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ClusteringClustering

• Partition unlabeled examples into disjoint • Partition unlabeled examples into disjoint 

subsets of clusters, such that:subsets of clusters, such that:

– Examples within a cluster are very similar

– Examples in different clusters are very different– Examples in different clusters are very different

• Discover new categories in an unsupervised• Discover new categories in an unsupervised

manner (no sample category labels provided).
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Clustering ExampleClustering Example
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Hierarchical ClusteringHierarchical Clustering

• Build a tree-based hierarchical taxonomy • Build a tree-based hierarchical taxonomy 

(dendrogram) from a set of unlabeled examples.
animal

vertebrate invertebratevertebrate

fish reptile amphib. mammal      worm insect crustacean

invertebrate

• Recursive application of a standard clustering • Recursive application of a standard clustering 

algorithm can produce a hierarchical clustering.
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Aglommerative vs. Divisive ClusteringAglommerative vs. Divisive Clustering

• Aglommerative (bottom-up) methods start • Aglommerative (bottom-up) methods start 

with each example in its own cluster and with each example in its own cluster and 

iteratively combine them to form larger and 

larger clusters.larger clusters.

• Divisive (partitional, top-down) separate all • Divisive (partitional, top-down) separate all 

examples immediately into clusters.
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Direct Clustering MethodDirect Clustering Method

• Direct clustering methods require a • Direct clustering methods require a 
specification of the number of clusters, k, 
desired.
specification of the number of clusters, k, 
desired.

• A clustering evaluation function assigns a • A clustering evaluation function assigns a 
real-value quality measure to a clustering.

• The number of clusters can be determined • The number of clusters can be determined 
automatically by explicitly generating automatically by explicitly generating 
clusterings for multiple values of k and 
choosing the best result according to a choosing the best result according to a 
clustering evaluation function.
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Hierarchical Agglomerative Clustering 
(HAC)

• Assumes a similarity function for determining • Assumes a similarity function for determining 

the similarity of two instances.the similarity of two instances.

• Starts with all instances in a separate cluster 

and then repeatedly joins the two clusters that and then repeatedly joins the two clusters that 

are most similar until there is only one cluster.are most similar until there is only one cluster.

• The history of merging forms a binary tree or 

hierarchy.hierarchy.
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HAC AlgorithmHAC Algorithm

Start with all instances in their own cluster.Start with all instances in their own cluster.

Until there is only one cluster:Until there is only one cluster:

Among the current clusters, determine the two 

clusters, ci and cj, that are most similar.clusters, ci and cj, that are most similar.

Replace ci and cj with a single cluster ci ∪ cj
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Cluster SimilarityCluster Similarity

• Assume a similarity function that determines the • Assume a similarity function that determines the 

similarity of two instances: sim(x,y).

– Cosine similarity of document vectors.

• How to compute similarity of two clusters each • How to compute similarity of two clusters each 

possibly containing multiple instances?

– Single Link: Similarity of two most similar members.– Single Link: Similarity of two most similar members.

– Complete Link: Similarity of two least similar members.

– Group Average: Average similarity between members.
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Single Link Agglomerative ClusteringSingle Link Agglomerative Clustering

• Use maximum similarity of pairs:• Use maximum similarity of pairs:
),(max),( yxsimccsim ji ∈∈

= ),(max),(
,

yxsimccsim
ji cycx

ji ∈∈
=

• Can result in “straggly” (long and thin) 

clusters due to chaining effect.clusters due to chaining effect.

– Appropriate in some domains, such as – Appropriate in some domains, such as 

clustering islands. 
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Single Link ExampleSingle Link Example
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Complete Link Agglomerative ClusteringComplete Link Agglomerative Clustering

• Use minimum similarity of pairs:• Use minimum similarity of pairs:

),(min),( yxsimccsim ji = ),(min),(
,

yxsimccsim
ji cycx

ji ∈∈
=

• Makes more “tight,” spherical clusters that 

are typically preferable.are typically preferable.
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Complete Link ExampleComplete Link Example
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Computational ComplexityComputational Complexity

• In the first iteration, all HAC methods need • In the first iteration, all HAC methods need 
to compute similarity of all pairs of n 
individual instances which is O(n2).
to compute similarity of all pairs of n 
individual instances which is O(n2).

