
Learning from positive dataStephen MuggletonOxford University Computing Laboratory,Parks Road,Oxford, OX1 3QD,United Kingdom.AbstractGold showed in 1967 that not even regular grammars can be exactlyidenti�ed from positive examples alone. Since it is known that childrenlearn natural grammars almost exclusively from positives examples, Gold'sresult has been used as a theoretical support for Chomsky's theory of innatehuman linguistic abilities. In this paper new results are presented whichshow that within a Bayesian framework not only grammars, but also logicprograms are learnable with arbitrarily low expected error from positiveexamples only. In addition, we show that the upper bound for expectederror of a learner which maximises the Bayes' posterior probability whenlearning from positive examples is within a small additive term of onewhich does the same from a mixture of positive and negative examples. AnInductive Logic Programming implementation is described which avoidsthe pitfalls of greedy search by global optimisation of this function duringthe local construction of individual clauses of the hypothesis. Results oftesting this implementation on arti�cially-generated data-sets are reported.These results are in agreement with the theoretical predictions.1 IntroductionGold's [5] seminal paper not only formed the foundations of learnability theorybut also provided an important negative result for the learnability of grammars.It was shown that not even the class of all regular languages could be identi�edin the limit from an arbitrary �nite sequence of positive examples of the targetlanguage. In the same paper Gold pointed out the implications for theoriesof language acquisition in children. He notes that psycholinguistic studies byMcNeill and others had shown that... children are rarely informed when they make grammatical errorsand those that are informed take little heed.1



Gold's negative results have been taken by [14] as theoretical support for Chom-sky's theory [4] of innate human linguistic abilities.In this paper Gold's requirements for exact identi�cation of a language arereplaced by a need to converge with arbitrarily low error. In a previous paper[10] the author derived a function for learning logic programs from positive ex-amples only. In the present paper the Bayes' function for maximising posteriorprobability is derived. The solution is representation independent, and thereforeequally applicable to grammar learning, scienti�c theory formation or even au-tomatic programming. The expected error of an algorithm which maximises thisfunction over a high prior probability segment of the hypothesis space is analysedand shown to be within a small additive term of that obtained from a mixture ofpositive and negative examples.An implementation of this approach within the Inductive Logic Programming(ILP) system Progol4.2 is described. A novel aspect of this implementation isthe use of global optimisation during local construction of individual clauses ofthe hypothesis. The technique avoids the local optimisation pitfalls of cover-setalgorithms. Experiments on three separate domains (animal taxonomy, KRK-illegal and grammar learning) are shown to be in accordance with the theoreticalpredictions.This paper is organised as follows. In Section 2 a Bayes' framework is de-scribed which is compatible with the U-learnability framework [9, 13]. The Bayes'function for the posterior probability of hypotheses given positive examples onlyis derived in Section 3. The expected error of an algorithm which maximises theBayes' function over a high prior probability segment of the hypothesis space isgiven in Section 4. In Section 5 the ILP system Progol4.2, which implements thisfunction is described. An experiment is presented in Section 6, in which Pro-gol4.2 is tested on varying amounts of randomly generated data for three targetconcepts. The results of these experiments are discussed in Section 7. The paperis concluded in Section 8 by a comparison to related work and a discussion ofdirections for future research.2 Bayes' positive example frameworkThe following is a simpli�ed version of the U-learnability framework presentedin [9, 13]. X is taken to be a countable class of instances and H � 2X to bea countable class of concepts. DX and DH are probability distributions over Xand H respectively. For H 2 H, DX(H) = Px2H DX(x) and the conditionaldistribution of DX associated with H is as follows.DXjH(x) = DX(xjH) = DX(x \H)DX(H) = ( 0 if x 62 HDX(x)DX(H) otherwise2



