Digital Signal Processing

The Fast Fourier Transform

Moslem Amiri, Václav Přenosil
Masaryk University

Understanding Digital Signal Processing, Third Edition, Richard Lyons (0-13-261480-4) © Pearson Education, 2011.

Relationship of FFT to DFT

Radix-2 FFT algorithm

- A very efficient process for performing DFTs under constraint that DFT size be an integral power of two
- Radix-2 FFT greatly reduces the number of necessary arithmetic operations
- The number of complex multiplications necessary for an N-point DFT is N^{2}

$$
X(m)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi n m / N}
$$

- The number of complex multiplications for an N point FFT is approximately $(N / 2) \log _{2} N$

Relationship of FFT to DFT

Figure 4-1 Number of complex multiplications in the DFT and the radix-2 FFT as a function of N.

Relationship of FFT to DFT

FFT is not an approximation of DFT

- It's exactly equal to DFT
- All of performance characteristics of DFT, output symmetry, linearity, output magnitudes, leakage, scalloping loss, etc., also describe the behavior of FFT

Hints on Using FFTs in Practice

Sample fast enough and long enough

- Sampling rate must be greater than twice the bandwidth of continuous A/D input signal

Sample at 2.5 to 4 times the signal bandwidth If we don't know signal's bandwidth, we should mistrust any FFT results that have significant spectral components at frequencies near half f_{s}
Be suspicious of aliasing if there are any spectral components whose frequencies depend on f_{s}
If we suspect that aliasing is occurring or continuous signal contains broadband noise, we'll have to use an analog lowpass filter prior to A/D conversion
Cutoff frequency of lowpass filter must be greater than frequency band of interest but less than half f_{s}

Hints on Using EFTs in Practice

Sample fast enough and long enough

- How many samples must we collect Data collection time interval must be long enough to satisfy desired FFT frequency resolution for given f_{s} Total data collection time interval is N / f_{s} seconds, and N-point FFT bin-to-bin frequency resolution is f_{s} / NHz For example, if we need a spectral resolution of 5 Hz , then $f_{s} / N=5 \mathrm{~Hz}$, and

$$
N=\frac{f_{s}}{\text { desired resolution }}=\frac{f_{s}}{5}=0.2 f_{s}
$$

If f_{s} is, say, 10 kHz , then N must be at least 2000, and we'd choose $N=2048$ because this number is a power of two

Hints on Using FFTs in Practice

Manipulating time data prior to transformation

- If length of time-domain data sequence is not an integral power of two, we have two options
- Discard enough data samples so that remaining sequence length is some integral power of two

Not recommended

- A better approach is to append enough zerovalued samples to the end of time data sequence to match the number of points of the next largest radix-2 FFT

Zero-padding technique

Hints on Using FFTs in Practice

Manipulating time data prior to transformation

- We can multiply time data by a window function to alleviate leakage problem

But frequency resolution is degraded when windows are used

- If appending zeros is necessary to extend a time sequence, append zeros after multiplying original time data sequence by a window function

Hints on Using FFTs in Practice

Manipulating time data prior to transformation

- Even when windowing is employed, high-level spectral components can obscure nearby lowlevel spectral components

This is especially evident when original time data has a nonzero average, i.e., it's riding on a DC bias
A large-amplitude DC spectral component at 0 Hz will overshadow its spectral neighbors
We can eliminate this problem by calculating average of time sequence and subtracting that average value from each sample in original sequence
The averaging and subtraction process must be performed before windowing

Hints on Using FFTs in Practice

Enhancing FFT results

- To detect signal energy in presence of noise (enough time-domain data is available), we can improve sensitivity of processing by averaging multiple FFTs
- A $2 N$-point real sequence can be transformed with a single N-point complex radix-2 FFT to speed up our processing
- If we need FFT of unwindowed and also windowed time-domain data, we can perform FFT of unwindowed data, and then we can perform frequency-domain windowing to reduce spectral leakage on any, or all, of FFT bin outputs

Hints on Using FFTs in Practice

Interpreting FFT results

- First step in interpreting FFT results is to compute absolute frequency of individual FFT bin centers Like DFT, FFT bin spacing is f_{s} / N
For $m=0,1,2,3, \ldots, N-1$, absolute frequency of m th bin center is $m f_{s} / N$
- If FFT's input time samples are real, only $X(m)$ outputs from $m=0$ to $m=N / 2$ are independent

We need determine only absolute FFT bin frequencies for m over range of $0 \leq m \leq N / 2$
If FFT input samples are complex, all N of FFT outputs are independent, and we should compute absolute FFT bin frequencies for m over range of $0 \leq m \leq N-1$