• In each of the subsequent n−2 merging • In each of the subsequent n−2 merging 
iterations, it must compute the distance 
between the most recently created cluster between the most recently created cluster 
and all other existing clusters.and all other existing clusters.

• In order to maintain an overall O(n2) 
performance, computing similarity to each performance, computing similarity to each 
other cluster must be done in constant time.
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Computing Cluster SimilarityComputing Cluster Similarity

• After merging c and c , the similarity of the • After merging ci and cj, the similarity of the 

resulting cluster to any other cluster, ck, can resulting cluster to any other cluster, ck, can 

be computed by:

– Single Link:– Single Link:

)),(),,(max()),(( kjkikji ccsimccsimcccsim =∪
– Complete Link:

)),(),,(max()),(( kjkikji ccsimccsimcccsim =∪

)),(),,(min()),(( ccsimccsimcccsim =∪ )),(),,(min()),(( kjkikji ccsimccsimcccsim =∪
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Group Average Agglomerative ClusteringGroup Average Agglomerative Clustering

• Use average similarity across all pairs within the • Use average similarity across all pairs within the 

merged cluster to measure the similarity of two 

clusters.
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• Compromise between single and complete link.

• Averaged across all ordered pairs in the merged • Averaged across all ordered pairs in the merged 

cluster instead of unordered pairs between the two 

clusters to encourage tight clusters.clusters to encourage tight clusters.
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Computing Group Average SimilarityComputing Group Average Similarity

• Assume cosine similarity and normalized • Assume cosine similarity and normalized 

vectors with unit length.vectors with unit length.

• Always maintain sum of vectors in each 

cluster.cluster.

∑=j xcs
r

rr
)(

• Compute similarity of clusters in constant 

∑
∈

=
jcx

j xcs
r

)(

• Compute similarity of clusters in constant 

time:
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Non-Hierarchical ClusteringNon-Hierarchical Clustering

• Typically must provide the number of desired • Typically must provide the number of desired 

clusters, k.

• Randomly choose k instances as seeds, one per 

cluster.  cluster.  

• Form initial clusters based on these seeds.

• Iterate, repeatedly reallocating instances to 

different clusters to improve the overall clustering.different clusters to improve the overall clustering.

• Stop when clustering converges or after a fixed 

number of iterations. number of iterations. 
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K-MeansK-Means

• Assumes instances are real-valued vectors.• Assumes instances are real-valued vectors.

• Clusters based on centroids, center of • Clusters based on centroids, center of 

gravity, or mean of points in a cluster, c:

∑
∈

=
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x
c r

rr

||
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• Reassignment of instances to clusters is 

∑
∈cxc r||

• Reassignment of instances to clusters is 

based on distance to the current cluster 

centroids.centroids.
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Distance MetricsDistance Metrics

• Euclidian distance (L norm):• Euclidian distance (L2 norm):
2
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• L1 norm:

• Cosine Similarity (transform to a distance 
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• Cosine Similarity (transform to a distance 

by subtracting from 1):by subtracting from 1):
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K-Means AlgorithmK-Means Algorithm

Let d be the distance measure between instances.

Select k random instances {s , s ,… s } as seeds.Select k random instances {s1, s2,… sk} as seeds.

Until clustering converges or other stopping criterion:

For each instance x :For each instance xi:

Assign xi to the cluster cj such that d(xi, sj) is minimal.Assign xi to the cluster cj such that d(xi, sj) is minimal.

(Update the seeds to the centroid of each cluster)

For each cluster cjFor each cluster cj

sj = µ(cj) 
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K Means Example
(K=2)

Pick seeds

Reassign clustersReassign clusters

Compute centroids

Reasssign clusters

x

x

Reasssign clusters

x

x xx Compute centroids
xx

Reassign clusters

Converged!Converged!
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Time ComplexityTime Complexity

• Assume computing distance between two instances is • Assume computing distance between two instances is 
O(m) where m is the dimensionality of the vectors.

