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Introduction

 Filtering

 Filtering is the processing of a time-domain signal 

resulting in some change in that signal’s original 

spectral content

 The change is usually the reduction, or filtering out, of 

some unwanted input spectral components

 That is, filters allow certain frequencies to pass while 

attenuating other frequencies
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Introduction

can be a software program in a computer, a programmable 

hardware processor, or a dedicated integrated circuit
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An Introduction to FIR Filters

 FIR filter

 Given a finite duration of nonzero input values, an 

FIR filter will always have a finite duration of 

nonzero output values

 If FIR filter’s input is a sequence of all zeros, 

filter’s output will be all zeros

 FIR filters use addition to calculate their outputs

 Averaging is a kind of FIR filter



5

An Introduction to FIR Filters

 Averaging example
 We’re counting the number of cars that pass over a 

bridge every minute, and every minute we’ll calculate 

average number of cars/minute over the last five minutes

Minute index
No. of cars/minute over the 

last minute

No. of cars/minute averaged over 

the last five minutes

1 10 -

2 22 -

3 24 -

4 42 -

5 37 27

6 77 40.4

7 89 53.8

8 22 53.4

9 63 57.6

10 9 52
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An Introduction to FIR Filters
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An Introduction to FIR Filters

 Fig. 5-2

 Sudden changes in input sequence of 

cars/minute are flattened out by averager

 Since sudden transitions in a time sequence 

represent high-frequency components, averager 

is behaving like a lowpass filter

 Averager is an FIR filter

 No previous averager output value is used to 

determine a current output value; only input values are 

used to calculate output values

 In addition, when input goes to zero, averager’s output 

approaches and settles to a value of zero
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An Introduction to FIR Filters
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An Introduction to FIR Filters

 Fig. 5-3

 Referred to as filter structure

 Is a physical depiction of how to calculate 

averaging filter outputs with the input sequence of 

values shifted, in order, from left to right along the 

top of filter as new output calculations are 

performed

 Delay elements, called unit delays, merely 

indicate a shift register arrangement where input 

sample values are temporarily stored during an 

output calculation
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An Introduction to FIR Filters
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An Introduction to FIR Filters

 Fig. 5-4

 In (a), each of the first five input values is multiplied 

by 1/5, and the five products are summed to give 

the fifth filter output value

 To calculate sixth output value, input sequence is 

right-shifted, discarding the first input value of 10, 

and the sixth input value, 77, is accepted on left

 The filter’s structure using this shifting process is 

called a transversal filter

 Because we tap off five separate input sample 

values to calculate an output value, the structure is 

called a 5-tap tapped-delay line FIR filter
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Convolution in FIR Filters

 Averaging filter convolution

 Convolution equation

 We can graphically depict this equation’s 

calculations as shown in Fig. 5-5

 Input samples: x(0), x(1), x(2), …

 Filter coefficients: h(0) through h(4)

 In above equation, we use factor of 1/5 as filter 

coefficients multiplied by averaging filter’s input 

samples

 Time order of inputs in Fig. 5-5 is reversed
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Convolution in FIR Filters
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Convolution in FIR Filters

 FIR filter’s y(n)th output

 For a general M-tap FIR filter, nth output is

 This is convolution equation as it applies to digital 

FIR filters
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Convolution in FIR Filters

 Impulse response of a filter

 Filter’s output time-domain sequence when input 

is a single unity-valued sample (impulse) 

preceded and followed by zero-valued samples

 Fig. 5-6

 FIR filter’s impulse response is identical to the 

five filter coefficient values

 For this reason, the terms FIR filter coefficients and 

impulse response are synonymous

 Because there are a finite number of coefficients, 

impulse response will be finite in time duration

 Finite impulse response, FIR
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Convolution in FIR Filters
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Convolution in FIR Filters

 Process of convolution, as it applies to FIR 

filters

 Two sequences resulting from h(k)*x(n) and 

H(m)·X(m) are Fourier transform pairs

 Convolution in time domain is equivalent to 

multiplication in frequency domain

)()()()()(

IDFT

DFT

mXmHnxkhny 
 

 




18

Convolution in FIR Filters
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Convolution in FIR Filters

