#### CS 391L: Machine Learning Clustering

# Raymond J. Mooney University of Texas at Austin

# Clustering

- Partition unlabeled examples into disjoint subsets of *clusters*, such that:
  - Examples within a cluster are very similar
  - Examples in different clusters are very different
- Discover new categories in an *unsupervised* manner (no sample category labels provided).

# **Clustering Example**



# Hierarchical Clustering

• Build a tree-based hierarchical taxonomy (*dendrogram*) from a set of unlabeled examples.



• Recursive application of a standard clustering algorithm can produce a hierarchical clustering.

# Aglommerative vs. Divisive Clustering

- *Aglommerative* (*bottom-up*) methods start with each example in its own cluster and iteratively combine them to form larger and larger clusters.
- *Divisive* (*partitional, top-down*) separate all examples immediately into clusters.

# **Direct Clustering Method**

- *Direct clustering* methods require a specification of the number of clusters, *k*, desired.
- A *clustering evaluation function* assigns a real-value quality measure to a clustering.
- The number of clusters can be determined automatically by explicitly generating clusterings for multiple values of *k* and choosing the best result according to a clustering evaluation function.

# Hierarchical Agglomerative Clustering (HAC)

- Assumes a *similarity function* for determining the similarity of two instances.
- Starts with all instances in a separate cluster and then repeatedly joins the two clusters that are most similar until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.

#### HAC Algorithm

Start with all instances in their own cluster. Until there is only one cluster:

Among the current clusters, determine the two clusters,  $c_i$  and  $c_j$ , that are most similar. Replace  $c_i$  and  $c_j$  with a single cluster  $c_i \cup c_j$ 

# **Cluster Similarity**

• Assume a similarity function that determines the similarity of two instances: *sim*(*x*,*y*).

- Cosine similarity of document vectors.

- How to compute similarity of two clusters each possibly containing multiple instances?
  - Single Link: Similarity of two most similar members.
  - Complete Link: Similarity of two least similar members.
  - Group Average: Average similarity between members.

#### Single Link Agglomerative Clustering

- Use maximum similarity of pairs:  $sim(c_i, c_j) = \max_{x \in c_i, y \in c_j} sim(x, y)$
- Can result in "straggly" (long and thin) clusters due to *chaining effect*.
  - Appropriate in some domains, such as clustering islands.

#### Single Link Example



# Complete Link Agglomerative Clustering

- Use minimum similarity of pairs:  $sim(c_i,c_j) = \min_{x \in c_i, y \in c_j} sim(x,y)$
- Makes more "tight," spherical clusters that are typically preferable.

#### Complete Link Example



# **Computational Complexity**

- In the first iteration, all HAC methods need to compute similarity of all pairs of n individual instances which is  $O(n^2)$ .
- In each of the subsequent *n*-2 merging iterations, it must compute the distance between the most recently created cluster and all other existing clusters.
- In order to maintain an overall O(n<sup>2</sup>) performance, computing similarity to each other cluster must be done in constant time.

## **Computing Cluster Similarity**

- After merging c<sub>i</sub> and c<sub>j</sub>, the similarity of the resulting cluster to any other cluster, c<sub>k</sub>, can be computed by:
  - Single Link:

 $sim((c_i \cup c_j), c_k) = max(sim(c_i, c_k), sim(c_j, c_k))$ - Complete Link:

 $sim((c_i \cup c_j), c_k) = \min(sim(c_i, c_k), sim(c_j, c_k))$ 

# Group Average Agglomerative Clustering

• Use average similarity across all pairs within the merged cluster to measure the similarity of two clusters.

$$sim(c_{i}, c_{j}) = \frac{1}{|c_{i} \cup c_{j}|(|c_{i} \cup c_{j}| - 1)} \sum_{\vec{x} \in (c_{i} \cup c_{j})} \sum_{\vec{y} \in (c_{i} \cup c_{j}): \vec{y} \neq \vec{x}} sim(\vec{x}, \vec{y})$$

- Compromise between single and complete link.
- Averaged across all ordered pairs in the merged cluster instead of unordered pairs *between* the two clusters to encourage tight clusters.

# Computing Group Average Similarity

- Assume cosine similarity and normalized vectors with unit length.
- Always maintain sum of vectors in each cluster.

$$\vec{s}(c_j) = \sum_{\vec{x} \in c_j} \vec{x}$$

• Compute similarity of clusters in constant time:

$$sim(c_i, c_j) = \frac{(\dot{s}(c_i) + \dot{s}(c_j)) \bullet (\dot{s}(c_i) + \dot{s}(c_j)) - (|c_i| + |c_j|)}{(|c_i| + |c_j|)(|c_i| + |c_j| - 1)}$$

# Non-Hierarchical Clustering

- Typically must provide the number of desired clusters, *k*.
- Randomly choose *k* instances as *seeds*, one per cluster.
- Form initial clusters based on these seeds.
- Iterate, repeatedly reallocating instances to different clusters to improve the overall clustering.
- Stop when clustering converges or after a fixed number of iterations.