• Reassigning clusters: O(kn) distance computations, • Reassigning clusters: O(kn) distance computations, 
or O(knm).

• Computing centroids: Each instance vector gets 
added once to some centroid: O(nm).added once to some centroid: O(nm).

• Assume these two steps are each done once for I
iterations:  O(Iknm).iterations:  O(Iknm).

• Linear in all relevant factors, assuming a fixed 
number of iterations, more efficient than O(n2) HAC.number of iterations, more efficient than O(n2) HAC.
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K-Means ObjectiveK-Means Objective

• The objective of k-means is to minimize the • The objective of k-means is to minimize the 

total sum of the squared distance of every total sum of the squared distance of every 

point to its corresponding cluster centroid.
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• Finding the global optimum is NP-hard.• Finding the global optimum is NP-hard.

• The k-means algorithm is guaranteed to 

converge a local optimum.

24



Seed ChoiceSeed Choice

• Results can vary based on random seed • Results can vary based on random seed 

selection.selection.

• Some seeds can result in poor convergence 

rate, or convergence to sub-optimal rate, or convergence to sub-optimal 

clusterings.clusterings.

• Select good seeds using a heuristic or the 

results of another method.results of another method.

25



Buckshot AlgorithmBuckshot Algorithm

• Combines HAC and K-Means clustering.• Combines HAC and K-Means clustering.

• First randomly take a sample of instances of • First randomly take a sample of instances of 
size √n

• Run group-average HAC on this sample, • Run group-average HAC on this sample, 
which takes only O(n) time.

• Use the results of HAC as initial seeds for 
K-means.K-means.

• Overall algorithm is O(n) and avoids 
problems of bad seed selection.problems of bad seed selection.
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Text ClusteringText Clustering

• HAC and K-Means have been applied to text in a • HAC and K-Means have been applied to text in a 
straightforward way.

• Typically use normalized, TF/IDF-weighted vectors • Typically use normalized, TF/IDF-weighted vectors 
and cosine similarity.

• Optimize computations for sparse vectors.

• Applications:• Applications:

– During retrieval, add other documents in the same cluster 
as the initial retrieved documents to improve recall.as the initial retrieved documents to improve recall.

– Clustering of results of retrieval to present more organized 
results to the user (à la Northernlight folders).results to the user (à la Northernlight folders).

– Automated production of hierarchical taxonomies of 
documents for browsing purposes (à la Yahoo & DMOZ).
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Soft ClusteringSoft Clustering

• Clustering typically assumes that each instance is • Clustering typically assumes that each instance is 

given a “hard” assignment to exactly one cluster.

• Does not allow uncertainty in class membership or 

for an instance to belong to more than one cluster.for an instance to belong to more than one cluster.

• Soft clustering gives probabilities that an instance 

belongs to each of a set of clusters.belongs to each of a set of clusters.

• Each instance is assigned a probability distribution • Each instance is assigned a probability distribution 

across a set of discovered categories (probabilities 

of all categories must sum to 1).of all categories must sum to 1).
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Expectation Maximumization (EM)Expectation Maximumization (EM)

• Probabilistic method for soft clustering.• Probabilistic method for soft clustering.

• Direct method that assumes k clusters:{c1, c2,… ck} • Direct method that assumes k clusters:{c1, c2,… ck} 

• Soft version of k-means.

• Assumes a probabilistic model of categories that • Assumes a probabilistic model of categories that 

allows computing P(ci | E) for each category, ci, for a i i

given example, E.

• For text, typically assume a naïve-Bayes category • For text, typically assume a naïve-Bayes category 

model.

– Parameters θ = {P(c ), P(w | c ): i∈{1,…k}, j ∈{1,…,|V|}}– Parameters θ = {P(ci), P(wj | ci): i∈{1,…k}, j ∈{1,…,|V|}}
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EM AlgorithmEM Algorithm

• Iterative method for learning probabilistic • Iterative method for learning probabilistic 
categorization model from unsupervised data.

• Initially assume random assignment of examples to • Initially assume random assignment of examples to 
categories.

