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Machine Learning

Introduction

Based on Raymond J. Mooney’s slides

University of Texas at Austin
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What is Learning?

• Herbert Simon: “Learning is any process by 

which a system improves performance from 

experience.”

• What is the task?

– Classification

– Problem solving / planning / control
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Classification

• Assign object/event to one of a given finite set of 
categories.
– Medical diagnosis

– Credit card applications or transactions

– Fraud detection in e-commerce

– Worm detection in network packets

– Spam filtering in email

– Recommended articles in a newspaper

– Recommended books, movies, music, or jokes

– Financial investments

– DNA sequences

– Spoken words

– Handwritten letters

– Astronomical images
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Problem Solving / Planning / Control

• Performing actions in an environment in order to 

achieve a goal.

– Solving calculus problems

– Playing checkers, chess, or backgammon

– Balancing a pole

– Driving a car or a jeep

– Flying a plane, helicopter, or rocket

– Controlling an elevator

– Controlling a character in a video game

– Controlling a mobile robot
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Measuring Performance

• Classification Accuracy

• Solution correctness

• Solution quality (length, efficiency)

• Speed of performance
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Why Study Machine Learning?

Engineering Better Computing Systems

• Develop systems that are too difficult/expensive to 
construct manually because they require specific detailed 
skills or knowledge tuned to a specific task (knowledge 
engineering bottleneck).

• Develop systems that can automatically adapt and 
customize themselves to individual users.

– Personalized news or mail filter

– Personalized tutoring

• Discover new knowledge from large databases (data 
mining).

– Market basket analysis (e.g. diapers and beer)

– Medical text mining (e.g. migraines to calcium channel blockers to 
magnesium)
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Why Study Machine Learning?

Cognitive Science

• Computational studies of learning may help us 
understand learning in humans and other 
biological organisms.
– Hebbian neural learning

• “Neurons that fire together, wire together.”

– Human’s relative difficulty of learning disjunctive 
concepts vs. conjunctive ones.

– Power law of practice

log(# training trials)
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Why Study Machine Learning?

The Time is Ripe

• Many basic effective and efficient 

algorithms available.

• Large amounts of on-line data available.

• Large amounts of computational resources 

available.



9

Related Disciplines

• Artificial Intelligence

• Data Mining

• Probability and Statistics

• Information theory

• Numerical optimization

• Computational complexity theory

• Control theory (adaptive)

• Psychology (developmental, cognitive)

• Neurobiology

• Linguistics

• Philosophy
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Defining the Learning Task

Improve on task, T, with respect to 

performance metric, P, based on experience, E.

T: Playing checkers
P: Percentage of games won against an arbitrary opponent
E: Playing practice games against itself

T: Recognizing hand-written words
P: Percentage of words correctly classified
E: Database of human-labeled images of handwritten words

T: Driving on four-lane highways using vision sensors
P: Average distance traveled before a human-judged error
E: A sequence of images and steering commands recorded while

observing a human driver.

T: Categorize email messages as spam or legitimate.
P: Percentage of email messages correctly classified.
E: Database of emails, some with human-given labels
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Designing a Learning System

• Choose the training experience

• Choose exactly what is too be learned, i.e. the 
target function.

• Choose how to represent the target function.

• Choose a learning algorithm to infer the target 
function from the experience.

Environment/

Experience

Learner

Knowledge

Performance

Element
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Sample Learning Problem

• Learn to play checkers from self-play

• We will develop an approach analogous to 

that used in the  first machine learning 

system developed by Arthur Samuels at 

IBM in 1959.
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Training Experience

• Direct experience: Given sample input and output 
pairs for a useful target function.

– Checker boards labeled with the correct move, e.g. 
extracted from record of expert play

• Indirect experience: Given feedback which is not
direct I/O pairs for a useful target function.

– Potentially arbitrary sequences of game moves and their 
final game results.