Hints on Using FFTs in Practice

Interpreting FFT results

- We can determine true amplitude of time-domain signals from their FFT spectral results

Radix-2 FFT outputs are complex

$$
X(m)=X_{\text {real }}(m)+j X_{\text {imag }}(m)
$$

FFT output magnitude samples

$$
X_{\mathrm{mag}}(m)=|X(m)|=\sqrt{X_{\text {real }}(m)^{2}+X_{\mathrm{imag}}(m)^{2}}
$$

are all inherently multiplied by factor $N / 2$, when input samples are real
If FFT input samples are complex, scaling factor is N So to determine correct amplitudes of time-domain sinusoidal components, divide FFT magnitudes by N/2 for real inputs and N for complex inputs

Hints on Using FFTs in Practice

Interpreting FFT results

- If a window function was used on original timedomain data, some of FFT input samples will be attenuated

This reduces the resultant FFT output magnitudes from their true unwindowed values
To calculate correct amplitudes of various time-domain sinusoidal components, we have to further divide FFT magnitudes by appropriate processing loss factor associated with the window function used

Hints on Using FFTs in Practice

Interpreting FFT results

- To determine power spectrum $X_{\text {PS }}(m)$

$$
\begin{aligned}
& X_{P S}(m)=|X(m)|^{2}=X_{\text {real }}(m)^{2}+X_{\text {imag }}(m)^{2} \\
& X_{d B}(m)=10 \cdot \log _{10}\left(|X(m)|^{2}\right) \mathrm{dB}
\end{aligned}
$$

normalized $X_{d B}(m)=10 \cdot \log _{10}\left(\frac{|X(m)|^{2}}{\left(|X(m)|_{\max }\right)^{2}}\right)$
$\operatorname{normalized} X_{d B}(m)=20 \cdot \log _{10}\left(\frac{|X(m)|}{|X(m)|_{\text {max }}}\right)$

- Normalization through division by $\left(|X(m)|_{\max }\right)^{2}$ or $|X(m)|_{\text {max }}$ eliminates effect of any absolute FFT scale factor (N or $\mathrm{N} / 2$) or window scale factor

Hints on Using FFTs in Practice

Interpreting FFT results

- Phase angles $X_{\varnothing}(m)$

$$
X_{\phi}(m)=\tan ^{-1}\left(\frac{X_{\text {imag }}(m)}{X_{\text {real }}(m)}\right)
$$

Our calculations (or compiler) should detect occurrences of $X_{\text {real }}(m)=0$ and set corresponding
$X_{\varnothing}(m)$ to 90° if $X_{\text {imag }}(m)>0$, set $X_{\varnothing}(m)$ to 0° if $X_{\text {imag }}(m)=$
0 , and set $X_{\varnothing}(m)$ to -90° if $X_{\text {imag }}(m)<0$

- FFT outputs containing significant noise components can cause large fluctuations in the computed $X_{\varnothing}(m)$ phase angles
$X_{\varnothing}(m)$ samples are meaningful when corresponding $|X(m)|$ is well above average FFT output noise level

Derivation of Radix-2 FFT Algorithm

$$
\begin{aligned}
& X(m)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi n m / N} \\
&=\sum_{n=0}^{(N / 2)-1} x(2 n) e^{-j 2 \pi(2 n) m / N}+\sum_{n=0}^{(N / 2)-1} x(2 n+1) e^{-j 2 \pi(2 n+1) m / N} \\
& \xrightarrow{W_{N}=e^{-j 2 \pi / N}}=\sum_{n=0}^{(N / 2)-1} x(2 n) W_{N}^{2 n m}+W_{N}^{m} \sum_{n=0}^{(N / 2)-1} x(2 n+1) W_{N}^{2 n m} \\
&=e_{N}^{2}=e^{-j 2 \pi /(N / 2)}=W_{N / 2} \\
&=\sum_{n=0}^{(N / 2)-1} x(2 n) W_{N / 2}^{n m}+W_{N}^{m} \sum_{n=0}^{(N / 2)-1} x(2 n+1) W_{N / 2}^{n m}
\end{aligned}
$$

- where m is in range 0 to $N / 2-1$
- Index m has that reduced range because each of the two $N / 2$-point DFTs on the right side are periodic in m with period $N / 2$

Derivation of Radix-2 FFT Algorithm

$$
\xrightarrow{W_{N / 2}=e^{-j 2 \pi /(N / 2)}} X(m)=\sum_{n=0}^{(N / 2)-1} x(2 n) W_{N / 2}^{n m}+W_{N}^{m} \sum_{n=0}^{(N / 2)-1} x(2 n+1) W_{N / 2}^{n m}
$$

