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Classification (Categorization)

• Given:

– A description of an instance, x X, where X is the 

instance language or instance space.

– A fixed set of categories: C={c1, c2,…cn}

• Determine:

– The category of x: c(x) C, where c(x) is a 

categorization function whose domain is X and whose 

range is C.

– If c(x) is a binary function C={0,1} ({true,false}, 

{positive, negative}) then it is called a concept.
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Learning for Categorization

• A training example is an instance x X, 

paired with its correct category c(x):         

<x, c(x)> for an unknown categorization 

function, c. 

• Given a set of training examples, D.

• Find a hypothesized categorization function, 

h(x), such that:

)()(: )(, xcxhDxcx
Consistency
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Sample Category Learning Problem

• Instance language: <size, color, shape>

– size {small, medium, large}

– color {red, blue, green}

– shape {square, circle, triangle}

• C = {positive, negative}

• D:
Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative
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Hypothesis Selection

• Many hypotheses are usually consistent with 

the training data.

– red & circle

– (small & circle) or (large & red) 

– (small & red & circle) or (large & red & circle)

• Bias

– Any criteria other than consistency with the 

training data that is used to select a hypothesis.
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Generalization

• Hypotheses must generalize to correctly 

classify instances not in the training data.

• Simply memorizing training examples is a 

consistent hypothesis that does not 

generalize. But …

• Occam’s razor:

– Finding a simple hypothesis helps ensure 

generalization.
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Hypothesis Space

• Restrict learned functions a priori to a given hypothesis 
space, H, of functions h(x) that can be considered as 
definitions of c(x).

• For learning concepts on instances described by n discrete-
valued features, consider the space of conjunctive 
hypotheses represented by a vector of n constraints

<c1, c2, … cn> where each ci is either:
– ?, a wild card indicating no constraint on the ith feature

– A specific value from the domain of the ith feature

– Ø indicating no value is acceptable

• Sample conjunctive hypotheses are
– <big, red, ?>

– <?, ?, ?> (most general hypothesis)

– < Ø, Ø, Ø> (most specific hypothesis)
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Inductive Learning Hypothesis

• Any function that is found to approximate the target 
concept well on a sufficiently large set of training 
examples will also approximate the target function well on 
unobserved examples.

• Assumes that the training and test examples are drawn 
independently from the same underlying distribution.

• This is a fundamentally unprovable hypothesis unless 
additional assumptions are made about the target concept 
and the notion of “approximating the target function well 
on unobserved examples” is defined appropriately (cf. 
computational learning theory).
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Evaluation of Classification Learning

• Classification accuracy (% of instances classified 

correctly).

– Measured on an independent test data.

• Training time (efficiency of training algorithm).

• Complexity of the hypotthesis that has been 

learned

• Testing time (efficiency of subsequent 

classification).
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Category Learning as Search

• Category learning can be viewed as searching the 
hypothesis space for one (or more) hypotheses that are 
consistent with the training data.

• Consider an instance space consisting of n binary features 
which therefore has 2n instances.

• For conjunctive hypotheses, there are 4 choices for each 
feature: Ø, T, F, ?, so there are 4n syntactically distinct 
hypotheses.

• However, all hypotheses with 1 or more Øs are equivalent, 
so there are 3n+1 semantically distinct hypotheses.

• The target binary categorization function in principle could 
be any of the possible 22^n functions on n input bits.

• Therefore, conjunctive hypotheses are a small subset of the 
space of possible functions, but both are intractably large.

• All reasonable hypothesis spaces are intractably large or 
even infinite.
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Learning by Enumeration

• For any finite or countably infinite hypothesis 
space, one can simply enumerate and test 
hypotheses one at a time until a consistent one is 
found.

For each h in H do:  

If h is consistent with the training data D,

then terminate and return h.

• This algorithm is guaranteed to terminate with a 
consistent hypothesis if one exists; however, it is 
obviously computationally intractable for almost 
any practical problem.
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Efficient Learning

• Is there a way to learn conjunctive concepts 
without enumerating them?

• How do human subjects learn conjunctive 
concepts?