The teacher randomly chooses a target theory T from DH and randomly andindependently chooses a series of examples E = hx1; ::; xmi from T accordingto DXjT . Given E, DH and DX a learner L chooses an hypothesis H 2 Hfor which all elements of E are in H. The teacher then assesses Error(H) asDX(H n T ) +DX(T nH).Unlike the setting in U-learnability it is assumed in the present paper that Lis given DH and DX .3 Bayes' posterior estimationGold's negative result for identi�cation of the regular languages over the symbolset � is based on the fact that for any sequence of positive examples E therewill always be at least two possible candidate hypotheses, 1) ��, the languagecontaining all possible sentences and 2) the language corresponding to elementsof E alone. It is clear that 1) is the most general hypothesis, and has a compact�nite automaton description, while 2) is the least general hypothesis and has acomplex �nite state automaton description. Since these two extreme hypotheseswill maximise errors of commission and omission respectively it would seem desir-able to �nd a compromise between the size of the hypothesis description and itsgenerality. Size and generality of an hypothesis can be de�ned within the Bayes'framework of the previous section as follows.sz(H) = �ln DH(H)g(H) = DX(H)Bayes' theorem allows us to derive a tradeo� between sz(H) and g(H). In itsfamiliar form, Bayes' theorem is as follows.p(HjE) = p(H)p(EjH)p(E)With respect to the Bayes' framework of the previous section p(HjE) is inter-preted from the learner's perspective as the probability that H = T given theexample sequence is E. Similarly, p(H) is de�ned as the probability that H = T ,which is p(H) = DH(H):Meanwhile p(EjH) is the probability that the example sequence is E given thatH = T . Since examples are chosen randomly and independently from DXjH thenfor any consistent hypothesis this is as follows.p(EjH) = mYi=1DXjH (xi)= mYi=1 DX(xi)DX(H)3



The prior p(E) is the probability that the example sequence is E irrespective ofT . This is as follows. p(E) = XT2HDH(T ) mYj=1DXjT (xj)The Bayes' equation can now be rewritten as follows.p(HjE) = DH(H)Qmi=1 DX(xi)DX(H)p(E)Since Qmi=1 DX(xi)p(E) is common to all consistent hypotheses, it will be treated as anormalising constant cm in the following.p(HjE) = DH(H) 1DX (H)!mcmln p(HjE) = m ln 1g(H)!� sz(H) + dmIn the above dm = ln cm. The tradeo� between size and generality of an hypoth-esis can be seen in the �nal equation above. The function ln p(HjE) decreaseswith increases in sz(H) and g(H). Additionally, as m grows, the requirementson generality of an hypothesis become stricter. A function fm with similar prop-erties was de�ned in [10] and it was shown there that for every hypothesis Hexcept T there is a value of m such that for all m0 > m it is the case thatfm0(H) < fm(T ). This result indicates a form of convergence, somewhat di�erentfrom Gold's identi�cation in the limit.4 Analysis of expected errorHaussler et al. [7] argue the advantages of analysing expected error over VCdimension analysis. Analysis of expected error is the approach taken below.It is assumed that class membership of instances is decidable for all hypothe-ses. Also the hypotheses in H are assumed to be ordered according to decreasingprior probability as H1;H2; : : :. For the purposes of analysis the distributionDH(Hi) = ai2 is assumed, where a is a normalising constant. This is similarto the prior distribution assumptions used in Progol4.1 [10] and is a smoothedversion of a distribution which assigns equal probability to the 2b hypothesesdescribable in b bits, where the sum of the probabilities of such hypotheses is2�b. Within this distribution i has in�nite mean and variance. It is also assumedthat the hypothesis space contains only targets T for which DX(T ) � 12. Thisassumption, which holds for most target concepts used in Inductive Logic Pro-gramming, is not a particularly strong restriction on the hypothesis space sinceif T is the complement of T and DX(T ) > 12 then clearly DX(T ) � 12 .4