H(m) is sin(x)/x

function
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Convolution in FIR Filters

conversion of 

discrete 

frequency axis 

in Fig. 5-8 to 

continuous
m = N/2 = 32 = folding frequency = fs/2

ideal lowpass filter

poor lowpass filter
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Convolution in FIR Filters

initial four output 

samples (transient 

response) are not 

exactly sinusoidal: 

the no. of filter unit-

delay elements = 4

averaging filter 

attenuates higher-

frequency inputs 

further

output is a 

sinewave of same 

frequency as input

filter’s coefficients 

are symmetrical 

 input/output 

delay = half the 

no. of unit-delay 

elements = 2 

samples (no 

dependence on 

frequency)
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Convolution in FIR Filters

averager 

attenuates 

higher-frequency 

portion of input 

spectrum
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Convolution in FIR Filters

 Summary, so far

 FIR filters perform time-domain convolution by 

summing the products of the shifted input samples 

and a sequence of filter coefficients

 An FIR filter’s output sequence is equal to 

convolution of input sequence and a filter’s impulse 

response (coefficients)

 An FIR filter’s frequency response is DFT of filter’s 

impulse response

 An FIR filter’s output spectrum is product of input 

spectrum and filter’s frequency response

 Convolution in time domain and multiplication in 

frequency domain are Fourier transform pairs
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Convolution in FIR Filters
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Convolution in FIR Filters

 Fig. 5-12

 Different sets of coefficients give us different 

frequency magnitude responses

 A sudden change in values of coefficient 

sequence, such as 0.2 to 0 transition in the first 

coefficient set, causes ripples, or sidelobes, in 

frequency response

 If we minimize suddenness of changes in 

coefficient values, such as the third set of 

coefficients in (a), we reduce sidelobe ripples in 

frequency response

 However, reducing sidelobes results in increasing main 

lobe width of lowpass filter
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Convolution in FIR Filters

 We can have a filter with more than 5 taps

 But input signal sample shifting, multiplications by 

constant coefficients, and summation are all there 

is to it
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Lowpass FIR Filter Design

 Design of a lowpass FIR filter

 Design procedure starts with determination of a 

desired frequency response followed by 

calculating filter coefficients that will give us that 

response

 There are two predominant techniques used to 

design FIR filters

 1) window method

 2) optimum method
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Lowpass FIR Filter Design

 Window design method

 Begins with our deciding what frequency 

response we want for our lowpass filter

 We can start by considering a continuous lowpass 

filter, and simulating that filter with a digital filter

 We define the continuous frequency response H(f) to 

be ideal, i.e., a lowpass filter with unity gain at low 

frequencies and zero gain (infinite attenuation) beyond 

some cutoff frequency, as shown in Fig. 5-14(a)

 Representing this H(f) response by a discrete 

frequency response is the same—with one difference: 

discrete frequency-domain representations are always 

periodic with the period being fs
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Lowpass FIR Filter Design
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Lowpass FIR Filter Design

 Window design method

 We have two ways to determine lowpass filter’s 

time-domain coefficients

 The first way is algebraic

 1. Develop an expression for discrete frequency 

response H(m)

 2. Apply that expression to inverse DFT equation to get 

time domain h(k)

 3. Evaluate that h(k) expression as a function of time 

index k

 The second method is to define individual 

frequency-domain samples representing H(m) and 

then have a software routine perform inverse DFT of 

those samples, giving FIR filter coefficients



31

Lowpass FIR Filter Design

 Window design method

 In either method, we need only define the 

periodic H(m) over a single period of fs Hz

 Defining H(m) in Fig. 5-14(b) over frequency span −fs/2 

to fs/2 is the easiest form to analyze algebraically

 Defining H(m) over frequency span 0 to fs is the best 

representation if we use inverse DFT to obtain filter’s 

coefficients
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Lowpass FIR Filter Design

 Algebraic method

 We can define an arbitrary discrete frequency 

response H(m) using N samples to cover −fs/2 to 

fs/2 and establish K unity-valued samples for the 

passband of lowpass filter as shown in Fig. 5-15

 A great deal of algebraic manipulation is required here 

that digital filter designers avoid performing IDFT 

algebraically
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Lowpass FIR Filter Design
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Lowpass FIR Filter Design
 Software IDFT method of FIR filter design
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Lowpass FIR Filter Design

 Software IDFT method of FIR filter design

 Using a 32-point inverse FFT to implement a 32-

point inverse DFT of H(m) sequence in Fig. 5-

17(c), we get 32 h(k) values from k = −15 to k = 

16 in Fig. 5-18(a)

 Because we want final 31-tap h(k) filter 

coefficients to be symmetrical with their peak 

value in center of coefficient sample set, we drop 

k = 16 sample and shift k index to left from Fig. 5-

18(a), giving us the desired sin(x)/x form of h(k) 

as shown in Fig. 5-18(b)

