Digital Signal Processing

The Arithmetic of Complex Numbers

Moslem Amiri, Václav Přenosil
Masaryk University

Understanding Digital Signal Processing, Third Edition, Richard Lyons (0-13-261480-4) © Pearson Education, 2011.

Graphical Representation of Real and Complex Numbers

Real number

- Can be represented by a point on a onedimensional axis, called real axis

Figure A-1 The representation of a real number as a point on the onedimensional real axis.

Graphical Representation of Real and Complex Numbers

Complex number

- Has two parts: a real part and an imaginary part
- Can be treated as a point on a complex plane

Figure A-2 The phasor representation of the complex number $C=R+j l$ on the complex plane.

Arithmetic Representation of Complex Numbers

A complex number C is represented in a number of different ways

- Rectangular form

$$
C=R+j I
$$

- Trigonometric form

$$
C=M[\cos (\phi)+j \sin (\phi)]
$$

- Exponential form

$$
C=M e^{j \phi}
$$

- Magnitude and angle form

$$
C=M \angle \phi
$$

Arithmetic Representation of Complex Numbers

Magnitude (modulus) of C

$$
M=|C|=\sqrt{R^{2}+I^{2}}
$$

Phase angle (argument) of C

$$
\phi=\tan ^{-1}\left(\frac{I}{R}\right)
$$

In exponential form

$$
C=M e^{j \phi}=M e^{j(\phi+2 \pi n)}
$$

Variable \varnothing need not be constant

$$
C=M e^{j \omega t} \text { or } C=M e^{-j \omega t}
$$

- A phasor of magnitude M that rotates in a (counter)clockwise direction at a radian frequency of $(+\omega)-\omega$ radians per second

Arithmetic Operations of Complex Numbers

Addition and subtraction

- Rectangular form is the easiest to use here

$$
\begin{aligned}
& C_{1}+C_{2}=R_{1}+j I_{1}+R_{2}+j I_{2}=R_{1}+R_{2}+j\left(I_{1}+I_{2}\right) \\
& C_{1}-C_{2}=\left(R_{1}+j I_{1}\right)-\left(R_{2}+j I_{2}\right)=R_{1}-R_{2}+j\left(I_{1}-I_{2}\right)
\end{aligned}
$$

Arithmetic Operations of Complex Numbers

(a)

(b)

Figure A-3 Geometrical representation of the sum of two complex numbers.

Arithmetic Operations of Complex Numbers

Multiplication

- Can use rectangular form to multiply
$C_{1} C_{2}=\left(R_{1}+j I_{1}\right)\left(R_{2}+j I_{2}\right)=\left(R_{1} R_{2}-I_{1} I_{2}\right)+j\left(R_{1} I_{2}+R_{2} I_{1}\right)$
- In exponential form, product takes simpler form

$$
C_{1} C_{2}=M_{1} e^{j \phi_{1}} M_{2} e^{j \phi_{2}}=M_{1} M_{2} e^{j\left(\phi_{1}+\phi_{2}\right)}
$$

- Product of magnitudes of two complex numbers

$$
\left|C_{1}\right| \cdot\left|C_{2}\right|=\left|C_{1} C_{2}\right|
$$

- Scaling

$$
\begin{aligned}
k C & =k(R+j I)=k R+j k I \\
& =k\left(M e^{j \phi}\right)=k M e^{j \phi}
\end{aligned}
$$

Arithmetic Operations of Complex Numbers

Conjugation

- Complex conjugate of a complex number is obtained by changing sign of its imaginary part

$$
C=R+j I=M e^{j \phi} \rightarrow C^{*}=R-j I=M e^{-j \phi}
$$

- Conjugate of a product = product of conjugates

$$
\begin{aligned}
C & =C_{1} C_{2} \\
C^{*} & =\left(C_{1} C_{2}\right)^{*}=\left(M_{1} M_{2} e^{j\left(\phi_{1}+\phi_{2}\right)}\right)^{*}=M_{1} M_{2} e^{-j\left(\phi_{1}+\phi_{2}\right)} \\
& =M_{1} e^{-j \phi_{1}} M_{2} e^{-j \phi_{2}}=C_{1}{ }^{*} C_{2}{ }^{*}
\end{aligned}
$$

- Sum of conjugates $=$ conjugate of the sum

$$
\begin{aligned}
\left(R_{1}+j I_{1}\right)^{*}+\left(R_{2}+j I_{2}\right)^{*} & =\left(R_{1}-j I_{1}\right)+\left(R_{2}-j I_{2}\right) \\
& =R_{1}+R_{2}-j\left(I_{1}+I_{2}\right)=\left[R_{1}+R_{2}+j\left(I_{1}+I_{2}\right)\right]^{*}
\end{aligned}
$$