The following theorem gives an upper bound on the expected error of analgorithm which learns from positive examples only by maximising the Bayes'posterior probability function over the initial am hypotheses within the space.Theorem 1 Expected error for positive examples only. Let X be a count-able instance space and DX be a probability distribution over X. Let H � 2X be acountable hypothesis space containing at least all �nite subsets ofX, and for whichall H 2 H have DX(H) � 12 . Let DH be a probability distribution over H. Assumethat H has an ordering H1;H2; : : : such that DH(Hi) � DH(Hj) for all j > i. LetDH(Hi) = ai2 where 1a = P1i=1 1i2 � 10:608. Let Hn = fHi : Hi 2 H and i � ng. Tis chosen randomly from DH and the xi in E = hx1; ::; xmi are chosen randomlyand independently from DXjT . Let fm(H) = DH(H)( 1DX(H))m and let n = am. Lis the following learning algorithm. If there are no hypotheses H 2 Hn such thatH � HE = fx1; ::; xmg then L(E) = HE. Otherwise L(E) = Hn(E) = Honly if H 2 Hn, H � HE and for all H 0 2 Hn for which H 0 � HE it isthe case that fm(H) � fm(H 0). The error of an hypothesis H is de�ned asError(H;T ) = DX (T nH) +DX(H n T ). The expected error of L after m exam-ples, EE(m), is at most 2:33+2ln mm .Proof. Given in Appendix A. 2Note that this result is independent of the choice of DX and that L considersonly O(m) hypotheses to achieve an expected error of O( ln mm ). For comparison asimilar algorithm which learns from a mixture of positive and negative examplesis analysed for the same choice of DH.Theorem 2 Expected error for positive and negative examples. Let X bea countable instance space and H � 2X be a countable hypothesis space containingat least all �nite subsets of X. Let DH, DX be probability distributions over H andX. Assume that H has an ordering H1;H2; : : : such that DH(Hi) � DH(Hj) forall j > i. Let DH(Hi) = ai2 where 1a = P1i=1 1i2 . Let Hn = fHi : Hi 2 H and i �ng. T is chosen randomly from DH. Let ex(x;H) = hx; vi where v = True ifx 2 H and v = False otherwise. Let E = hex(x1; T ); ::; ex(xm; T )i where eachxi is chosen randomly and independently from DX . HE = fx : hx;Truei in Eg.Hypothesis H is said to be consistent with E if and only if xi 2 H for eachhxi; T ruei in E and xj 62 H for each hxj; Falsei in E. Let f(H) = DH(H) andlet n = am. L is the following learning algorithm. If there are no hypothesesH 2 Hn consistent with E then L(E) = HE. Otherwise L(E) = Hn(E) = Honly if H 2 Hn, H consistent with E and for all H 0 2 Hn consistent withE it is the case that f(H) � f(H 0). The error of an hypothesis H is de�nedas Error(H;T ) = DX(T n H) + DX(H n T ). The expected error of L after mexamples, EE(m), is at most 1:51+2ln mm .Proof. Given in Appendix A. 2Note that this is within a small additive term of the bound for learning from5



H HH1 i n
Hi-1

DXFigure 1: Generality of partial theoriespositive examples only. Again the result is independent of the choice of DX andagain L considers only O(m) hypotheses to achieve an expected error of O( ln mm ).5 ImplementationThe Bayes' function fm has been implemented to guide the search of the ILPsystem Progol [10] when learning from positive examples only. The new version,Progol4.2, is available by anonymous ftp from ftp.comlab.ox.ac.uk in directorypub/Packages/ILP/progol4.2. The earlier version, Progol4.1, uses a cover-setalgorithm to construct the set of clauses, but for each clause does a pruned ad-missible search to maximise compression. Progol4.2 has a similar overall searchalgorithm, but when constructing each clause carries out an admissible searchwhich optimises a global estimate of fm for the complete theory containing theclause under construction. The basis for this global estimate is as follows. Sup-pose a clause Ci has been constructed as the ith clause of an overall theory (setof clauses) Hn = fC1; ::; Cng. It is found that Hi = C1; ::; Ci implies p more ofthe m positive examples than Hi�1. Figure 1 shows this situation with respectto the sample distribution DX . According to the Law of Large Numbers when mis large g(Hi)� g(Hi�1)g(Hn) � pmand therefore g(Hn) � mp (g(Hi)� g(Hi�1)):The surprising conclusion is that for large m it is possible to estimate the gener-ality of Hn from p, m, g(Hi) and g(Hi�1).By assuming that the size of an hypothesis can be measured in bits for anyhypothesis and that the number of examples covered per bit of an hypothesis isapproximately uniform the following should also hold.sz(Hn) � mp sz(Ci)6