- We have two $N / 2$ summations whose results can be combined to give the first $N / 2$ samples of an N-point DFT
- Benefits of breaking N-point DFT into two parts
- Reduction of number crunching because W terms in the two summations are identical
Also the upper half of DFT outputs is easy to calculate

Derivation of Radix-2 FFT Algorithm

$$
\begin{aligned}
\xrightarrow[W_{N / 2}=e^{-j 2 \pi /(N / 2)}]{ } X(m) & =\sum_{n=0}^{(N / 2)-1} x(2 n) W_{N / 2}^{n m}+W_{N}^{m} \sum_{n=0}^{(N / 2)-1} x(2 n+1) W_{N / 2}^{n m} \\
X(m+N / 2) & =\sum_{n=0}^{(N / 2)-1} x(2 n) W_{N / 2}^{n(m+N / 2)}+W_{N}^{(m+N / 2)} \sum_{n=0}^{(N / 2)-1} x(2 n+1) W_{N / 2}^{n(m+N / 2)} \\
W_{N / 2}^{n(m+N / 2)} & =W_{N / 2}^{n m} W_{N / 2}^{n N / 2}=W_{N / 2}^{n m}\left(e^{-j 2 \pi n 2 N / 2 N}\right)=W_{N / 2}^{n m}(1)=W_{N / 2}^{n m} \\
\xrightarrow[\text { twiddlefactor }]{(m+N / 2)}= & W_{N}^{m} W_{N}^{N / 2}=W_{N}^{m}\left(e^{-j 2 \pi N / 2 N}\right)=W_{N}^{m}(-1)=-W_{N}^{m} \\
X(m+N / 2) & =\sum_{n=0}^{(N / 2)-1} x(2 n) W_{N / 2}^{n m}-W_{N}^{m} \sum_{n=0}^{(N / 2)-1} x(2 n+1) W_{N / 2}^{n m}
\end{aligned}
$$

We just change sign of twiddle factor and use results of the two summations from $X(m)$ to get $X(m+N / 2)$ m goes from 0 to (N/2)-1
To compute an N-point DFT, we actually perform two N/2-point DFTs-one N/2-point DFT on even-indexed and one $N / 2$-point DFT on odd-indexed $x(n)$ samples

Derivation of Radix-2 FFT Algorithm

$$
\begin{aligned}
X(m)= & \sum_{n=0}^{(N / 2)-1} x(2 n) W_{N / 2}^{n m} \\
& +W_{N}^{m} \sum_{n=0}^{(N / 2)-1} x(2 n+1) W_{N / 2}^{n m} \\
X(m+N / 2)= & \sum_{n=0}^{(N / 2)-1} x(2 n) W_{N / 2}^{n m} \\
& -W_{N}^{m} \sum_{n=0}^{(N / 2)-1} x(2 n+1) W_{N / 2}^{n m}
\end{aligned}
$$

Figure 4-2 FFT implementation of an 8-point DFT using two 4-point DFTs.

Derivation of Radix-2 FFT Algorithm

$$
\begin{gathered}
X(m)=\sum_{n=0}^{(N / 2)-1} x(2 n) W_{N / 2}^{n m}+W_{N}^{m} \sum_{n=0}^{(N / 2)-1} x(2 n+1) W_{N / 2}^{n m} \\
X(m+N / 2)=\sum_{n=0}^{(N / 2)-1} x(2 n) W_{N / 2}^{n m}-W_{N}^{m} \sum_{n=0}^{(N / 2)-1} x(2 n+1) W_{N / 2}^{n m}
\end{gathered}
$$

Twiddle factors

- Because $-e^{-j 2 \pi m / N}=e^{-j 2 \pi(m+N / 2) / N}$, negative W twiddle factors are implemented with positive W twiddle factors that follow the lower DFT in Fig. 42