• Credit/Blame Assignment Problem: How to assign 
credit blame to individual moves given only 
indirect feedback? 
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Source of Training Data

• Provided random examples outside of the learner’s 
control.
– Negative examples available or only positive?

• Good training examples selected by a “benevolent 
teacher.”
– “Near miss” examples

• Learner can query an oracle about class of an 
unlabeled example in the environment.

• Learner can construct an arbitrary example and 
query an oracle for its label.

• Learner can  design and run experiments directly 
in the environment without any human guidance.
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Training vs. Test Distribution

• Generally assume that the training and test 

examples are independently drawn from the 

same overall distribution of data.

– IID: Independently and identically distributed

• If examples are not independent, requires 

collective classification.

• If test distribution is different, requires 

transfer learning.
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Choosing a Target Function

• What function is to be learned and how will it be 
used by the performance system?

• For checkers, assume we are given a function for 
generating the legal moves for a given board position 
and want to decide the best move.

– Could learn a function:

ChooseMove(board, legal-moves) → best-move

– Or could learn an evaluation function, V(board) → R, that 
gives each board position a score for how favorable it is. V
can be used to pick a move by applying each legal move, 
scoring the resulting board position, and choosing the 
move that results in the highest scoring board position.
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Ideal Definition of V(b)

• If b is a final winning board, then V(b) = 100

• If b is a final losing board, then V(b) = –100

• If b is a final draw board, then V(b) = 0

• Otherwise, then V(b) = V(b ), where b is the 

highest scoring final board position that is achieved 

starting from b and playing optimally until the end 

of the game (assuming the opponent plays 

optimally as well).

– Can be computed using complete mini-max search of the 

finite game tree. 
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Approximating V(b)

• Computing V(b) is intractable since it 
involves searching the complete exponential 
game tree.

• Therefore, this definition is said to be non-
operational.

• An operational definition can be computed 
in reasonable (polynomial) time. 

• Need to learn an operational approximation
to the ideal evaluation function.
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Representing the Target Function

• Target function can be represented in many ways: 

lookup table, symbolic rules, numerical function, 

neural network.

• There is a trade-off between the expressiveness of 

a representation and the ease of learning. 

• The more expressive a representation, the better it 

will be at approximating an arbitrary function; 

however, the more examples will be needed to 

learn an accurate function.
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Linear Function for Representing V(b)

• In checkers, use a linear approximation of the 

evaluation function.

– bp(b): number of black pieces on board b

– rp(b): number of red pieces on board b

– bk(b): number of black kings on board b 

– rk(b): number of red kings on board b

– bt(b): number of black pieces threatened (i.e. which can 

be immediately taken by red on its next turn)

– rt(b): number of red pieces threatened

)()()()()()()( 6543210 brtwbbtwbrkwbbkwbrpwbbpwwbV
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Obtaining Training Values

• Direct supervision may be available for the 

target function.

– < <bp=3,rp=0,bk=1,rk=0,bt=0,rt=0>, 100>          

(win for black)

• With indirect feedback, training values can 

be estimated using temporal difference 

learning (used in reinforcement learning

where supervision is delayed reward).
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Temporal Difference Learning

• Estimate training values for intermediate (non-

terminal) board positions by the estimated value of 

their successor in an actual game trace. 

where successor(b) is the next board position 

where it is the program’s move in actual play.

• Values towards the end of the game are initially 

more accurate and continued training slowly 

“backs up” accurate values to earlier board 

positions.

))successor(()( bVbVtrain

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Learning Algorithm

• Uses training values for the target function to 

induce a hypothesized definition that fits these 

examples and hopefully generalizes to unseen 

examples.

• In statistics, learning to approximate a continuous 

function is called regression.

