Digital Signal Processing

Decibels (dB and dBm)

Moslem Amiri, Václav Přenosil Masaryk University

Understanding Digital Signal Processing, Third Edition, Richard Lyons (0-13-261480-4) © Pearson Education, 2011.

Decibels evolution

- When comparing analog signal levels, early specialists found it useful to define a measure of difference in powers of two signals
- If that difference was treated as logarithm of a ratio of powers, it could be used as a simple additive measure to determine overall gain or loss of cascaded electronic circuits
- Positive logarithms associated with system components having gain could be added to negative logarithms of those components having loss quickly to determine overall gain or loss of system

- Difference between two signal power levels Power difference $= \log_{10} \left(\frac{P_1}{P_2} \right)$ bels
 - Measured power differences smaller than one bel were so common that it led to the use of decibel (bel/10)

Power difference =
$$10 \cdot \log_{10} \left(\frac{P_1}{P_2} \right) dB$$

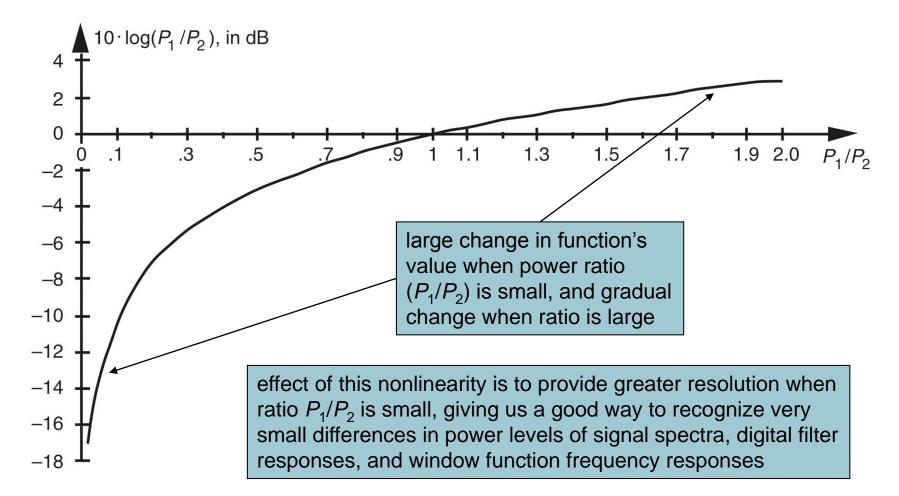


Figure E-1 Logarithmic decibel function of Eq. (E-2).

For any frequency-domain sequence X(m)

discrete power spectrum of $X(m) = |X(m)|^2$

 $X_{dB}(m) = 10 \cdot \log_{10}(|X(m)|^2) = 20 \cdot \log_{10}(|X(m)|) dB$

- These expressions are used to convert a linear magnitude axis to a logarithmic magnitudesquared, or power, axis measured in dB
- Without the need for squaring operation, we calculate X_{dB}(m) power spectrum sequence from X(m) sequence

Normalized log magnitude spectral plots

normalized
$$X_{dB}(m) = 10 \cdot \log_{10}(\frac{|X(m)|^2}{|X(0)|^2}) = 20 \cdot \log_{10}(\frac{|X(m)|}{|X(0)|}) dB$$

- Division by |X(0)|² or |X(0)| value forces the first value in normalized log magnitude sequence X_{dB}(m) equal to 0 dB
 - This makes it easy to compare multiple log magnitude spectral plots

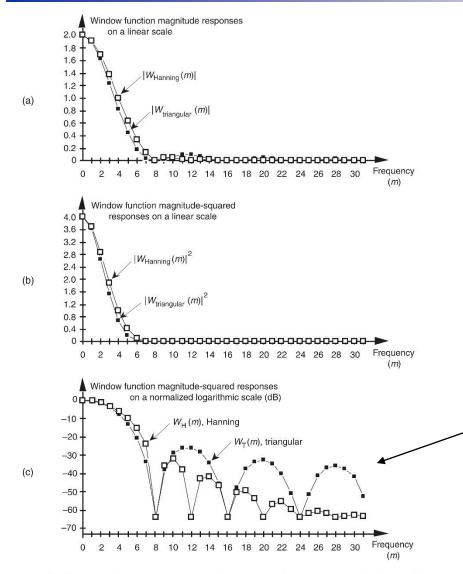


Figure E-2 Hanning (white squares) and triangular (black squares) window functions in the frequency domain: (a) magnitude responses using a linear scale; (b) magnitude-squared responses using a linear scale; (c) log magnitude responses using a normalized dB scale. normalization: $W_{H}(m) = 10 \cdot \log_{10} \left(\frac{|W_{Hanning}(m)|^{2}}{|W_{Hanning}(0)|^{2}} \right)$ $= 20 \cdot \log_{10} \left(\frac{|X_{Hanning}(m)|}{|X_{Hanning}(0)|} \right) dB$

we can clearly see the difference in magnitude-squared window functions in (c) as compared to linear plots in (b)