In Progol4.2 the value of sz(Ci) is measured crudely as the number of atoms inthe clause.Since it is possible to estimate both sz(Hn) and g(Hn) during the local con-struction of each individual clause, it is possible to maximise an estimate offm(Hn) during the construction of each of the clauses. The polynomial time-complexity bounds on the search carried out by Progol4.1 [10] are unaltered forProgol4.2.5.1 Estimation of g(Hi)The function g(Hi) in the above is estimated in Progol4.2 using Stochastic LogicPrograms (SLPs) [11]. An SLP is a range-restricted logic program P with numericlabels associated with each of the clauses. An SLP can be used to randomlyderive elements of the Herbrand Base of P using SLD derivation with a stochasticselection rule. In order to estimate g(Hi) an SLP, representing DX , is used torandomly generate a sample of size s from the domain of the predicate p=n beinglearned. If s0 of these instances are entailed by p=n then the Laplace correctedestimate of g(Hi) is s0+1s+2 .In order to construct the SLP for the domain of p=n, Progol4.2 uses the modehdeclaration of p=n (see [10]). For instance, suppose in a chess domain the modedeclaration is modeh(1,move(+piece,pos(+�le,+rank),pos(+�le,+rank))). ThenProgol4.2 will construct the following generating clause for the domain.'*move'(A,pos(B,C),pos(D,E)) :- piece(A), �le(B), rank(C),�le(D), rank(E).The clauses of the SLP consist of the above clause and the de�nitions of piece/1,�le/1 and rank/1. The labels for the SLP are built up by recording the totalnumber of times each clause is visited in the derivations of the positive examplesof move=3. In this way it is possible to estimate the distribution DX from theexamples themselves. For instance, in the example set we might �nd that halfthe examples involve the queen, a quarter involve rooks and the other quarterinvolve bishops. When randomly generating examples from the conditioned SLPthese proportions are maintained.6 Experiment6.1 Experimental hypothesesThere remains a question as to how appropriate the assumptions made in The-orems 1 and 2 are in practice. In this section the predictive accuracy of threereasonably typical ILP target theories are compared against the theoretical pre-dictions. If the distributional assumptions made are correct then we would expect7



Examples.class(dog,mammal). class(dolphin,mammal).class(trout,�sh). class(eel,�sh).class(lizard,reptile). class(snake,reptile).class(eagle,bird). class(penguin,bird).Target.class(A,mammal) :- has milk(A).class(A,�sh) :- has gills(A).class(A,bird) :- has covering(A,feathers).class(A,reptile) :- has covering(A,scales),not has gills(A).Figure 2: Animal taxonomythat the expected error functions of theorems 1 and 2 should bound the mean er-ror of a sample of real world domains. The experiments described in this sectionwill test the following two hypotheses.1. Upper bound. In every domain EE(m) � 2:33+2ln mm .2. Positive versus positive and negative data. In every domain error isof a similar order when learning from positives examples only compared tolearning from a mixture of positive and negative examples.6.2 MaterialsThe experimental hypotheses will be tested using Progol4.2 on the followingtarget theories.Animal taxonomy. Figure 2 shows the target and form of examples for theanimal taxonomy domain.KRK illegality. Figure 3 shows the target and form of examples for the KRKillegality domain (originally described in [12]).Natural language grammar. Figure 4 shows the target and form of examplesfor the natural language grammar domain.Examples sets and background knowledge for the domains above are availablefrom the ftp site described in Section 5.8



Examples.illegal(3,5,6,7,6,2). illegal(3,6,7,6,7,4).illegal(5,1,2,1,2,1). illegal(4,3,1,1,4,2).Target.illegal(A,B,A,B, , ).illegal( , ,A,B,A,B).illegal(A,B, , ,C,D) :- adj(A,C), adj(B,D).illegal(A, ,B, ,B, ) :- not A=B.illegal( ,A, ,B, ,B) :- not A=B.illegal( ,A,B,C,B,D) :- A<C, A<D.illegal( ,A,B,C,B,D) :- A>C, A>D.illegal(A, ,B,C,D,C) :- A<B, A<D.illegal(A, ,B,C,D,C) :- A>B, A>D.Figure 3: KRK illegalityExamples.s([every, nice, dog, barks], []).s([the,man,hits,the,ball,at,the,house],[]).s([the,dog,walks,to,the,man],[]).Target.s(A,B) :- np(A,C), iverb(C,B).s(A,B) :- np(A,C), vp(C,D), np(D,B).s(A,B) :- np(A,C), tverb(C,D), np(D,E),prep(E,F), np(F,B).Figure 4: Natural language grammar9



