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The Arithmetic of Complex 

Numbers
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Graphical Representation of Real and Complex Numbers

 Real number

 Can be represented by a point on a one-

dimensional axis, called real axis
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Graphical Representation of Real and Complex Numbers

 Complex number

 Has two parts: a real part and an imaginary part

 Can be treated as a point on a complex plane
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Arithmetic Representation of Complex Numbers

 A complex number C is represented in a 

number of different ways

 Rectangular form

 Trigonometric form

 Exponential form

 Magnitude and angle form
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Arithmetic Representation of Complex Numbers

 Magnitude (modulus) of C

 Phase angle (argument) of C

 In exponential form

 Variable ø need not be constant

 A phasor of magnitude M that rotates in a 

(counter)clockwise direction at a radian frequency 

of (+ω) –ω radians per second
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Arithmetic Operations of Complex Numbers

 Addition and subtraction

 Rectangular form is the easiest to use here
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Arithmetic Operations of Complex Numbers
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Arithmetic Operations of Complex Numbers

 Multiplication

 Can use rectangular form to multiply

 In exponential form, product takes simpler form

 Product of magnitudes of two complex numbers

 Scaling
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Arithmetic Operations of Complex Numbers

 Conjugation

 Complex conjugate of a complex number is 

obtained by changing sign of its imaginary part

 Conjugate of a product = product of conjugates

 Sum of conjugates = conjugate of the sum
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Arithmetic Operations of Complex Numbers

 Conjugation

 Product of a complex number and its conjugate is  

complex number’s magnitude squared
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Arithmetic Operations of Complex Numbers

 Division
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Arithmetic Operations of Complex Numbers

 Inverse of a complex number
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Arithmetic Operations of Complex Numbers

 Complex numbers raised to a power
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Arithmetic Operations of Complex Numbers

 Roots of a complex number

 Next, we assign values 0, 1, 2, 3, . . ., k–1 to n to 

get the k roots of C

knjkk njk

njj

eMMeC

MeMeC

/)360()360(

)360(



















15

Arithmetic Operations of Complex Numbers

 Natural logarithms of a complex number

where 0 ≤ ø < 2π
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Arithmetic Operations of Complex Numbers

 Logarithm to base 10 of a complex number

)43429.0(log

)(loglog)(loglog)(loglog

10

101010101010













jM

ejMeMMeC

MeC

jj

j



17

Arithmetic Operations of Complex Numbers

 Log to base 10 of a complex number using 

natural logarithms
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Some Practical Implications of Using Complex Numbers

 Representing numbers in a computer

 Rectangular form has advantage over polar form

 Example: represent complex numbers using a 

four-bit sign-magnitude binary number format

 Integral numbers ranging from –7 to +7

 Range of complex numbers covers a square on 

complex plane (Fig. A-4(a)) using rectangular form

 If we use four-bit numbers to represent magnitude in 

polar form, those numbers reside on or within a circle 

whose radius is 7 (Fig. A-4(b))

 Four shaded corners in Fig. A-4(b) represent locations 

of valid complex values using rectangular form but are 

out of bounds if we use polar form

 Acceptable result in rectangular could overflow in polar
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Some Practical Implications of Using Complex Numbers