Arithmetic Operations of Complex Numbers

Conjugation

- Product of a complex number and its conjugate is complex number's magnitude squared

$$
C C^{*}=M e^{j \phi} M e^{-j \phi}=M^{2} e^{j 0}=M^{2}
$$

Arithmetic Operations of Complex Numbers

Division

$$
\begin{aligned}
\frac{C_{1}}{C_{2}} & =\frac{M_{1} e^{j \phi_{1}}}{M_{2} e^{j \phi_{2}}}=\frac{M_{1}}{M_{2}} e^{j\left(\phi_{1}-\phi_{2}\right)} \\
\frac{C_{1}}{C_{2}} & =\frac{M_{1}}{M_{2}} \angle\left(\phi_{1}-\phi_{2}\right) \\
\frac{C_{1}}{C_{2}} & =\frac{R_{1}+j I_{1}}{R_{2}+j I_{2}} \\
& =\frac{R_{1}+j I_{1}}{R_{2}+j I_{2}} \cdot \frac{R_{2}-j I_{2}}{R_{2}-j I_{2}} \\
& =\frac{\left(R_{1} R_{2}+I_{1} I_{2}\right)+j\left(R_{2} I_{1}-R_{1} I_{2}\right)}{R_{2}^{2}+I_{2}^{2}}
\end{aligned}
$$

Arithmetic Operations of Complex Numbers

Inverse of a complex number

$$
\begin{aligned}
& \frac{1}{C}=\frac{1}{M e^{j \phi}}=\frac{1}{M} e^{-j \phi} \\
& \frac{1}{C}=\frac{1}{R+j I} \cdot \frac{R-j I}{R-j I}=\frac{R-j I}{R^{2}+I^{2}}=\frac{C^{*}}{M^{2}}
\end{aligned}
$$

Arithmetic Operations of Complex Numbers

Complex numbers raised to a power

$$
C=M e^{j \phi} \rightarrow C^{k}=M^{k}\left(e^{j \phi}\right)^{k}=M^{k} e^{j k \phi}
$$

Arithmetic Operations of Complex Numbers

Roots of a complex number

$$
\begin{aligned}
C & =M e^{j \phi}=M e^{j\left(\phi+n 360^{\circ}\right)} \\
\sqrt[k]{C} & =\sqrt[k]{M e^{j\left(\phi+n 360^{\circ}\right)}}=\sqrt[k]{M} e^{j\left(\phi+n 360^{\circ}\right) / k}
\end{aligned}
$$

Next, we assign values $0,1,2,3, \ldots, k-1$ to n to get the k roots of C

Arithmetic Operations of Complex Numbers

Natural logarithms of a complex number

$$
C=M e^{j \phi}
$$

$$
\ln C=\ln \left(M e^{j \phi}\right)=\ln M+\ln \left(e^{j \phi}\right)=\ln M+j \phi
$$

where $0 \leq \varnothing<2 \pi$

Arithmetic Operations of Complex Numbers

Logarithm to base 10 of a complex number

$$
C=M e^{j \phi}
$$

$$
\begin{aligned}
\log _{10} C & =\log _{10}\left(M e^{j \phi}\right)=\log _{10} M+\log _{10}\left(e^{j \phi}\right)=\log _{10} M+j \phi \cdot \log _{10}(e) \\
& \approx \log _{10} M+j(0.43429 \cdot \phi)
\end{aligned}
$$

Arithmetic Operations of Complex Numbers

Log to base 10 of a complex number using natural logarithms

$$
\begin{aligned}
\log _{10}(x) & =\frac{\ln (x)}{\ln (10)} \\
C & =M e^{j \phi} \\
\log _{10} C & =\frac{\ln C}{\ln 10}=\left(\log _{10} e\right)(\ln C) \\
& \approx 0.43429 \cdot(\ln C)=0.43429 \cdot(\ln M+j \phi)
\end{aligned}
$$

Some Practical Implications of Using Complex Numbers

Representing numbers in a computer

- Rectangular form has advantage over polar form
- Example: represent complex numbers using a four-bit sign-magnitude binary number format Integral numbers ranging from -7 to +7
Range of complex numbers covers a square on complex plane (Fig. A-4(a)) using rectangular form If we use four-bit numbers to represent magnitude in polar form, those numbers reside on or within a circle whose radius is 7 (Fig. A-4(b))
Four shaded corners in Fig. A-4(b) represent locations of valid complex values using rectangular form but are out of bounds if we use polar form
- Acceptable result in rectangular could overflow in polar

Some Practical Implications of Using Complex Numbers

Figure A-4 Complex integral numbers represented as points on the complex plane using a four-bit sign-magnitude data format: (a) using rectangular notation; (b) using polar notation.