• Is there a way to efficiently find an 
unconstrained boolean function consistent 
with a set of discrete-valued training 
instances?

• If so, is it a useful/practical algorithm?
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Conjunctive Rule Learning

• Conjunctive descriptions are easily learned by finding 
all commonalities shared by all positive examples.

• Must check consistency with negative examples. If 
inconsistent, no conjunctive rule exists. 

Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative

Learned rule: red & circle → positive
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Limitations of Conjunctive Rules

• If a concept does not have a single set of necessary 

and sufficient conditions, conjunctive learning 

fails.

Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative

5 medium red circle negative

Learned rule: red & circle → positive

Inconsistent with negative example #5!
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Disjunctive Concepts

• Concept may be disjunctive.

Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative

5 medium red circle negative

Learned rules: small & circle → positive

large & red → positive
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Using the Generality Structure

• By exploiting the structure imposed by the generality of 
hypotheses, an hypothesis space can be searched for 
consistent hypotheses without enumerating or explicitly 
exploring all hypotheses.

• An instance, x X, is said to satisfy an hypothesis, h, iff 
h(x)=1 (positive)

• Given two hypotheses h1 and h2, h1 is more general than 
or equal to h2 (h1 h2) iff every instance that satisfies h2

also satisfies h1.

• Given two hypotheses h1 and h2, h1 is (strictly) more 
general than h2 (h1>h2) iff h1 h2 and it is not the case that 
h2 h1.

• Generality defines a partial order on hypotheses.
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Examples of Generality

• Conjunctive feature vectors

– <?, red, ?> is more general than <?, red, circle>

– Neither of <?, red, ?> and <?, ?, circle> is more general 

than the other.

• Axis-parallel rectangles in 2-d space

– A is more general than B

– Neither of A and C are more general than the other.

A

B

C
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Sample Generalization Lattice

< Ø, Ø, Ø>

<?,?,circ>  <big,?,?> <?,red,?>  <?,blue,?>  <sm,?,?> <?,?,squr>  

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr>

< ?,red,circ><big,?,circ><big,red,?><big,blue,?><sm,?,circ><?,blue,circ> <?,red,squr><sm.?,sqr><sm,red,?><sm,blue,?><big,?,squr><?,blue,squr>

<?, ?, ?>

Size: {sm, big}     Color: {red, blue}     Shape: {circ, squr}

Number of hypotheses = 33 + 1 = 28
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Most Specific Learner

(Find-S)

• Find the most-specific hypothesis (least-general generalization, 
LGG) that is consistent with the training data.

• Incrementally update hypothesis after every positive example, 
generalizing it just enough to satisfy the new example.

• For conjunctive feature vectors, this is easy:

Initialize h = <Ø, Ø,… Ø>

For each positive training instance x in D 

For each feature fi
If the constraint on fi in h is not satisfied by x

If fi in h is Ø

then set fi in h to the value of fi in x

else set fi in h to “?”

If h is consistent with the negative training instances in D

then return h

else no consistent hypothesis exists

Time complexity:

O(|D| n)

if n is the number 

of features
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Properties of Find-S

• For conjunctive feature vectors, the most-specific 

hypothesis is unique and found by Find-S.

• If the most specific hypothesis is not consistent 

with the negative examples, then there is no 

consistent function in the hypothesis space, since, 

by definition, it cannot be made more specific and 

retain consistency with the positive examples.

• For conjunctive feature vectors, if the most-

specific hypothesis is inconsistent, then the target 

concept must be disjunctive.
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Another Hypothesis Language

• Consider the case of two unordered objects each described 
by a fixed set of attributes.
– {<big, red, circle>, <small, blue, square>}

• What is the most-specific generalization of:
– Positive: {<big, red, triangle>, <small, blue, circle>}

– Positive: {<big, blue, circle>, <small, red, triangle>}

• LGG is not unique, two incomparable generalizations are: 
– {<big, ?, ?>, <small, ?, ?>}

– {<?, red, triangle>, <?, blue, circle>}

• For this space, Find-S would need to maintain a 
continually growing set of LGGs and eliminate those that 
cover negative examples.  