#### **K-Means**

- Assumes instances are real-valued vectors.
- Clusters based on *centroids*, *center of gravity*, or mean of points in a cluster, *c*:

$$\vec{\mu}(c) = \frac{1}{|c|} \sum_{\vec{x} \in c} \vec{x}$$

• Reassignment of instances to clusters is based on distance to the current cluster centroids.

#### **Distance Metrics**

• Euclidian distance (L<sub>2</sub> norm):  $L_2(\vec{x}, \vec{y}) = \sum_{i=1}^m (x_i - y_i)^2$ 

# • L<sub>1</sub> norm: $L_1(\vec{x}, \vec{y}) = \sum_{i=1}^m |x_i - y_i|$

• Cosine Similarity (transform to a distance by subtracting from 1):

$$1 - \frac{\vec{x} \cdot \vec{y}}{|\vec{x}| \cdot |\vec{y}|}$$

#### **K-Means Algorithm**

Let *d* be the distance measure between instances. Select *k* random instances  $\{s_1, s_2, \dots, s_k\}$  as seeds. Until clustering converges or other stopping criterion: For each instance  $x_i$ :

Assign  $x_i$  to the cluster  $c_j$  such that  $d(x_i, s_j)$  is minimal. (Update the seeds to the centroid of each cluster) For each cluster  $c_j$ 

 $s_j = \mu(c_j)$ 

# K Means Example (K=2)



Pick seeds
Reassign clusters
Compute centroids
Reassign clusters
Compute centroids
Reassign clusters

Converged!

# Time Complexity

- Assume computing distance between two instances is O(m) where m is the dimensionality of the vectors.
- Reassigning clusters: O(*kn*) distance computations, or O(*knm*).
- Computing centroids: Each instance vector gets added once to some centroid: O(*nm*).
- Assume these two steps are each done once for *I* iterations: O(*Iknm*).
- Linear in all relevant factors, assuming a fixed number of iterations, more efficient than  $O(n^2)$  HAC.

#### K-Means Objective

• The objective of k-means is to minimize the total sum of the squared distance of every point to its corresponding cluster centroid.

$$\sum_{l=1}^{K} \sum_{x_i \in X_l} \left\| x_i - \mu_l \right\|^2$$

- Finding the global optimum is NP-hard.
- The k-means algorithm is guaranteed to converge a local optimum.

#### Seed Choice

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings.
- Select good seeds using a heuristic or the results of another method.

# **Buckshot Algorithm**

- Combines HAC and K-Means clustering.
- First randomly take a sample of instances of size  $\sqrt{n}$
- Run group-average HAC on this sample, which takes only O(*n*) time.
- Use the results of HAC as initial seeds for K-means.
- Overall algorithm is O(*n*) and avoids problems of bad seed selection.

# Text Clustering

- HAC and K-Means have been applied to text in a straightforward way.
- Typically use *normalized*, TF/IDF-weighted vectors and cosine similarity.
- Optimize computations for sparse vectors.
- Applications:
  - During retrieval, add other documents in the same cluster as the initial retrieved documents to improve recall.
  - Clustering of results of retrieval to present more organized results to the user (à la Northernlight folders).
  - Automated production of hierarchical taxonomies of documents for browsing purposes (à la Yahoo & DMOZ).

# Soft Clustering

- Clustering typically assumes that each instance is given a "hard" assignment to exactly one cluster.
- Does not allow uncertainty in class membership or for an instance to belong to more than one cluster.
- *Soft clustering* gives probabilities that an instance belongs to each of a set of clusters.
- Each instance is assigned a probability distribution across a set of discovered categories (probabilities of all categories must sum to 1).

## Expectation Maximumization (EM)

- Probabilistic method for soft clustering.
- Direct method that assumes k clusters:  $\{c_1, c_2, \dots, c_k\}$
- Soft version of *k*-means.
- Assumes a probabilistic model of categories that allows computing  $P(c_i | E)$  for each category,  $c_i$ , for a given example, E.
- For text, typically assume a naïve-Bayes category model.

