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1. Introduction 

KNIME 
•  Professional open-source data mining software developed at Univ. 

of Konstanz 
•  User-friendly environment for creating workflows 
•  Workflows can be saved / retrieved 
•  www.knime.org 

Text mining tools 
•  Not part of common distribution 
•  Available under KNIME Labs 
•  It can be downloaded by evoking Install KNIME extensions 

References: 
•  K. Thiel: The KNIME text processing plug-in 
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1. Introduction 

Node Repository under KNIME Labs contains many tools for text processing. 
Explore, try out, play! 
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2. Loading Files and Creating Corpus 

Knime Labs -> Text processing -> IO 
Flat File Document Reader 

•  The specified directory will be searched for all files.  
•  Reads flat text files and creates a document for each file.  
•  The documents title will be the first sentence of the file and the full 

text the remaining text contained in the file.  
•  The “document category” (corresponding to a class) can be set in a 

configure window  
Concatenate (in Data Manipulation -> Row) 

•  Documents from different directories can be read-in separately and 
concatenated  
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Loading Files and Creating Corpus 

. 
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Result of Concatenation 

Result of concatenation 
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Creating BoW Representation 

The process of creating a corpus is finished by creating the bag of words: 

A BoW consists of at least two columns:  
   - one column containing the terms occurring in the corresponding 

document, 
   - the other column containing the documents.  
A row represents a term contained in the related document. 
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BoW Representation 

The bag of words representation: 
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3. Preprocessing 

Involves a series of steps: 
•  Removing punctuation 
•  Removing short words (length 1; could be 2 or more) 
•  Removing numbers 
•  Conversion to lower case 
•  Eliminating stop words (in a given language) 
•  Stemming 
•  Adding frequency counts (TF) and using these to eliminate low-

frequency words (1 occurrence) 
Metanode “Preprocessing” contains these steps. 



11 

3. Preprocessing 

Contents of Metanode “Preprocessing” 
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4. Creation of DT Matrix 

Creation of Document-Term matrix involves the following steps: 
•  Creation of document vector  

 One vector is created for each document. 
 The values of the vectors are term frequencies (TFs) or  Tf-Idf values 
 The dimension of the vector is the number of distinct terms in BoW   

•  Category to class conversion 
  The category “sci.train” is transformed to class value. 
•  Column filter  

 Maintains all terms, but drops the document. 
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4. Creation of DT Matrix 

Create DT matrix: 
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4. Creation of DT Matrix 

Resulting DT matrix (1615 docs, 8849 terms): 
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5. Creation of Train / Test Set 

Use the output of DT matrix to create train / test set: 
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Creation of Train Set 

Create the train set (metanode Train): 
•  Use Row Filter to select documents of the relevant class (sci.train, 

rel.train). 
         Select the column to test: Document class 
         Pattern: sci.train 
•  Use String Replacer to rename the class value sci.train -> sci and 

rel.train -> rel 
  Target column: Document class 
  Wildcard pattern: sci.train 
  Replacement text: sci 

•  Concatenate documents of sci and rel. 
Use a similar process to create the test set. 
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Creation of Train Set 

Metanode Train: 
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6. Training a Classifier & Classifying Test Set  

Here we show how to use a Decision Tree: 

Confusion matrix: 

The success rate (calculated by Scorer) was 85.3%. 

sci^ rel^ 
sci 362 34 
rel 61 190 
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Training a Classifier & Classifying Test Set  

We note that training a decision tree requires several minutes. 
  This is due to the fact that the number of terms is rather high (>8000). 
The training can be speeded up by applying feature selection.  

