Machine Learning Introduction

Based on Raymond J. Mooney's slides University of Texas at Austin

What is Learning?

- Herbert Simon: "Learning is any process by which a system improves performance from experience."
- What is the task?
 - Classification
 - Problem solving / planning / control

Classification

- Assign object/event to one of a given finite set of categories.
 - Medical diagnosis
 - Credit card applications or transactions
 - Fraud detection in e-commerce
 - Worm detection in network packets
 - Spam filtering in email
 - Recommended articles in a newspaper
 - Recommended books, movies, music, or jokes
 - Financial investments
 - DNA sequences
 - Spoken words
 - Handwritten letters
 - Astronomical images

Problem Solving / Planning / Control

- Performing actions in an environment in order to achieve a goal.
 - Solving calculus problems
 - Playing checkers, chess, or backgammon
 - Balancing a pole
 - Driving a car or a jeep
 - Flying a plane, helicopter, or rocket
 - Controlling an elevator
 - Controlling a character in a video game
 - Controlling a mobile robot

Measuring Performance

- Classification Accuracy
- Solution correctness
- Solution quality (length, efficiency)
- Speed of performance

Why Study Machine Learning? Engineering Better Computing Systems

- Develop systems that are too difficult/expensive to construct manually because they require specific detailed skills or knowledge tuned to a specific task (*knowledge engineering bottleneck*).
- Develop systems that can automatically adapt and customize themselves to individual users.
 - Personalized news or mail filter
 - Personalized tutoring
- Discover new knowledge from large databases (*data mining*).
 - Market basket analysis (e.g. diapers and beer)
 - Medical text mining (e.g. migraines to calcium channel blockers to magnesium)

Why Study Machine Learning? Cognitive Science

- Computational studies of learning may help us understand learning in humans and other biological organisms.
 - Hebbian neural learning
 - "Neurons that fire together, wire together."
 - Human's relative difficulty of learning disjunctive concepts vs. conjunctive ones.
 - Power law of practice

Why Study Machine Learning? The Time is Ripe

- Many basic effective and efficient algorithms available.
- Large amounts of on-line data available.
- Large amounts of computational resources available.

Related Disciplines

- Artificial Intelligence
- Data Mining
- Probability and Statistics
- Information theory
- Numerical optimization
- Computational complexity theory
- Control theory (adaptive)
- Psychology (developmental, cognitive)
- Neurobiology
- Linguistics
- Philosophy

Defining the Learning Task

Improve on task, T, with respect to

performance metric, P, based on experience, E.

- T: Playing checkers
- P: Percentage of games won against an arbitrary opponent
- E: Playing practice games against itself
- T: Recognizing hand-written words
- P: Percentage of words correctly classified
- E: Database of human-labeled images of handwritten words
- T: Driving on four-lane highways using vision sensors
- P: Average distance traveled before a human-judged error
- E: A sequence of images and steering commands recorded while observing a human driver.
- T: Categorize email messages as spam or legitimate.
- P: Percentage of email messages correctly classified.
- E: Database of emails, some with human-given labels

Designing a Learning System

- Choose the training experience
- Choose exactly what is too be learned, i.e. the *target function*.
- Choose how to represent the target function.
- Choose a learning algorithm to infer the target function from the experience.

Sample Learning Problem

- Learn to play checkers from self-play
- We will develop an approach analogous to that used in the first machine learning system developed by Arthur Samuels at IBM in 1959.

Training Experience

- Direct experience: Given sample input and output pairs for a useful target function.
 - Checker boards labeled with the correct move, e.g. extracted from record of expert play
- Indirect experience: Given feedback which is *not* direct I/O pairs for a useful target function.
 - Potentially arbitrary sequences of game moves and their final game results.
- Credit/Blame Assignment Problem: How to assign credit blame to individual moves given only indirect feedback?