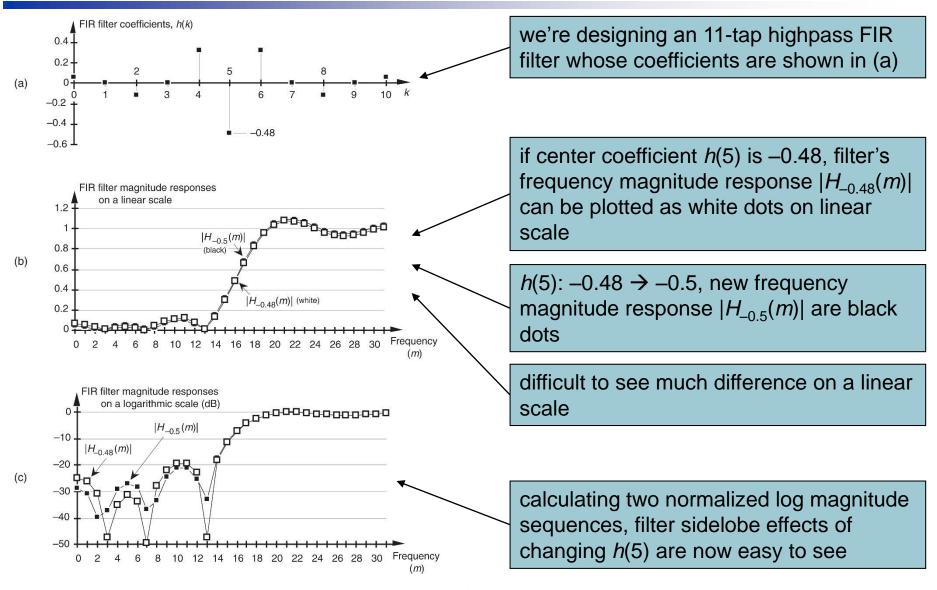


Figure E-3 FIR filter magnitude responses: (a) FIR filter time-domain coefficients; (b) magnitude responses using a linear scale; (c) log magnitude responses using the dB scale.

Some Useful Decibel Numbers

A few constants to memorize

- A power difference of 3 dB corresponds to a power factor of two
 - That is, if magnitude-squared ratio of two different frequency components is 2, then

power difference = $10 \cdot \log_{10} \left(\frac{2}{1}\right) = 10 \cdot \log_{10}(2) = 3.01 \approx 3 \, \text{dB}$

If magnitude-squared ratio of two different frequency components is 1/2

power difference = $10 \cdot \log_{10} \left(\frac{1}{2}\right) = 10 \cdot \log_{10}(0.5) = -3.01 \approx -3 \, \text{dB}$

Some Useful Decibel Numbers

Magnitude ratio	Magnitude-squared power (P ₁ /P ₂) ratio	Relative dB (approximate)	
10 ^{-1/2}	10 ⁻¹	-10	P_1 is one-tenth P_2
2-1	$2^{-2} = 1/4$	-6	P_1 is one-fourth P_2
2 ^{-1/2}	$2^{-1} = 1/2$	-3	P_1 is one-half P_2
20	$2^0 = 1$	0	P_1 is equal to P_2
2 ^{1/2}	2 ¹ = 2	3	P ₁ is twice P ₂
2 ¹	$2^2 = 4$	6	P_1 is four times P_2
10 ^{1/2}	$10^1 = 10$	10	P_1 is ten times P_2
10 ¹	$10^2 = 100$	20	P_1 is one hundred times P_2
10 ^{3/2}	$10^3 = 1000$	30	P_1 is one thousands times P_2

Absolute Power Using Decibels

Another use of decibels

- To measure signal-power levels referenced to a specific absolute power level
 - In this way, we can speak of absolute power levels in watts while taking advantage of convenience of decibels
- The most common absolute power reference level used is milliwatt

absolute power of $P_1 = 10 \cdot \log_{10} \left(\frac{P_1}{P_2} \right) = 10 \cdot \log_{10} \left(\frac{P_1 \text{ in watts}}{1 \text{ milliwatt}} \right) \text{dBm}$

dBm = dB relative to a milliwatt