- Parameters  $\theta = \{ P(c_i), P(w_i \mid c_i) : i \in \{1, \dots, k\}, j \in \{1, \dots, |V|\} \}$ 

# EM Algorithm

- Iterative method for learning probabilistic categorization model from unsupervised data.
- Initially assume random assignment of examples to categories.
- Learn an initial probabilistic model by estimating model parameters  $\theta$  from this randomly labeled data.
- Iterate following two steps until convergence:
  - Expectation (E-step): Compute  $P(c_i | E)$  for each example given the current model, and probabilistically re-label the examples based on these posterior probability estimates.
  - Maximization (M-step): Re-estimate the model parameters,  $\theta$ , from the probabilistically re-labeled data.

#### EM

#### Initialize:

#### Assign random probabilistic labels to unlabeled data

Unlabeled Examples

| + | - |
|---|---|
| + | - |
| + | - |
| Ŧ | - |
| + |   |







#### EM

#### M step: Retrain classifier on relabeled data



| + | - |
|---|---|
| + | - |
| + | ŀ |
| + | - |
| + | - |

Continue EM iterations until probabilistic labels on unlabeled data converge.

#### Learning from Probabilistically Labeled Data

- Instead of training data labeled with "hard" category labels, training data is labeled with "soft" probabilistic category labels.
- When estimating model parameters θ from training data, weight counts by the corresponding probability of the given category label.
- For example, if  $P(c_1 | E) = 0.8$  and  $P(c_2 | E) = 0.2$ , each word  $w_j$  in E contributes only 0.8 towards the counts  $n_1$  and  $n_{1j}$ , and 0.2 towards the counts  $n_2$  and  $n_{2j}$ .

#### Naïve Bayes EM

Randomly assign examples probabilistic category labels. Use standard naïve-Bayes training to learn a probabilistic model with parameters  $\theta$  from the labeled data. Until convergence or until maximum number of iterations reached: **E-Step**: Use the naïve Bayes model  $\theta$  to compute  $P(c_i | E)$  for each category and example, and re-label each example using these probability values as soft category labels. **M-Step**: Use standard naïve-Bayes training to re-estimate the parameters  $\theta$  using these new probabilistic category labels.

# Semi-Supervised Learning

- For supervised categorization, generating labeled training data is expensive.
- Idea: Use unlabeled data to aid supervised categorization.
- Use EM in a *semi-supervised* mode by training EM on both labeled and unlabeled data.
  - Train initial probabilistic model on user-labeled subset of data instead of randomly labeled unsupervised data.
  - Labels of user-labeled examples are "frozen" and never relabeled during EM iterations.
  - Labels of unsupervised data are constantly probabilistically relabeled by EM.











# Continue retraining iterations until probabilistic labels on unlabeled data converge.

# Semi-Supervised EM Results

- Experiments on assigning messages from 20 Usenet newsgroups their proper newsgroup label.
- With very few labeled examples (2 examples per class), semi-supervised EM significantly improved predictive accuracy:
  - 27% with 40 labeled messages only.
  - -43% with 40 labeled + 10,000 unlabeled messages.
- With more labeled examples, semi-supervision can actually decrease accuracy, but refinements to standard EM can help prevent this.
  - Must weight labeled data appropriately more than unlabeled data.
- For semi-supervised EM to work, the "natural clustering of data" must be consistent with the desired categories
  - Failed when applied to English POS tagging (Merialdo, 1994)

# Semi-Supervised EM Example

- Assume "Catholic" is present in both of the labeled documents for soc.religion.christian, but "Baptist" occurs in *none* of the *labeled* data for this class.
- From labeled data, we learn that "Catholic" is highly indicative of the "Christian" category.
- When labeling unsupervised data, we label several documents with "Catholic" *and* "Baptist" correctly with the "Christian" category.
- When retraining, we learn that "Baptist" is also indicative of a "Christian" document.
- Final learned model is able to correctly assign documents containing *only* "Baptist" to "Christian".

# Issues in Unsupervised Learning

- How to evaluate clustering?
  - Internal:
    - Tightness and separation of clusters (e.g. k-means objective)
    - Fit of probabilistic model to data
  - External
    - Compare to known class labels on benchmark data
- Improving search to converge faster and avoid local minima.
- Overlapping clustering.
- Ensemble clustering.
- Clustering structured relational data.
- Semi-supervised methods other than EM:
  - Co-training
  - Transductive SVM's
  - Semi-supervised clustering (must-link, cannot-link)

## Conclusions

- Unsupervised learning induces categories from unlabeled data.
- There are a variety of approaches, including:
   HAC
  - k-means
  - -EM
- Semi-supervised learning uses both labeled and unlabeled data to improve results.