost a factor of two

 However, important benefits of leakage reduction 

usually outweigh the loss in DFT frequency resolution

 Hanning has rapid sidelobe roll-off

 Hamming has lower first sidelobe levels, but its 

sidelobes roll off slowly relative to Hanning
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Windows

shape of Hanning

window’s response 

looks broader and 

has a lower peak 

amplitude, but its 

sidelobe leakage is 

noticeably reduced 

from that of 

rectangular window
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Windows
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Windows

 Windows

 Overall frequency resolution and signal sensitivity 

are affected much more by size and shape of 

window function than mere size of DFTs

 There are many different window functions 

described in literature of DSP

 Window selection is a trade-off between main 

lobe widening, first sidelobe levels, and how fast 

the sidelobes decrease with increased frequency

 Use of any particular window depends on application
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DFT Scalloping Loss

 Scalloping

 Fluctuations in overall magnitude response of an 

N-point DFT

 When no input windowing function is used, 

sin(x)/x shape of sinc function’s magnitude 

response applies to each DFT output bin



59

DFT Scalloping Loss
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DFT Scalloping Loss

 Fig. 3-19

 (a) shows a DFT’s aggregate magnitude 

response by superimposing several sin(x)/x bin 

magnitude responses

 Sinc function’s sidelobes are not key here

 In (b), overall DFT frequency-domain response is 

indicated by bold envelope curve

 This rippled curve, also called picket fence effect, 

illustrates processing loss for input frequencies 

between bin centers

 Magnitude of DFT response fluctuates from 1.0, at bin 

center, to 0.637 halfway between bin centers

 This envelope ripple exhibits a scalloping loss of −4 dB 

halfway between bin centers
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DFT Scalloping Loss

 Fig. 3-19

 Illustrates a DFT output when no window (i.e., a 

rectangular window) is used

 Because nonrectangular window functions 

broaden DFT’s main lobe, their use results in a 

scalloping loss that will not be as severe as with 

rectangular window

 Their wider main lobes overlap more and fill in valleys 

of envelope curve in (b)

 Scalloping loss isn’t a severe problem in practice

 Real-world signals normally have bandwidths that span 

many frequency bins so that DFT magnitude response 

ripples can go almost unnoticed