• Learn an initial probabilistic model by estimating 
model parameters θ from this randomly labeled data.model parameters θ from this randomly labeled data.

• Iterate following two steps until convergence:

– Expectation (E-step): Compute P(c | E) for each example – Expectation (E-step): Compute P(ci | E) for each example 
given the current model, and probabilistically re-label the 
examples based on these posterior probability estimates.examples based on these posterior probability estimates.

– Maximization (M-step): Re-estimate the model 
parameters, θ, from the probabilistically re-labeled data.
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EMEM

Initialize:

Assign random probabilistic labels to unlabeled data

Initialize:

Unlabeled Examples

+ −−−−

+ −−−−

+ −−−−

+ −−−−

+ −−−−

−−−−+

+ −−−−
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EMEM

Initialize:

Give soft-labeled training data to a probabilistic learner

Initialize:

Prob. 
+ −−−−

+ −−−−

Prob. 

Learner

+ −−−−

+ −−−−

+ −−−−

−−−−+

+ −−−−
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EMEM

Initialize:

Produce a probabilistic classifier

Initialize:

Prob. Prob.
+ −−−−

+ −−−−

Prob. 

Learner

Prob.

Classifier

+ −−−−

+ −−−−

+ −−−−

−−−−+

+ −−−−
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EMEM

E Step:

Relabel unlabled data using the trained classifier

E Step:

Prob. Prob. −−−−

+ −−−−

Prob. 

Learner

Prob.

Classifier

+ −−−−

+ −−−−

+ −−−−

−−−−+

+ −−−−
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EMEM

M step:

Retrain classifier on relabeled data

M step:

Prob. −−−−

+ −−−−

Prob. 

Learner

+ −−−−

+ −−−−

+ −−−−

−−−−+

Prob.

Classifier

+ −−−−

Continue EM iterations until probabilistic labels 

on unlabeled data converge.
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Learning from Probabilistically Labeled Data Learning from Probabilistically Labeled Data 

• Instead of training data labeled with “hard” • Instead of training data labeled with “hard” 

category labels, training data is labeled with “soft” 

probabilistic category labels.

• When estimating model parameters θ from training • When estimating model parameters θ from training 

data, weight counts by the corresponding 

probability of the given category label.probability of the given category label.

• For example, if P(c1 | E) = 0.8 and P(c2 | E) = 0.2,        1 2

each word wj in E contributes only 0.8 towards the 

counts n1 and n1j, and 0.2 towards the counts n2 and counts n1 and n1j, and 0.2 towards the counts n2 and 

n2j .
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Naïve Bayes EMNaïve Bayes EM

Randomly assign examples probabilistic category labels.Randomly assign examples probabilistic category labels.

Use standard naïve-Bayes training to learn a probabilistic model 

with parameters θ from the labeled data.with parameters θ from the labeled data.

Until convergence or until maximum number of iterations reached:

E-Step: Use the naïve Bayes model θ to compute P(ci | E) forE-Step: Use the naïve Bayes model θ to compute P(ci | E) for

each category and example, and re-label each example 

using these probability values as soft category labels.using these probability values as soft category labels.

M-Step: Use standard naïve-Bayes training to re-estimate the 

parameters θ using these new probabilistic category labels.
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Semi-Supervised LearningSemi-Supervised Learning

• For supervised categorization, generating labeled • For supervised categorization, generating labeled 
training data is expensive.

• Idea: Use unlabeled data to aid supervised • Idea: Use unlabeled data to aid supervised 
categorization.

• Use EM in a semi-supervised mode by training 
EM on both labeled and unlabeled data.EM on both labeled and unlabeled data.

– Train initial probabilistic model on user-labeled subset 
of data instead of randomly labeled unsupervised data. of data instead of randomly labeled unsupervised data. 

– Labels of user-labeled examples are “frozen” and never 
relabeled during EM iterations.relabeled during EM iterations.

– Labels of unsupervised data are constantly 
probabilistically relabeled by EM.
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Semi-Supervised EMSemi-Supervised EM

Training Examples

+

Unlabeled Examples

Prob. Prob. −−−−

+ −−−−

-
-
+

+
+

Prob. 