Derivation of Radix-2 FFT Algorithm

$$
\begin{aligned}
& X(m)=\sum_{n=0}^{(N / 2)-1} x(2 n) W_{N / 2}^{n m}+W_{N}^{m} \sum_{n=0}^{(N / 2)-1} x(2 n+1) W_{N / 2}^{n m} \\
& X(m+N / 2)=\sum_{n=0}^{(N / 2)-1} x(2 n) W_{N / 2}^{n m}-W_{N}^{m} \sum_{n=0}^{(N / 2)-1} x(2 n+1) W_{N / 2}^{n m} \\
& \xrightarrow{\text { simplification }} X(m)=A(m)+W_{N}^{m} B(m) \\
& \xrightarrow{\text { simplification }} X(m+N / 2)=A(m)-W_{N}^{m} B(m) \\
& A(m)=\sum_{n=0}^{(N / 2)-1} x(2 n) W_{N / 2}^{n m} \\
& =\sum_{n=0}^{(N / 4)-1} x(4 n) W_{N / 2}^{2 n m}+\sum_{n=0}^{(N / 4)-1} x(4 n+2) W_{N / 2}^{(2 n+1) m} \\
& \xrightarrow{W_{N / 2}^{2 n m}=W_{N / 4}^{n m}} A(m)=\sum_{n=0}^{(N / 4)-1} x(4 n) W_{N / 4}^{n m}+W_{N / 2}^{m} \sum_{n=0}^{(N / 4)-1} x(4 n+2) W_{N / 4}^{n m} \\
& B(m)=\sum_{n=0}^{(N / 4)-1} x(4 n+1) W_{N / 4}^{n m}+W_{N / 2}^{m} \sum_{n=0}^{(N / 4)-1} x(4 n+3) W_{N / 4}^{n m}
\end{aligned}
$$

Derivation of Radix-2 FFT Algorithm

$$
\begin{aligned}
X(m) & =A(m)+W_{N}^{m} B(m) \\
X(m+N / 2) & =A(m)-W_{N}^{m} B(m) \\
A(m) & =\sum_{n=0}^{(N / 4)-1} x(4 n) W_{N / 4}^{n m} \\
& +W_{N / 2}^{m} \sum_{n=0}^{(N / 4)-1} x(4 n+2) W_{N / 4}^{n m} \\
B(m) & =\sum_{n=0}^{(N / 4)-1} x(4 n+1) W_{N / 4}^{n m} \\
& +W_{N / 2}^{m} \sum_{n=0}^{(N / 4)-1} x(4 n+3) W_{N / 4}^{n m}
\end{aligned}
$$

Figure 4-3 FFT implementation of an 8-point DFT as two 4-point DFTs and four 2-point DFTs.

Derivation of Radix-2 FFT Algorithm

Fig. 4-3

- For any N-point DFT, we break each of $N / 2$-point DFTs into two N/4-point DFTs to further reduce the number of sine and cosine multiplications
- Eventually, we arrive at an array of 2-point DFTs where no further computational savings could be realized

The 2-point DFT functions cannot be partitioned into smaller parts
Butterfly of a single 2-point DFT is shown in Fig. 4-4

Derivation of Radix-2 FFT Algorithm

Figure 4-4 Single 2-point DFT butterfly.

- The 2-point DFT blocks in Fig. 4-3 are replaced by butterfly in Fig. 4-4 to give a full 8-point FFT implementation of DFT as shown in Fig. 4-5

$$
\begin{aligned}
W_{N}^{0} & =e^{-j 2 \pi 0 / N}=1 \\
W_{N}^{N / 2} & =e^{-j 2 \pi N / 2 N}=e^{-j \pi}=-1
\end{aligned}
$$

Derivation of Radix-2 FFT Algorithm

Figure 4-5 Full decimation-in-time FFT implementation of an 8-point DFT.

FFT Input/Output Data Index Bit Reversal

Decimation-in-time FFT implementation

- Was the title of Fig. 4-5
- Decimation-in-time phrase refers to how we broke DFT input samples into odd and even parts
- This time decimation leads to scrambled order of input data's index n in Fig. 4-5
- Shuffling of input data is known as bit reversal Because scrambled order of input data index can be obtained by reversing bits of binary representation of normal input data index order

FFT Input/Output Data Index Bit Reversal

Input index bit reversal for an 8-point FFT

Normal order of index \boldsymbol{n}	Binary bits of index \boldsymbol{n}	Reversed bits of index \boldsymbol{n}	Bit-reversed order of index \boldsymbol{n}
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

Radix-2 FFT Butterfly Structures

Twiddle factors in Fig. 4-5

- To simplify signal flows, replace twiddle factors with their equivalent values referenced to W_{N}^{m} where $N=8$

We show just exponents m of W_{N}^{m}, to get FFT structure shown in Fig. 4-8
Fig. 4-8

- W_{4}^{1} from Fig. $4-5 \rightarrow W_{8}^{2}$
- W_{4}^{2} from Fig. $4-5 \rightarrow W_{8}^{4}$
- 1 s and -1 s in the first stage of Fig. 4-5 are replaced by Os and 4s, respectively

Radix-2 FFT Butterfly Structures

Figure 4-8 Eight-point decimation-in-time FFT with bit-reversed inputs.