• Find-S is no longer tractable for this space since the 
number of LGGs can grow exponentially.
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Issues with Find-S

• Given sufficient training examples, does Find-S converge 
to a correct definition of the target concept (assuming it is 
in the hypothesis space)?

• How de we know when the hypothesis has converged to a 
correct definition?

• Why prefer the most-specific hypothesis? Are more 
general hypotheses consistent? What about the most-
general hypothesis? What about the simplest hypothesis?

• If the LGG is not unique
– Which LGG should be chosen?

– How can a single consistent LGG be efficiently computed or 
determined not to exist?

• What if there is noise in the training data and some training 
examples are incorrectly labeled?
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Effect of Noise in Training Data

• Frequently realistic training data is corrupted by errors 

(noise) in the features or class values.

• Such noise can result in missing valid generalizations.

– For example, imagine there are many positive examples like #1 

and #2, but out of many negative examples, only one like #5 that 

actually resulted from a error in labeling.

Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative

5 medium red circle negative
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Version Space

• Given an hypothesis space, H, and training 

data, D, the version space is the complete 

subset of H that is consistent with D.

• The version space can be naively generated 

for any finite H by enumerating all 

hypotheses and eliminating the inconsistent 

ones.

• Can one compute the version space more 

efficiently than using enumeration?
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Version Space with S and G

• The version space can be represented more compactly by 

maintaining two boundary  sets of hypotheses, S, the set of 

most specific consistent hypotheses, and G, the set of most 

general consistent hypotheses:

• S and G represent the entire version space via its boundaries in 

the generalization lattice:

)]},([),(|{ DsConsistentssHsDsConsistentHsS
)]},([),(|{ DsConsistentggHgDgConsistentHgG

version

space

G

S
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Version Space Lattice

< Ø, Ø, Ø>

<?,?,circ>  <big,?,?> <?,red,?> <?,blue,?>  <sm,?,?> <?,?,squr>

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr>

< ?,red,circ><big,?,circ><big,red,?><big,blue,?><sm,?,circ><?,blue,circ> <?,red,squr><sm.?,sqr><sm,red,?><sm,blue,?><big,?,squr><?,blue,squr>

<?, ?, ?>

Size: {sm, big}     Color: {red, blue}     Shape: {circ, squr}

<<big, red, squr> positive>

<<sm, blue, circ> negative>

Color Code:

G

S

other VS
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Candidate Elimination (Version Space) 

Algorithm

Initialize G to the set of most-general hypotheses in H

Initialize S to the set of most-specific hypotheses in H

For each training example, d, do:

If d is a positive example then:

Remove from G any hypotheses that do not match d

For each hypothesis s in S that does not match d

Remove s from S

Add to S all minimal generalizations, h, of s such that:

1)  h matches d

2) some member of G is more general than h

Remove from S any h that is more general than another hypothesis in S

If d is a negative example then:

Remove from S any hypotheses that match d

For each hypothesis g in G that matches d

Remove g from G

Add to G all minimal specializations, h, of g such that:

1) h does not match d

2) some member of S is more specific than h

Remove from G any h that is more specific than another hypothesis in G
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Required Subroutines

• To instantiate the algorithm for a specific 

hypothesis language requires the following 

procedures:

– equal-hypotheses(h1, h2)

– more-general(h1, h2)

– match(h, i)

– initialize-g()

– initialize-s()

– generalize-to(h, i)

– specialize-against(h, i)
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Minimal Specialization and Generalization

• Procedures generalize-to and specialize-against 
are specific to a hypothesis language and can be 
complex.

• For conjunctive feature vectors:
– generalize-to: unique, see Find-S

– specialize-against: not unique, can convert each “?” to 
an alernative non-matching value for this feature.

• Inputs:
– h = <?, red, ?>

– i = <small, red, triangle>

• Outputs:
– <big, red, ?>

– <medium, red, ?>

– <?, red, square>

– <?, red, circle>
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Sample VS Trace

S= {< Ø, Ø, Ø>}; G= {<?, ?, ?>}

Positive: <big, red, circle>

Nothing to remove from G

Minimal generalization of only S element is <big, red, circle> which is more 

specific than G.