 This shift of index k will not change frequency 

magnitude response of FIR filter
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Lowpass FIR Filter Design
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Lowpass FIR Filter Design

the more h(k) 

terms we use as 

filter coefficients, 

the closer we’ll 

approximate our 

ideal lowpass filter 

response
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Lowpass FIR Filter Design

 Why are passband ripples in lowpass FIR 

filter response in Fig. 5-19

 Replacing h(k) and x(n) with h∞(k) and w(k)

 h∞(k) represents an infinitely long sin(x)/x sequence of 

ideal lowpass FIR filter coefficients

 w(k) represents a window sequence that we use to 

truncate sin(x)/x terms

)()()()(

)()()()(

IDFT

DFT

IDFT

DFT

mXmHnxkh

mXmHnxkh


 

 



 

 


)()()()(

IDFT

DFT

mWmHkwkh 
 

 
 



39

Lowpass FIR Filter Design

length of w(k) is the 

no. of coefficients, or 

taps, we intend to 

use to implement our 

lowpass FIR filter
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Lowpass FIR Filter Design
FIR filter’s true 

frequency response is

H(m) = H∞(m) * W(m)

we can view a 

particular sample value 

of H(m) = H∞(m) * W(m) 

convolution as being 

sum of products of 

H∞(m) and W(m) for a 

particular frequency 

shift of W(m)

unity for all of H∞(m) 

a particular H(m) value 

is sum of W(m) 

samples that overlap 

H∞(m) rectangle

with a W(m) frequency 

shift of 0 Hz, sum of 

W(m) samples that 

overlap H∞(m) 

rectangle is the value of 

H(m) at 0 Hz

sum of positive and 

negative W(m) samples 

under H∞(m) rectangle 

varies as W(m) is 

shifted  ripples in 

passband

peak of W(m)’s main 

lobe is outside H∞(m) 

rectangle  H(m)’s 

passband begins to roll 

off

as W(m) shift 

continues, ripples 

in H(m) beyond 

the positive cutoff 

frequency

ripples in H(m) 

are caused by 

sidelobes of 

W(m)
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Lowpass FIR Filter Design

 How many sin(x)/x coefficients do we have to 

use (or how wide must w(k) be) to get nice 

sharp falling edges and no ripples in H(m) 

passband?

 As long as w(k) is a finite number of unity values 

(i.e., a rectangular window of finite width), there 

will be sidelobe ripples in W(m), and this will 

induce passband ripples in final H(m) frequency 

response
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Lowpass FIR Filter Design
we can make filter’s 

transition region 

narrower using 

additional h(k) filter 

coefficients, but we 

cannot eliminate 

passband ripple

a wider w(k) does 

not even reduce 

peak-to-peak ripple 

magnitudes, as long 

as w(k) has sudden 

discontinuities
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Lowpass FIR Filter Design

 Gibbs’s phenomenon

 The ripple is known as Gibbs’s phenomenon, 

which manifests itself anytime a function (w(k) in 

this case) with an instantaneous discontinuity is 

represented by a Fourier series

 No finite set of sinusoids will be able to change 

fast enough to be exactly equal to an 

instantaneous discontinuity

 No matter how wide w(k) window is, W(m) will 

always have sidelobe ripples
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Lowpass FIR Filter Design

 Windows used in FIR filter design

 We can minimize FIR passband ripple with 

window functions the same way we minimized 

DFT leakage

 Window FIR design method is the technique of 

reducing w(k)’s discontinuities by using window 

functions other than rectangular window
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Lowpass FIR Filter Design
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smoothly tapered 

h(k) coefficients

passband ripples 

are greatly reduced

the price we paid for reduced 

passband ripple is a wider 

H(m) transition region

we can get a steeper filter response roll-

off by increasing the no. of taps in FIR 

filter (we should use a 63-coefficient 

Blackman window for a 63-tap FIR filter)
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Lowpass FIR Filter Design

greatly reduced 

sidelobe levels of 

Blackman window

Blackman window’s 

main lobe is almost 

three times as wide 

as rectangular 

window’s main lobe
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Lowpass FIR Filter Design

 Summary of window method of FIR filter 

design

 We pick a window function and multiply it by 

sin(x)/x values from h∞(k) to get our final h(k) filter 

coefficients
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Lowpass FIR Filter Design