Source of Training Data

- Provided random examples outside of the learner's control.
 - Negative examples available or only positive?
- Good training examples selected by a "benevolent teacher."
 - "Near miss" examples
- Learner can query an oracle about class of an unlabeled example in the environment.
- Learner can construct an arbitrary example and query an oracle for its label.
- Learner can design and run experiments directly in the environment without any human guidance.

Training vs. Test Distribution

• Generally assume that the training and test examples are independently drawn from the same overall distribution of data.

– IID: Independently and identically distributed

- If examples are not independent, requires *collective classification*.
- If test distribution is different, requires *transfer learning*.

Choosing a Target Function

- What function is to be learned and how will it be used by the performance system?
- For checkers, assume we are given a function for generating the legal moves for a given board position and want to decide the best move.
 - Could learn a function:
 - ChooseMove(board, legal-moves) \rightarrow best-move
 - Or could learn an *evaluation function*, $V(\text{board}) \rightarrow \mathbb{R}$, that gives each board position a score for how favorable it is. V can be used to pick a move by applying each legal move, scoring the resulting board position, and choosing the move that results in the highest scoring board position.

Ideal Definition of *V*(*b*)

- If *b* is a final winning board, then V(b) = 100
- If *b* is a final losing board, then V(b) = -100
- If *b* is a final draw board, then V(b) = 0
- Otherwise, then V(b) = V(b), where *b* is the highest scoring final board position that is achieved starting from *b* and playing optimally until the end of the game (assuming the opponent plays optimally as well).
 - Can be computed using complete mini-max search of the finite game tree.

Approximating V(b)

- Computing *V*(*b*) is intractable since it involves searching the complete exponential game tree.
- Therefore, this definition is said to be *non-operational*.
- An *operational* definition can be computed in reasonable (polynomial) time.
- Need to learn an operational *approximation* to the ideal evaluation function.

Representing the Target Function

- Target function can be represented in many ways: lookup table, symbolic rules, numerical function, neural network.
- There is a trade-off between the expressiveness of a representation and the ease of learning.
- The more expressive a representation, the better it will be at approximating an arbitrary function; however, the more examples will be needed to learn an accurate function.

Linear Function for Representing V(b)

- In checkers, use a linear approximation of the evaluation function.
- $\mathcal{V}(b)_{=} + \mathcal{V}(b)_{+} \mathcal{$
 - -bp(b): number of black pieces on board b
 - rp(b): number of red pieces on board b
 - -bk(b): number of black kings on board b
 - rk(b): number of red kings on board b
 - *bt*(*b*): number of black pieces threatened (i.e. which can be immediately taken by red on its next turn)
 - rt(b): number of red pieces threatened

Obtaining Training Values

- Direct supervision may be available for the target function.
 - <*<bp*=3,*rp*=0,*bk*=1,*rk*=0,*bt*=0,*rt*=0>, 100> (win for black)
- With indirect feedback, training values can be estimated using *temporal difference learning* (used in *reinforcement learning* where supervision is *delayed reward*).

Temporal Difference Learning

• Estimate training values for intermediate (nonterminal) board positions by the estimated value of their successor in an actual game trace.

$V_{trak} = success,$

where successor(b) is the next board position where it is the program's move in actual play.

• Values towards the end of the game are initially more accurate and continued training slowly "backs up" accurate values to earlier board positions.

Learning Algorithm

- Uses training values for the target function to induce a hypothesized definition that fits these examples and hopefully generalizes to unseen examples.
- In statistics, learning to approximate a continuous function is called *regression*.
- Attempts to minimize some measure of error (*loss function*) such as *mean squared error*:

$$E_{=} \begin{bmatrix} (b)_{(b)} \\ B \end{bmatrix}$$

Least Mean Squares (LMS) Algorithm

• A gradient descent algorithm that incrementally updates the weights of a linear function in an attempt to minimize the mean squared error Until weights converge :

For each training example *b* do :

1) Compute the absolute error : err(b) = abb = b

2) For each board feature, f_i , update its weight, w_i : $W = + i \cdot V (0)$

for some small constant (learning rate) c

LMS Discussion

- Intuitively, LMS executes the following rules:
 - If the output for an example is correct, make no change.
 - If the output is too high, lower the weights proportional to the values of their corresponding features, so the overall output decreases
 - If the output is too low, increase the weights proportional to the values of their corresponding features, so the overall output increases.
- Under the proper weak assumptions, LMS can be proven to eventetually converge to a set of weights that minimizes the mean squared error.