Other types of classifiers could be used (SVM, kNN, NB etc.). 
  As the number of features is high, 
  it is not feasible to use some of these classifiers (e.g. kNN), 
  unless we reduce the number of features first. 
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7. Feature Selection and Re-training 

The feature elimination method of KNIME (in Meta) 
 is not appropriate for problems  
 where the number of features is rather high (>100). 
We require a relatively fast filter method,  
  such as the one based in Information Gain. 
We will create a R-snippet (local) for this task: 
  Include R-snippet (Local) as node. 
  Use train DT matrix as input to this node. 
  The R snippet returns a DT matrix with fewer columns. 
  Configure R snippet: 
  R binary: Indicate path to R.exe (check where the code is on your PC) 
  R Command: Copy R code (see next 2 slides) into R snippet area  



21 

Feature Selection and Re-training 

KNIME workflow with R-snippets including R code 
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R-Snippet   

info.terms <- vector() 
find.info.terms <- function(dtm.tr, min.info){ 
    ix.class <- ncol(dtm.tr)       
    default.info <- info(table(dtm.tr[, ix.class])) 
    n.atr <- ncol(dtm.tr) - 1 
    n.info.terms <- 0 
    info.term.ixs <- vector() 
    col.names <- names(dtm.tr) 
    for (atri in 1:n.atr) { 
         if (sum(dtm.tr[,atri])>0)                     
          { 
              no.dif.atr.val <- length(table(dtm.tr[, atri])) 
              atr.class.table <- table(dtm.tr[, atri], dtm.tr[, ix.class]) 
              n.rows<-nrow(dtm.tr) 
              atr.info <- 0 
              for (atr.val in 1 : no.dif.atr.val) 
               { # begin for 
                    atr.weight <- sum( atr.class.table[atr.val,]) / n.rows 
                    atr.info1 <- atr.weight * info(atr.class.table[atr.val,]) 
                    atr.info <- atr.info + atr.info1 
            } 
                info.gain <- default.info - atr.info 
                if (info.gain > min.info) 
                  { info.term.ixs[n.info.terms] <- atri 
                    n.info.terms <- n.info.terms + 1 } 
            } 
    } 
    return(col.names[info.term.ixs]) 
} # end function 
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R-Snippet   

info <- function(x){ 
inf <- 0 
sumx <- sum(x) 
for (i in x) { 
  pi <- i/sumx 
  infi <- (pi)*log2(pi) 
  if (is.na(infi)) infi <- 0 
  inf <- inf - infi } 
  return(inf) 
} 
names <- find.info.terms(R,0.005)  # choose threshold 
names <- append(colnames(R)[1], names) 
names <- append(names, colnames(R)[length(colnames(R))]) 

R <- R[, names] 

Note: 
The parameter of minimum information gain of 0.005 cannot be passed to R, 
 as KNIME can pass only one input (train DT matrix). 
 The value has to be set inside the program / snippet (see above). 
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Results of Feature Elimination 

The number of terms was reduced from >8000 to 587 (i.e. <10%) 

However, some column names were altered as a result. 
The effect of invoking R snippet has the effect that  
   some columns in the Train data got automatically renamed 
   (e.g. 3-02 -> X3.02, health-care -> health.care etc.). 

To guarantee that the same transformation is performed  
   also for the Test data, an R snippet needs to be included to process it.  
  The R snippet code includes just R <- R. 
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Processing the Test Set 

We need to guarantee that the Test data   
  does not contain any terms (columns) that did not appear in the Train data. 
  (recall the Train data has been reduced by feature elimination). 

We can use Reference Column Filter for this purpose: 
  Port 1 (top) : Test data from which we want to eliminate columns 
  Port 2 (bottom): Train data (reduced) used as reference for elimination 
Only those columns in Test data that appear also in Train data  
  are passed through. 
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Results on Test Data 

Train DT classifier on reduced Train set & apply it to the test data. 
Success rate: 83.8%  
   (a bit lower compared to a variant that used all terms) 
Confusion matrix: 

The performance of the classifier could be optimized 
  by searching for the best combination of preprocessing steps,  
  parameter setting(s) and the most appropriate type of classifier.   

sci^ rel^ 
sci 353 43 
rel 62 189 