 Window functions with more control over their 

frequency responses

 There are two window functions with more 

flexibility in trading off the window’s main lobe 

width and sidelobe levels

 Chebyshev and Kaiser window functions
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Lowpass FIR Filter Design
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γ and β control 

parameters give us 

control over 

Chebyshev and 

Kaiser windows’ 

main lobe widths 

and sidelobe levels
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Lowpass FIR Filter Design

unlike the constant 

sidelobe peak levels 

of Chebyshev window, 

Kaiser window’s 

sidelobes decrease 

with increased 

frequency

Kaiser sidelobes 

are higher than 

Chebyshev 

window’s 

sidelobes near 

main lobe
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Lowpass FIR Filter Design

selecting different 

values for γ 

enables us to 

adjust sidelobe 

levels and see 

what effect those 

values have on 

main lobe width

Chebyshev 

window function’s 

stopband 

attenuation, in dB

AttenCheb = -20 γ
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Lowpass FIR Filter Design
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Lowpass FIR Filter Design

 Chebyshev or Kaiser, which is the best?

 Depends on the application

 Digital filter designers typically experiment with 

various values of γ and β for Chebyshev and 

Kaiser windows to get the optimum WdB(m) for a 

particular application

 Blackman window’s very low sidelobe levels 

outweigh its wide main lobe in many applications
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Bandpass FIR Filter Design

 Bandpass FIR filter design

 Window method of lowpass FIR filter design can 

be used as the first step

 Let’s say we want a 31-tap FIR filter with the 

frequency response shown in Fig. 5-22(a), but 

instead of being centered about zero Hz, we want 

filter’s passband to be centered about fs/4 Hz

 If we define a lowpass FIR filter’s coefficients as 

hlp(k), to find hbp(k) coefficients of a bandpass FIR 

filter, we can shift Hlp(m)’s frequency response by 

multiplying hlp(k) lowpass coefficients by a 

sinusoid of fs/4 Hz (sshift(k))



55

Bandpass FIR Filter Design

actual magnitude of 

|Hbp(m)| is half that 

of the original 

|Hlp(m)| because half 

the values in hbp(k) 

are zero when 

sshift(k) corresponds 

exactly to fs/4

when we design an 

N-tap bandpass FIR 

filter centered at a 

frequency of fs/4 Hz, 

we only need to 

perform N/2 

multiplications for 

each filter output 

sample

hlp(k) lowpass 

coefficients have not 

been multiplied by 

any window function. 

In practice, we’d use 

an hlp(k) that has 

been windowed to 

reduce passband 

ripple

if we wanted to 

center bandpass 

filter’s response at 

some frequency 

other than fs/4, we 

need to modify 

sshift(k) to represent 

sampled values of a 

sinusoid whose 

frequency is equal to 

the desired 

bandpass center 

frequency
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Highpass FIR Filter Design

 Highpass FIR filter design

 We can use the bandpass FIR filter design 

technique to design a highpass FIR filter

 To obtain coefficients for a highpass filter, we 

need only modify the shifting sequence sshift(k) to 

make it represent a sampled sinusoid whose 

frequency is fs/2

 hhp(k) = hlp(k) . sshift(k) = hlp(k) . (1,-1,1,-1,etc.)
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Highpass FIR Filter Design

hhp(k) is merely hlp(k) 

with the sign 

changed for every 

other coefficient

|Hhp(m)| response 

has the same 

amplitude as the 

original |Hlp(m)|

hlp(k) lowpass 

coefficients have not 

been modified by 

any window function. 

In practice, we’d use 

a windowed hlp(k) to 

reduce passband 

ripple
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Parks-McClellan Exchange FIR Filter Design Method

 Parks-McClellan FIR filter design method

 Also called Remez Exchange, or Optimal method

 A popular technique used to design high-

performance FIR filters

to use this method, 

we have to visualize 

a desired frequency 

response Hd(m): we 

have to establish 

desired fpass, fstop, δp

and δs
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Parks-McClellan Exchange FIR Filter Design Method

 Parks-McClellan FIR filter design method

 Passband and stopband ripples, in decibels, are 

related to δp and δs by

 Next, we apply these parameters to a software 

routine that generates the filter’s N time-domain 

h(k) coefficients where N is the minimum number 

of filter taps to achieve the desired filter response

)(log20ripple Stopband
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Parks-McClellan Exchange FIR Filter Design Method

some software 

Parks-McClellan 

routines assume that 

we want δp and δs to 

be as small as 

possible and require 

us only to define the 

desired values of 

Hd(m) response as 

shown by solid black 

dots

filter designer has 

the option to define 

some of Hd(m) 

values in transition 

band, and software 

calculates remaining 

undefined Hd(m) 

transition band 

values
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Parks-McClellan Exchange FIR Filter Design Method

the three filters have 

roughly the same 

stopband sidelobe 

levels, near main 

lobe, but Parks-

McClellan filter has 

the more desirable 

(steeper) transition 

band roll-off
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Half-band FIR Filters