6.3 MethodFor the �rst two domains instances were generated randomly using the appro-priate SLP (see Section 5.1) with uniform values of labels on all clauses. In thegrammar domain it was found that only around 4 in 10,000 randomly generatedsentences were positive examples of the target grammar T . Thus the distributionDX was skewed so that DX(T ) = DX (T ) = 0:5. In all domains instances wereclassi�ed according to the target theory in order to construct training and testsets. In the case of learning from positive examples only, training sets had allnegative examples removed.For each domain Progol4.2 was tested on 1) learning from positive examplesonly and 2) learning from a mixture of positive and negative examples. In bothcasesm was varied according to the seriesm = 5; 10; 20; 40; 80; 160; 320; 640; 1280.For each size of sample the predictive accuracy of the hypothesis returned byProgol4.2 was estimated on a test set of size 10,000. For each m the estimate ofpredictive accuracy was averaged over 10 resamplings of the same sized trainingset. The series was discontinued for a particular domain if the estimate error was0 for several successive values of m.7 Results7.1 Predictive accuracy versus boundThe results of testing the �rst experimental hypothesis (expected error upperbound) are graphed in Figures 5, 6 and 7. Labels on these graphs have thefollowing meanings.P. The predictive accuracy of learning from positive examples only is shown asthe mean and standard deviation (error bars) of the 10 retrials for eachvalue of m.L(P). The theoretical lower bound on positive examples only accuracy fromTheorem 1 (Accuracy= 100(1 �EE(m))).M. Majority class for domain (100DX (T )).Since each data point in each of the three domains lies above the bound, the �rstexperimental hypothesis of Section 6 is con�rmed 1.1The non-monotonic behaviour of P in Figure 5 was found to be caused by large 
uctuationsin errors of commission. This is due to the gradual allowance of larger theories by the Bayes'function as m grows, together with the fact that generality does not vary monotonically withincreasing size of a clausal theory. 10
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Figure 7: Predictive accuracy versus bound for natural language grammar7.2 Positive versus positive and negativeThe results of testing the second experimental hypothesis (similar expected errorfor positive versus positive and negative) are graphed in Figures 8, 9 and 10.Labels on these graphs have the following meanings.P. The predictive accuracy of learning from positive examples only, shown as themean of the 10 retrials for each value of m.P+N. The predictive accuracy of learning from a mixture of positive and nega-tive examples, shown as the mean of the 10 retrials for each value of m.L(P+N). The theoretical lower bound on positive examples only accuracy fromTheorem 2 (Accuracy= 100(1 �EE(m))).M. Majority class for domain (100DX (T )).In the taxonomy and grammar domains (Figures 8 and 10) learning from positiveexamples only requires consistently fewer examples for any given � than learningfrom a mixture of positive and negative examples. In the KRK-illegality domainthe converse is true. In every domain accuracy for all values of m is comparablewhen learning from positive examples compared to learning from a mixture ofpositive and negative examples. This con�rms the experimental hypothesis.12
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Figure 10: Positives versus positives and negatives for natural language grammar8 ConclusionIn 1967 Gold demonstrated negative results for learnability in the limit of var-ious classes of formal languages. This has provided a strong impetus for theinvestigation of constrained hypothesis languages, within which learning frompositive examples is possible. For instance, Plotkin [15] demonstrated the exis-tence of unique least general generalisations of positive examples represented as�rst-order clauses. Biermann and Feldman [2] and later Angluin [1] demonstratedthat certain parameterised subsets of the regular languages could be identi�edin the limit from positive examples only. Within the framework of PAC-learningValiant demonstrated [19] that k-CNF propositional logic formulae are learnablefrom positive examples. More recently Shinohara [18] demonstrated that certainsize-bounded classes of elementary formal systems are identi�able in the limitfrom positive examples.Unlike the approaches above, the techniques used in this paper for learningfrom positive examples are representation independent. That is to say, the rep-resentation of hypotheses does not play a part either in the development of theBayes' function (Section 3) or the analysis of expected error (Section 4). It mightlegitimately be claimed that two strong assumptions are made in Section 2: 1)that the learner knows DH and 2) that the learner can estimateDX by condition-ing a Stochastic Logic Program. The second assumption seems less pernicious14