Radix-2 FFT Butterfly Structures

input data is in its normal order and output data indices are bit-reversed \rightarrow a bit-reversal operation needs to be performed at output of FFT to unscramble frequency-domain results

Figure 4-9 Eight-point decimation-in-time FFT with bit-reversed outputs.

Radix-2 FFT Butterfly Structures

Figure 4-10 Eight-point decimation-in-time FFT with inputs and outputs in normal order.

Radix-2 FFT Butterfly Structures

Bit reversal

- A few years ago, hardware implementations of FFT spent most of their time performing multiplications

Bit-reversal process necessary to access data in memory wasn't a significant portion of overall FFT computational problem

- Now that high-speed multiplier/accumulator integrated circuits can multiply two numbers in a single clock cycle, FFT data multiplexing and memory addressing are more important

Led to development of efficient algorithms to perform bit reversal

Radix-2 FFT Butterfly Structures

Decimation-in-frequency algorithm

- Decimation-in-time or -frequency is determined by whether the DFT inputs or outputs are partitioned (into odd and even) when deriving a particular FFT butterfly structure from the DFT equations
- Decimation-in-frequency butterfly structures (analogous to structures in Figs. 4-8 through 410) are illustrated in Figs. 4-11 through 4-13

An equivalent decimation-in-frequency FFT structure exists for each decimation-in-time FFT structure The number of necessary multiplications is the same for both structures

Radix-2 FFT Butterfly Structures

Figure 4-1 1 Eight-point decimation-in-frequency FFT with bit-reversed inputs.

Radix-2 FFT Butterfly Structures

Figure 4-12 Eight-point decimation-in-frequency FFT with bit-reversed outputs.

Radix-2 FFT Butterfly Structures

Figure 4-13 Eight-point decimation-in-frequency FFT with inputs and outputs in normal order.

Alternate Single-Butterfly Structures

Butterfly structures

- FFT butterfly structures are direct result of derivations of decimation-in-time and decimation-in-frequency algorithms

Twiddle factors always take general forms shown in Fig. 4-14(a)

Alternate Single-Butterfly Structures

Figure 4-14 Decimation-in-time and decimation-in-frequency butterfly structures: (a) original form; (b) simplified form; (c) optimized form.

Alternate Single-Butterfly Structures

Fig. 4-14

- To implement decimation-in-time butterfly of (a), we have to perform two complex multiplications and two complex additions

$$
\begin{aligned}
& x^{\prime}=x+W_{N}^{k} y \\
& y^{\prime}=x+W_{N}^{k+N / 2} y
\end{aligned}
$$

$\xrightarrow{\text { simplification }} W_{N}^{k+N / 2}=W_{N}^{k} W_{N}^{N / 2}=W_{N}^{k}\left(e^{-j 2 \pi N / 2 N}\right)=W_{N}^{k}(-1)=-W_{N}^{k}$

- So we replace $W_{N}^{k+N / 2}$ in (a) with $-W_{N}^{k}$ to give us simplified butterflies in (b)
- Because twiddle factors in (b) differ only by their signs, the optimized butterflies in (c) can be used

Alternate Single-Butterfly Structures

Optimized butterflies in 4-14(c)

- Require two complex additions but only one complex multiplication, thus reducing computational workload
- Because there are ($\mathrm{N} / 2$) $\log _{2} \mathrm{~N}$ butterflies in an N point FFT, the number of complex multiplications performed by an FFT is ($\mathrm{N} / 2$) $\log _{2} \mathrm{~N}$
- An algorithm is decimation-in-time if the twiddle factor precedes the -1 in optimized butterflies
- An algorithm is decimation-in-frequency if the twiddle factor follows the -1 in optimized butterflies

Alternate Single-Butterfly Structures

Figure 4-15 Alternate FFT butterfly notation: (a) decimation in time; (b) decimation in frequency.

Alternate Single-Butterfly Structures

In-place FFT algorithms

- An in-place algorithm is depicted in Fig. 4-5
- Output of a butterfly operation can be stored in the same hardware memory locations that previously held butterfly's input data

No intermediate storage is necessary

- For an N-point FFT, only $2 N$ memory locations are needed

The 2 comes from fact that each butterfly node represents a data value that has both a real and an imaginary part

- Data routing and memory addressing are rather complicated

Alternate Single-Butterfly Structures

Double-memory FFT algorithms

- A double-memory FFT structure is depicted in Fig. 4-10
- Intermediate storage is necessary because we no longer have standard butterflies, and $4 N$ memory locations are needed
- Data routing and memory address control are much simpler in double-memory FFT structures than in-place technique