Learner

Prob.

Classifier

+ −−−−

+ −−−−

+ −−−−

−−−−+

+ + −−−−
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Semi-Supervised EMSemi-Supervised EM

Training Examples

+

Prob. −−−−

+ −−−−

-
-
+

+
+

Prob. 

Learner

+ −−−−

+ −−−−

+ −−−−

−−−−+

Prob.

Classifier

+ + −−−−
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Semi-Supervised EMSemi-Supervised EM

Training Examples

+

Prob. 
-
-
+

+
+

Prob. 

Learner

Prob.

Classifier

+

+ −−−−

+ −−−−

−−−−+

+ −−−−

+ −−−−

−−−−+
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Semi-Supervised EMSemi-Supervised EM

Training Examples

+

Unlabeled Examples

Prob. Prob. −−−−

+ −−−−

-
-
+

+
+

Prob. 

Learner

Prob.

Classifier

+ −−−−

+ −−−−

+ −−−−

−−−−+

+ + −−−−
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Semi-Supervised EMSemi-Supervised EM

Training Examples

+

Prob. −−−−

+ −−−−

-
-
+

+
+

Prob. 

Learner

+ −−−−

+ −−−−

+ −−−−

−−−−+

Prob.

Classifier

+ + −−−−

Continue retraining iterations until probabilistic 

labels on unlabeled data converge.
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Semi-Supervised EM ResultsSemi-Supervised EM Results

• Experiments on assigning messages from 20 Usenet • Experiments on assigning messages from 20 Usenet 
newsgroups their proper newsgroup label.

• With very few labeled examples (2 examples per class), • With very few labeled examples (2 examples per class), 
semi-supervised EM significantly improved predictive 
accuracy:accuracy:

– 27%  with 40 labeled messages only.

– 43%  with 40 labeled  + 10,000 unlabeled messages.

• With more labeled examples, semi-supervision can 
actually decrease accuracy, but refinements to standard 
EM can help prevent this.EM can help prevent this.

– Must weight labeled data appropriately more than unlabeled data.

• For semi-supervised EM to work, the “natural clustering of • For semi-supervised EM to work, the “natural clustering of 
data” must be consistent with the desired categories

– Failed when applied to English POS tagging (Merialdo, 1994)
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Semi-Supervised EM ExampleSemi-Supervised EM Example

• Assume “Catholic” is present in both of the labeled • Assume “Catholic” is present in both of the labeled 
documents for soc.religion.christian, but “Baptist” 
occurs in none of the labeled data for this class.occurs in none of the labeled data for this class.

• From labeled data, we learn that “Catholic” is highly 
indicative of the “Christian” category.indicative of the “Christian” category.

• When labeling unsupervised data, we label several • When labeling unsupervised data, we label several 
documents with “Catholic” and “Baptist” correctly 
with the “Christian” category.with the “Christian” category.

• When retraining, we learn that “Baptist” is also 
indicative of a “Christian” document.indicative of a “Christian” document.

• Final learned model is able to correctly assign 
documents containing only “Baptist” to “Christian”.
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documents containing only “Baptist” to “Christian”.



Issues in Unsupervised LearningIssues in Unsupervised Learning

• How to evaluate clustering?• How to evaluate clustering?

– Internal: 

• Tightness and separation of clusters (e.g. k-means objective)• Tightness and separation of clusters (e.g. k-means objective)

• Fit of probabilistic model to data

– External

• Compare to known class labels on benchmark data

• Improving search to converge faster and avoid local minima.

• Overlapping clustering.• Overlapping clustering.

• Ensemble clustering.

• Clustering structured relational data.

• Semi-supervised methods other than EM:

– Co-training

– Transductive SVM’s

– Semi-supervised clustering (must-link, cannot-link)
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ConclusionsConclusions

• Unsupervised learning induces categories • Unsupervised learning induces categories 

from unlabeled data.from unlabeled data.

• There are a variety of approaches, including:

– HAC

– k-means– k-means

– EM

• Semi-supervised learning uses both labeled 

and unlabeled data to improve results.and unlabeled data to improve results.
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