since it only requires a logic program which de�nes the Herbrand base. Furthertheoretical research is required to analyse the e�ect of discrepancy between thelearner's prior p(H) and the teacher's distribution DH.Theorems 1 and 2 de�ne bounds on expected error for randomly chosen targetsand example sets. To machine learning practitioners it might seem surprising thatthese bounds are a function of only m, the number of examples. However, thebounds are achieved by considering expectations over randomly chosen targetsfrom a given distribution, DH = ai2 . Experiments could be devised in whichtargets were randomly chosen from such a distribution, though this would tellus nothing about expected error in real domains. The experiments in Section 6were devised to check whether the assumptions within Theorems 1 and 2 wereappropriate for typical domains to which the ILP system Progol has been applied.Owing to limitations of time it was only feasible to test three such domains, forwhich the bounds held in all three cases. Further testing of domains is necessaryto determine whether the bounds hold on average for existing Progol datasets.Various researchers including [3, 6] have advocated and demonstrated the useof Bayesian analysis in machine learning. The success of the Bayesian solutionto learning from positive examples reinforces this trend.Several techniques [16, 17, 8] for learning from positive examples only havebeen investigated within Inductive Logic Programming. However, all these ap-proaches di�er from this paper in assuming some form of completeness withinthe example set.In the light of the results in this paper it would seem worth reconsideringthe degree of support that Gold's learnability results provide for Chomskian lin-guistics. Clearly, Chomsky's theory of innate linguistic ability is consistent withthe results in this paper. However, the results in this paper show that weakerassumptions concerning the innate properties of natural language can be madethan those that Gold's results might seem to suggest.AcknowledgementsThe author would like to thank David Haussler for in
uential discussions onthe topic of learning from positive examples. The author's investigations withDavid Haussler of PAC upper-bound results for learning from positive exampleswill be reported elsewhere. Many thanks are due to my wife, Thirza Castello-Cortes, who has shown me great support during the writing of this paper. Theauthor is grateful to Nick Chater of the Experimental Psychology Departmentin Oxford for pointing out the relevant literature on language learning in chil-dren. Thanks also for useful discussions on the topics in this paper with DonaldMichie, John McCarthy, Tony Hoare, David Page, Ashwin Srinivasan and JamesCussens. This work was supported partly by the Esprit Long Term ResearchAction ILP II (project 20237), EPSRC grant GR/J46623 on Experimental Ap-plication and Development of ILP, EPSRC grant GR/K57985 on Experiments15
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Error(H;T ) = DX (T nH) +DX(H n T ). The expected error of L after m exam-ples, EE(m), is at most 2:33+2ln mm .Proof. Consider the case in which T 2 Hn (case 1). Then by de�nitionL(E) = Hn(E) = H. Since H = Hn(E) has the maximum value of fm inHn it follows that DH(H) 1DX(H)!m � DH(T ) 1DX(T )!m : (1)Also DX(T \H) = DX (T )�DX(T nH) = DX(H) �DX (H n T ) and thereforeDX(H)�DX(T ) = DX(H n T )�DX(T nH): (2)Furthermore consider the case in which DX(H) > DX(T ) (case 1a). Rearranging(1) and taking logs we getm(ln DX(H)� ln DX (T )) � ln DH(H)� ln DH(T ): (3)Let r = ln DX(H)�ln DX(T )DX(H)�DX(T ) . We now show that for 0 � DX(T ) < DX(H) � 12 itis the case that r > 2. First note that r decreases monotonically in DX(T ) since@r@DX(T ) = 1DX(H)�DX(T )2 (ln DX (H)DX (T ) � DX(H)DX(T ) + 1) < 0for DX (H) > DX (T ). But as DX(T ) approaches 12 it also approaches DX (H) andlimDX(T )!DX(H) r = @@DX(T ) ln DX(T ) = 1DX(T ) = 2. Thus r > 2 for 0 � DX(T ) <DX(H) � 12 from which it follows that ln DX (H) � ln DX(T ) > 2(DX (H) �DX(T )). Combining this with (2) and (3) gives2m(DX(H n T )�DX(T nH)) � ln DH(H)� ln DH(T )and therefore DX(H n T ) � �ln DH(T )2m +DX (T nH): (4)Now consider the case in which DX(H) � DX(T ) (case 1b). From (2) it followsthat DX(H n T ) � DX(T nH). Thus (4) holds in both case 1a and case 1b, andtherefore from the de�nition of Error in the theorem for all of case 1 we getError(Hn(E); T ) � �ln DH(T )2m + 2DX (T nH): (5)Lastly consider the case in which T 62 Hn (case 2). In this case we have the trivialbound Error(H;T ) � 1: (6)18