Lessons Learned about Learning

- Learning can be viewed as using direct or indirect experience to approximate a chosen target function.
- Function approximation can be viewed as a search through a space of hypotheses (representations of functions) for one that best fits a set of training data.
- Different learning methods assume different hypothesis spaces (representation languages) and/or employ different search techniques.

Various Function Representations

- Numerical functions
 - Linear regression
 - Neural networks
 - Support vector machines
- Symbolic functions
 - Decision trees
 - Rules in propositional logic
 - Rules in first-order predicate logic
- Instance-based functions
 - Nearest-neighbor
 - Case-based
- Probabilistic Graphical Models
 - Naïve Bayes
 - Bayesian networks
 - Hidden-Markov Models (HMMs)
 - Probabilistic Context Free Grammars (PCFGs)
 - Markov networks

Various Search Algorithms

- Gradient descent
 - Perceptron
 - Backpropagation
- Dynamic Programming
 - HMM Learning
 - PCFG Learning
- Divide and Conquer
 - Decision tree induction
 - Rule learning
- Evolutionary Computation
 - Genetic Algorithms (GAs)
 - Genetic Programming (GP)
 - Neuro-evolution = evolutionary algorithms for training neural nets

Evaluation of Learning Systems

- Experimental
 - Conduct controlled cross-validation experiments to compare various methods on a variety of benchmark datasets.
 - Gather data on their performance, e.g. test accuracy, training-time, testing-time.
 - Analyze differences for statistical significance.
- Theoretical
 - Analyze algorithms mathematically and prove theorems about their:
 - Computational complexity
 - Ability to fit training data
 - Sample complexity (number of training examples needed to learn an accurate function)

History of Machine Learning

- 1950s
 - Samuel's checker player
 - Selfridge's Pandemonium = collection of specialised demons
- 1960s:
 - Neural networks: Perceptron
 - Pattern recognition
 - Learning in the limit theory
 - Minsky and Papert prove limitations of Perceptron
- 1970s:
 - Symbolic concept induction
 - Winston's arch learner
 - Expert systems and the knowledge acquisition bottleneck
 - Quinlan's ID3
 - Michalski's AQ and soybean diagnosis
 - Scientific discovery with BACON
 - Mathematical discovery with AM

History of Machine Learning (cont.)

- 1980s:
 - Advanced decision tree and rule learning
 - Explanation-based Learning (EBL)
 - Learning and planning and problem solving
 - Utility problem
 - Analogy
 - Cognitive architectures
 - Resurgence of neural networks (connectionism, backpropagation)
 - Valiant's PAC Learning Theory
 - Focus on experimental methodology
- 1990s
 - Data mining
 - Adaptive software agents and web applications
 - Text learning
 - Reinforcement learning (RL)
 - Inductive Logic Programming (ILP)
 - Ensembles: Bagging, Boosting, and Stacking
 - Bayes Net learning

History of Machine Learning (cont.)

- 2000s
 - Support vector machines
 - Kernel methods
 - Graphical models
 - Statistical relational learning
 - Transfer learning
 - Sequence labeling
 - Collective classification and structured outputs
 - Computer Systems Applications
 - Compilers
 - Debugging
 - Graphics
 - Security (intrusion, virus, and worm detection)
 - Email management
 - Personalized assistants that learn
 - Learning in robotics and vision