 Half-band FIR filter

 Very useful in signal decimation and interpolation 

applications

 Its frequency magnitude response is symmetrical 

about fs/4 point

 fpass + fstop = fs/2

 When filter has an odd number of taps, filter’s time-

domain impulse response has every other filter 

coefficient being zero, except center coefficient

 This enables us to avoid approximately half the 

number of multiplications when implementing this filter

 For an N-tap half-band FIR filter, we’ll only need to 

perform (N + 1)/2 + 1 multiplications per output sample
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Half-band FIR Filters
coefficients for a 

31-tap half-band 

filter where Δf is 

defined to be 

approximately 

fs/32 using Parks-

McClellan FIR 

filter design 

method

alternating h(k) 

coefficients are 

zero, so we 

perform 17 

multiplications 

per output 

sample instead of 

the expected 31 

multiplications
h(1) and h(5) 

multipliers are 

absent
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Half-band FIR Filters

 Half-band FIR filter

 To build linear-phase N-tap half-band FIR filters, 

having alternating zero-valued coefficients, N + 1 

must be an integer multiple of four

 If this restriction is not met, e.g. when N = 9, the first 

and last coefficients will both be equal to zero and can 

be discarded, yielding a 7-tap half-band filter

 When designing a half-band filter, assuming that 

the modeled filter has a passband gain of unity, 

ensure that filter has a gain of 0.5 (−6 dB) at fs/4

 Numerical computation errors yield alternate filter 

coefficients that are not exactly zero-valued 

force those values to zero
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Phase Response of FIR Filters

the 25 h(k) sequence 

is padded with 103 

zeros to take a 128-

point DFT, resulting in 

H(m) sample values

at m = 17, H(m) 

experiences a polarity 

change of its real part 

while its imaginary 

part remains 

negative—this 

induces a true phase-

angle discontinuity (in 

Fig. 5-35(c)) that 

really is a constituent 

of H(m) at m = 17. 

Additional phase 

discontinuities occur 

each time the real 

part of H(m) reverses 

polarity
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Phase Response of FIR Filters

software adds 360° to 

any negative angles 

in the range of   

−180° > ø ≥ −360°

one of the dominant 

features of FIR filters 

is their linear phase 

response. Hø(m) is 

linear over the 

passband of H(m)
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Phase Response of FIR Filters

 Group delay

 G = −dø/df

 For FIR filters, group delay is slope of Hø(m) response 

curve

 When group delay is constant, as it is over passband of 

all FIR filters having symmetrical coefficients, all 

frequency components of filter input signal are delayed 

by an equal amount of time G before they reach filter’s 

output

 Crucial in communications signals

 For amplitude modulation (AM) signals, constant group 

delay preserves time waveform shape of signal’s 

modulation envelope

 Important because modulation portion of an AM signal 

contains signal’s information
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Phase Response of FIR Filters

 Group delay

 Over passband frequency range for a linear-

phase, S-tap FIR filter, group delay is

 D = S−1 is the number of unit-delay elements

 ts is sample period (1/fs)

 Eliminating ts factor changes its dimensions to samples

 Passband phase-angle resolution

 N = the number of points in DFT

seconds  
2

stD
G




N

G 360
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Phase Response of FIR Filters

128-point DFT was 

used to obtain 

frequency responses 

in Figs. 5-34 and 5-

35; we could use N = 

32-point or N = 64-

point DFTs

phase-angle 

resolution is much 

finer here

S = 25-tap filter in Fig. 

5-34(a)  G = 12 

Δø = −12 · 360°/32 = 

−135°

S = 25-tap filter in Fig. 