We are now in a position to bound EE(m). First we de�ne T 1 = T and Tm =T � Tm�1. NowEE(m) = XT2HDH(T ) XE2TmDX(EjT )Error(L(E); T ):Splitting the sum into case 1 and case 2 and making use of (6) gives the following.EE(m) � XT2HnDH(T ) XE2TmDX(EjT )Error(Hn(E); T ) + XT2HnHnDH(T ):1But since DH(Hi) = ai2 ,XT2HnHnDH(T ) = 1Xi=n+1 ai2 � Z 1i=n ai2 = an:This together with (5) givesEE(m) � an + XT2HnDH(T ) XE2TmDX(EjT ) �ln DH(T )2m + 2DX(T nH)!= an � 12m XT2HnDH(T )ln DH(T )+2 XT2HnDH(T ) XE2TmDX(EjT )DX(T nH):But �12 XT2HnDH(T )ln DH(T ) � �12 1Xi=1 ai2 ln ( ai2 ) < 0:82:Letting �mn(�) = fE : E 2 Tm and DX(T nHn(E)) � �DX(T )g and rememberingthat DX(T nH) � DX(T ) � 12 givesXT2HnDH(T ) XE2TmDX(EjT )DX(T nH)= XT2HnDH(T ) XE2�mn(�)DX(EjT )DX(T nH)+ XT2HnDH(T ) XE2Tmn�mn(�)DX (EjT )DX(T nH)� �2 + XT2HnDH(T ) XE2Tmn�mn(�)DX(EjT )12= �2 + 12 XT2HnDH(T )Pr(for random E;DX(T nHn(E)) > �DX(T ))� �2 + Pr(9H 2 Hn:DX(T nH) > �DX(T ) and x1; ::; xm 2 (T \H))2� �+ n(1 � �)m2� �+ ne��m2 : 19



Thus EE(m) � an + 0:82m + �+ ne��m:Optimal values of n and � are found by successively setting to zero the partialderivatives of n; � and solving. This gives � = ln nmm and n = am. Substitutinggives EE(m) � 1 + 0:82 + 2ln m+ ln a+ 1m< 2:33 + 2ln mm :2Theorem 2 Expected error for positive and negative examples. Let X bea countable instance space and H � 2X be a countable hypothesis space containingat least all �nite subsets of X. Let DH, DX be probability distributions over H andX. Assume that H has an ordering H1;H2; : : : such that DH(Hi) � DH(Hj) forall j > i. Let DH(Hi) = ai2 where 1a = P1i=1 1i2 . Let Hn = fHi : Hi 2 H and i �ng. T is chosen randomly from DH. Let ex(x;H) = hx; vi where v = True ifx 2 H and v = False otherwise. Let E = hex(x1; T ); ::; ex(xm; T )i where eachxi is chosen randomly and independently from DX . HE = fx : hx;Truei in Eg.Hypothesis H is said to be consistent with E if and only if xi 2 H for eachhxi; T ruei in E and xj 62 H for each hxj; Falsei in E. Let f(H) = DH(H) andlet n = am. L is the following learning algorithm. If there are no hypothesesH 2 Hn consistent with E then L(E) = HE. Otherwise L(E) = Hn(E) = Honly if H 2 Hn, H consistent with E and for all H 0 2 Hn consistent with Eit is the case that f(H) � f(H 0). The error of an hypothesis H is de�ned asError(H;T ) = DX(T n H) + DX(H n T ). For n = am the expected error of Lafter m examples, EE(m), is at most 1:51+2ln mm .Proof. Let Tm = fhex(x1; T ); ::; ex(xm; T )i : xi 2 Tg. The expected error can bebounded in a similar way to that used in the proof of Theorem 1.EE(m) = XT2HDH(T ) XE2TmDX(EjT )Error(L(E); T )� XT2HnDH(T ) XE2TmDX(EjT )Error(Hn(E); T ) + XT2HnHnDH(T ):1� an + XT2HnDH(T ) XE2TmDX (EjT )Error(Hn(E); T )Letting �mn(�) = fE 0 : E 0 2 Tm and Error(Hn(E 0); T ) � �g givesXT2HnDH(T ) XE2TmDX(EjT )Error(Hn(E); T )= XT2HnDH(T ) XE2�mn(�)DX (EjT )Error(Hn(E); T )20



+ XT2HnDH(T ) XE2Tmn�mn(�)DX(EjT )Error(Hn(E); T )� �+ Pr(9H 2 Hn:Error(H;T ) > � and x1; ::; xm 2 (T \H))� �+ n(1� �)m� �+ ne��mThus EE(m) � an + �+ ne��mAgain optimal values of n and � are found by successively setting to zero the partialderivatives of n; � and solving. This gives � = ln nmm and n = am. Substitutinggives EE(m) � 1 + 2ln m+ ln a+ 1m< 1:51 + 2ln mm :2
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