Signaling pathways

Katka Hemalová

March 20, 2014

Signals

(A) Endocrine signaling Circulatory system Target cell

(B) Paracrine signaling

(C) Direct cell-to-cell signaling

(D) Autocrine signaling

Cooper et al., The Cell: A Molecular Approach, 4th edition, 2006

Cell signaling

Response time

Signal transduction through molecular switches

 Other ways to switch a protein on/off: binding of another signaling protein, cAMP, Ca²⁺ or by another modification (e.g. ubiquitylation)

Scaffold proteins

- Signaling proteins in close proximity
- Fast, efficient, selective response to an extracellular signal
- Avoiding unwanted cross-talk

subila

- Ion-channel-coupled receptors
- G-protein-coupled receptors
- Enzyme-coupled receptors

Ion-channel-coupled receptors

G-protein coupled receptors

cAMP activates Protein kinase A

Cooper et al., The Cell: A Molecular Approach, 4th edition, 2006

Enzyme-coupled recepetors

Campbell N., Biology, 5th edition, 2000

Enzyme-coupled recepetors

sybila

SH2 domain ("SRC-Homology 2 domain")

• crucial part of adaptors (Grb2, Shc, Crk, ...)

Cooper et al., The Cell: A Molecular Approach, 4th edition, 2006

• Grb2-SOS complex preexist in cytoplasm

Weinberg, R., The Biology of Cancer, Garland Science, 2007

Ras pathway (MAPK pathway)

http://oregonstate.edu/instruct/bb492/fignames/ras3.html

Fibroblast growth factor receptor 3 (FGFR3)

- Enzyme-coupled receptor
- Growth and proliferation inhibition
- Mutation that cause achondroplasia act by exaggerating the negative regulatory functions of FGFR3

Deng et al., Fibroblast Growth Factor Receptor 3 Is a Negative Regulator of Bone Growth, Cell, 1996

FGFR3-related skeletal dysplasia

 FGFR3 tyrosine kinase; 2, ligand-mediated receptor activation; 3, CNP-mediated antagonism of signals downstream of receptor; 4, expression or synthesis of mutant FGFR3; 5, tyrosine kinase mediators of MAPK signaling pathway; 6, degradation of activated receptor. See text for discussion.

 FGFRs employ several signaling pathways, MAPK pathway is one of them

Constitutive activation of ERK

- Mutated FGFR3 induces constitutive activation of the MAPK pathway in chondrocytes
- Disease results from increased signal from the mutant receptor

 FGFRs recruit their downstream adaptors (GAB1, SHC, FRS2, etc.)

EGF vs. FGF pathway model schema (Yamada *et al.*, 2004)

- Grb2-SOS binds EGFR directly or through Shc
- Grb2-SOS binds FGFR through FRS2

Yamada S., Taketomi T., Yoshimura A., Model analysis of difference between EGF pathway and FGF sybild pathway, BBRC, 2004

EGF vs. FGF pathway (Yamada et al., 2004)

- Duration of ERK activation determines the cell response
- EGF induces transient ERK activation
- FGF induces transient and sustained ERK activation
- What is the reason for difference in time course?

Dependency on Shc and FRS2 initial concentration

- Grb2-SOS binds EGFR directly or through Shc \rightarrow ERK activation is limited by concentration of receptor
 - $[EGFR2P] + [Grb2-SOS] \leftrightarrow [EGFR2P-Grb2-SOS]$
 - $[EGFR2P-ShcP] + [Grb2-SOS] \leftrightarrow [EGFR2P-ShcP-Grb2-SOS]$
- $\bullet~\mbox{Grb2-SOS}$ binds FGFR through FRS2 $\rightarrow~\mbox{signal}$ amplification
 - $[FGFR2P] + [FRS] \leftrightarrow [FGFR2P-FRS]$ $[FGFR2P-FRS] \rightarrow [FGFR2P] + [FRSP]$ $[FRSP] + [Grb2-SOS] \leftrightarrow [FRSP-Grb2-SOS]$

- Differences in mechanism of interaction between receptors and first adapters
- FRS2 and sustained ERK activation (more Grb2-SOS complexes are recruited)