5-34(a)  G = 12 

Δø = −12 · 360°/128 = 

−33.75°
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Phase Response of FIR Filters

 For FIR filters, output phase shift (in degrees) 

for passband frequency f = mfs/N, is

 Relationship between phase responses in Fig. 5-

36 considering the phase delay associated with 

frequency of fs/32

N

Gm
mNfmH s

360
)/(delay  phase


 

DFT size, N Index m Hø(mfs / N)

32 1 −135°

64 2 −135°

128 4 −135°
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Analyzing FIR Filters

 Analyzing tapped-delay line, nonrecursive 

FIR filters

 Means determining FIR filter’s frequency 

response based on known filter coefficients

 Two ways to analyze

 Using continuous-time Fourier algebra

 Using discrete Fourier transform



72

Analyzing FIR Filters

 Algebraic analysis of FIR filters

 Uses DTFT equation

 DTFT of an FIR filter having N coefficients 

(impulse response) represented by h(k), where   

k = 0, 1, 2, ..., N−1

 H(ω) is an (N−1)th-order polynomial

 ω is continuous and ranges from 0 to 2π rad/samp, 

corresponding to a continuous-time frequency range of 0 

to fs Hz
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Analyzing FIR Filters

 Example

 A 4-tap FIR filter whose coefficients are h(k) = 

[0.2, 0.4, 0.4, 0.2]

 Magnitude and phase (Hø(ω) = arctangent of ratio 

of imaginary part over real part of H(ω)) are 

plotted in Fig. 5-46
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Analyzing FIR Filters
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Analyzing FIR Filters

 DFT analysis of FIR filters

 The most convenient way to determine an FIR 

filter’s frequency response is to perform DFT of 

filter’s coefficients
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Analyzing FIR Filters
we need more |H(m)| frequency-domain 

information. That is, we need improved 

frequency resolution.
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Analyzing FIR Filters

a finer-granularity 

version of H(m) 

obtained by zero 

padding h(k) 

coefficients

circular white 

dots correspond 

to square dots in 

Fig. 5-47(b)
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Analyzing FIR Filters

 A filter’s complex H(m) frequency response 

sequence
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Analyzing FIR Filters

 FIR filter (constant) group delay

 A filter has a linear phase response over its 

passband and will induce no phase distortion in 

its output signals

 ω is continuous and ranges from −π to π 

radians/sample, corresponding to a continuous-time 

frequency range of −fs/2 to fs/2 Hz

 Hø(ω) in radians

ω in radians/sample

G(ω) are time measured in samples

samples  
)(

)(
)()()(

)(








d
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 FIR filter group delay

 Example: complex-valued frequency response of 

a K-tap moving average filter is

 For symmetrical-coefficient FIR filters

samples2
)(

)2(

)(

)(
)(

22/)15()(

)2/sin(

)2/sin(
)(

5,

5,
filter average moving tap-5 =K 

a ofdelay  group
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 a of response phase
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s

f

DDt
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D = the no. of unit-

delay elements in 

filter’s delay line



82

Analyzing FIR Filters

 FIR filter group delay

 In general, group delay of a tapped-delay line FIR 

digital filter, whose impulse response is 

symmetric, is

 If a tapped-delay line (FIR) network has an 

antisymmetrical impulse response, it also has a 

linear phase response and its group delay is also 

described by above equation

 Antisymmetrical impulse response: h(k)=−h(N−k−1)

where 0≤k≤(N−1)/2 when N is odd and 0≤k≤(N/2)−1 

when N is even

samples  
2

1length  response impulse
samples


G
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samples  
2

samples

D
G  fractional delay
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 FIR filter passband gain

 Passband gain is filter’s passband magnitude 

response level around which the passband ripple 

fluctuates

 In practice we design filters to have very small 

passband ripple, so a lowpass filter’s passband 

gain is roughly equal to its DC gain (gain at 0 Hz)

 DC gain is sum of filter’s impulse response sequence, 

i.e., sum of FIR filter’s coefficients

 Most commercial FIR filter design software 

packages compute filter coefficients such that 

their passband gain is unity
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passband gain 

equals unity here



86

Analyzing FIR Filters

 Estimating the number of FIR filter taps

 How do we estimate the number of filter taps 

(coefficients), N, that can satisfy a given 

frequency magnitude response of an FIR filter?

 A simple expression proposed by Prof. Fred Harris for 

N, for passband ripple values near 0.1 dB, is

 Atten = desired stopband attenuation measured in dB

 fpass and fstop are frequencies normalized to fs sample 

rate in Hz

E.g., fpass = 0.2 means that continuous-time frequency 

of fpass is 0.2fs Hz

)(22 passstop
FIR

ff

Atten
N
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8.21
)1000/2501000/350(22

48

)(22

25.035.0

FIR
dB 48 atten  stopband

Hz 350 = 

Hz 250 = 
Hz 1000 = 

Assuming

passstop
FIR 
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s
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f

the lowpass filter 

can be built using 

a 22-tap FIR filter