• Attempts to minimize some measure of error (loss 

function) such as mean squared error:
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Least Mean Squares (LMS) Algorithm

• A gradient descent algorithm that incrementally 

updates the weights of a linear function in an 

attempt to minimize the mean squared error

Until weights converge :

For each training example b do :

1) Compute the absolute error :

2) For each board feature, fi, update its weight, wi :

for some small constant (learning rate) c

)()()( bVbVberror train
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LMS Discussion

• Intuitively, LMS executes the following rules:

– If the output for an example is correct, make no change.

– If the output is too high, lower the weights proportional 

to the values of their corresponding features, so the 

overall output decreases

– If the output is too low, increase the weights 

proportional to the values of their corresponding 

features, so the overall output increases.

• Under the proper weak assumptions, LMS can be 

proven to eventetually converge to a set of weights 

that minimizes the mean squared error.
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Lessons Learned about Learning

• Learning can be viewed as using direct or indirect 

experience to approximate a chosen target 

function.

• Function approximation can be viewed as a search 

through a space of hypotheses (representations of 

functions) for one that best fits a set of training 

data.

• Different learning methods assume different 

hypothesis spaces (representation languages) 

and/or employ different search techniques.



27

Various Function Representations

• Numerical functions
– Linear regression

– Neural networks

– Support vector machines

• Symbolic functions
– Decision trees

– Rules in propositional logic

– Rules in first-order predicate logic

• Instance-based functions
– Nearest-neighbor

– Case-based

• Probabilistic Graphical Models
– Naïve Bayes

– Bayesian networks

– Hidden-Markov Models  (HMMs)

– Probabilistic Context Free Grammars (PCFGs)

– Markov networks



28

Various Search Algorithms

• Gradient descent

– Perceptron

– Backpropagation

• Dynamic Programming

– HMM Learning

– PCFG Learning

• Divide and Conquer

– Decision tree induction

– Rule learning

• Evolutionary Computation

– Genetic Algorithms (GAs)

– Genetic Programming (GP)

– Neuro-evolution = evolutionary algorithms for training neural nets
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Evaluation of Learning Systems

• Experimental
– Conduct controlled cross-validation experiments to 

compare various methods on a variety of benchmark 
datasets.

– Gather data on their performance, e.g. test accuracy, 
training-time, testing-time.

– Analyze differences for statistical significance.

• Theoretical
– Analyze algorithms mathematically and prove theorems 

about their:
• Computational complexity

• Ability to fit training data

• Sample complexity (number of training examples needed to 
learn an accurate function)
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History of Machine Learning

• 1950s
– Samuel’s checker player

– Selfridge’s Pandemonium = collection of specialised demons

• 1960s: 
– Neural networks: Perceptron

– Pattern recognition 

– Learning in the limit theory

– Minsky and Papert prove limitations of Perceptron

• 1970s: 
– Symbolic concept induction

– Winston’s arch learner

– Expert systems and the knowledge acquisition bottleneck

– Quinlan’s ID3

– Michalski’s AQ and soybean diagnosis

– Scientific discovery with BACON

– Mathematical discovery with AM
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History of Machine Learning (cont.)

• 1980s:
– Advanced decision tree and rule learning

– Explanation-based Learning (EBL)

– Learning and planning and problem solving

– Utility problem

– Analogy

– Cognitive architectures

– Resurgence of neural networks (connectionism, backpropagation)

– Valiant’s PAC Learning Theory

– Focus on experimental methodology

• 1990s
– Data mining

– Adaptive software agents and web applications

– Text learning

– Reinforcement learning (RL)

– Inductive Logic Programming (ILP)

– Ensembles: Bagging, Boosting, and Stacking

– Bayes Net learning
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History of Machine Learning (cont.)

• 2000s
– Support vector machines

– Kernel methods

– Graphical models

– Statistical relational learning

– Transfer learning

– Sequence labeling

– Collective classification and structured outputs

– Computer Systems Applications
• Compilers

• Debugging

• Graphics

• Security (intrusion, virus, and worm detection)

– Email management

– Personalized assistants that learn

– Learning in robotics and vision