S={<big, red, circle>}; G={<?, ?, ?>}

Negative: <small, red, triangle>

Nothing to remove from S.

Minimal specializations of <?, ?, ?> are <medium, ?, ?>, <big, ?, ?>, 

<?, blue, ?>, <?, green, ?>, <?, ?, circle>, <?, ?, square> but most are not 

more general than some element of S

S={<big, red, circle>}; G={<big, ?, ?>, <?, ?, circle>}
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Sample VS Trace (cont)

S={<big, red, circle>}; G={<big, ?, ?>, <?, ?, circle>}

Positive: <small, red, circle>

Remove <big, ?, ?> from G

Minimal generalization of <big, red, circle> is <?, red, circle>

S={<?, red, circle>}; G={<?, ?, circle>}

Negative: <big, blue, circle>

Nothing to remove from S

Minimal specializations of  <?, ?, circle> are <small, ? circle>,

<medium, ?, circle>, <?, red, circle>, <?, green, circle> but most are not more 

general than some element of S.

S={<?, red, circle>}; G={<?, red, circle>}

S=G; Converged!
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Properties of VS Algorithm

• S summarizes the relevant information in the positive 
examples (relative to H) so that positive examples do not 
need to be retained.

• G summarizes the relevant information in the negative 
examples, so that negative examples do not need to be 
retained.

• Result is not affected by the order in which examples are 
processes but computational efficiency may.

• Positive examples move the S boundary up; Negative 
examples move the G boundary down.

• If S and G converge to the same hypothesis, then it is the 
only one in H that is consistent with the data.

• If S and G become empty (if one does the other must also) 
then there is no hypothesis in H consistent with the data.
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Correctness of Learning

• Since the entire version space is maintained, given 

a continuous stream of noise-free training 

examples, the VS algorithm will eventually 

converge to the correct target concept if it is in the 

hypothesis space, H, or eventually correctly 

determine that it is not in H.

• Convergence is correctly indicated when S=G. 
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Computational Complexity of VS

• Computing the S set for conjunctive feature 

vectors is linear in the number of features and the 

number of training examples.

• Computing the G set for conjunctive feature 

vectors is exponential in the number of training 

examples in the worst case.

• In more expressive languages, both S and G can 

grow exponentially.

• The order in which examples are processed can 

significantly affect computational complexity.
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Using an Unconverged VS

• If the VS has not converged, how does it classify a novel 
test instance?

• If all elements of S match an instance, then the entire 
version space much (since it is more general) and it can be 
confidently classified as positive (assuming target concept 
is in H).

• If no element of G matches an instance, then the entire 
version space must not (since it is more specific) and it can 
be confidently classified as negative (assuming target 
concept is in H).

• Otherwise, one could vote all of the hypotheses in the VS 
(or just the G and S sets to avoid enumerating the VS) to 
give a classification with an associated confidence value.

• Voting the entire VS is probabilistically optimal assuming 
the target concept is in H and all hypotheses in H are 
equally likely a priori.
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Learning for Multiple Categories

• What if the classification problem is not concept learning 
and involves more than two categories?

• Can treat as a series of concept learning problems, where 
for each category, Ci, the instances of Ci are treated as 
positive and all other instances in categories Cj, j i are 
treated as negative (one-versus-all).

• This will assign a unique category to each training instance 
but may assign a novel instance to zero or multiple 
categories.

• If the binary classifier produces confidence estimates (e.g. 
based on voting), then a novel instance can be assigned to 
the category with the highest confidence.
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Inductive Bias

• A hypothesis space that does not include all possible 
classification functions on the instance space incorporates 
a bias in the type of classifiers it can learn.

• Any means that a learning system uses to choose between 
two functions that are both consistent with the training data 
is called inductive bias.

• Inductive bias can take two forms:

– Language bias: The language for representing concepts defines a 
hypothesis space that does not include all possible functions (e.g. 
conjunctive descriptions).

– Search bias: The language is expressive enough to represent all 
possible functions (e.g. disjunctive normal form) but the search 
algorithm embodies a preference for certain consistent functions 
over others (e.g. syntactic simplicity).
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Unbiased Learning

• For instances described by n features each with m values, there are 
mn instances. If these are to be classified into c categories, then there 
are cm^n possible classification functions.

– For n=10, m=c=2, there are approx. 3.4x1038 possible functions, of 
which only 59,049 can be represented as conjunctions (an incredibly 
small percentage!)

• However, unbiased learning is futile since if we consider all possible 
functions then simply memorizing the data without any real 
generalization is as good an option as any.

• Without bias, the version-space is always trivial. The unique most-
specific hypothesis is the disjunction of the positive instances and the 
unique most general hypothesis is the negation of the disjunction of 
the negative instances:

)}...({
)}...{(

21

21

j

k
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Futility of Bias-Free Learning

• A learner that makes no a priori assumptions about the 
target concept has no rational basis for classifying any 
unseen instances.

• Inductive bias can also be defined as the assumptions that, 
when combined with the observed training data, logically 
entail the subsequent classification of unseen instances.
– Training-data + inductive-bias |― novel-classifications

• The bias of the VS algorithm (assuming it refuses to 
classify an instance unless it is classified the same by all 
members of the VS), is simply that H contains the target 
concept.

• The rote learner, which refuses to classify any instance 
unless it has seen it during training, is the least biased.

• Learners can be partially ordered by their amount of bias
– Rote-learner < VS Algorithm < Find-S
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No Panacea

• No Free Lunch (NFL) Theorem (Wolpert, 1995)

Law of Conservation of Generalization Performance (Schaffer, 1994)
– One can prove that improving generalization performance on unseen data 

for some tasks will always decrease performance on other tasks (which 
require different labels on the unseen instances).

– Averaged across all possible target functions, no learner generalizes to 
unseen data any better than any other learner.

• There does not exist a learning method that is uniformly better than 
another for all problems.

• Given any two learning methods A and B and a training set, D, there 
always exists a target function for which A generalizes better (or at 
least as well) as B.
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Logical View of Induction

• Deduction is inferring sound specific conclusions from 
general rules (axioms) and specific facts.

• Induction is inferring general rules and theories from 
specific empirical data.

• Induction can be viewed as inverse deduction.

– Find a hypothesis h from data D such that

• h B |― D

where B is optional background knowledge

• Abduction is similar to induction, except it involves 
finding a specific hypothesis, h, that best explains a set of 
evidence, D, or inferring cause from effect. Typically, in 
this case B is quite large compared to induction and h is 
smaller and more specific to a particular event.
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Induction and the Philosophy of Science

• Bacon (1561-1626), Newton (1643-1727) and the sound 
deductive derivation of knowledge from data.

• Hume (1711-1776) and the problem of induction.
– Inductive inferences can never be proven and are always subject to 

disconfirmation.

• Popper (1902-1994) and falsifiability.
– Inductive hypotheses can only be falsified not proven, so pick 

hypotheses that are most subject to being falsified.

• Kuhn (1922-1996) and paradigm shifts.
– Falsification is insufficient, an alternative paradigm must be 

available that is clearly elegant and more explanatory must be 
available.

• Ptolmaic epicycles and the Copernican revolution

• Orbit of Mercury and general relativity

• Solar neutrino problem and neutrinos with mass

• Postmodernism: Objective truth does not exist; relativism; 
science is a social system of beliefs that is no more valid 
than others (e.g. religion).
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Ockham (Occam)’s Razor

• William of Ockham (1295-1349) was a Franciscan 
friar who applied the criteria to theology:
– “Entities should not be multiplied beyond necessity” 

(Classical version but not an actual quote)

– “The supreme goal of all theory is to make the 
irreducible basic elements as simple and as few as 
possible without having to surrender the adequate 
representation of a single datum of experience.” 
(Einstein)

• Requires a precise definition of simplicity.

• Acts as a bias which assumes that nature itself is 
simple.

• Role of Occam’s razor in machine learning 
remains controversial.


