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Approximate Distance-based Similarity Search

Preliminaries

generic similarity search

data modeled as metric space (D, δ), where D is a domain of objects
and δ is a total distance function δ : D ×D −→ R+

0 satisfying
postulates of identity, symmetry, and triangle inequality

query by example: K -NN(q) returns K objects x from the dataset
X ⊆ D with the smallest δ(q, x)

dataset X may be very large

distance function δ may be time consuming

requires approximate search
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Approximate Distance-based Similarity Search

Motivation

current indexes for large-scale approximate search:

dataset X is partitioned

given query q, the “most-promising” partitions form the candidate set

the candidate set SC is refined by calculating δ(q, x), ∀x ∈ SC

reading and refinement of SC form majority of the search costs

accuracy of the candidate set is key
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PPP-Codes Approach

Our Approach in a Nutshell

1 data space is partitioned multiple-times independently

each partitioning is defined by one pivot space

2 given query q, multiple ranked candidate sets are generated

3 these multiple candidate rankings are effectively merged

the merged candidate set is smaller and more accurate

4 the final candidate set is retrieved and refined
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PPP-Codes Approach Multiple Pivot Space Partitioning

Voronoi Partitioning & Pivot Permutations

Pivot space is defined by a set of k pivots {p1, . . . , pk} ⊆ D
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PPP-Codes Approach Multiple Pivot Space Partitioning

Voronoi Partitioning & Pivot Permutations

Pivot space is defined by a set of k pivots {p1, . . . , pk} ⊆ D

Formally:
object x ∈ X is mapped to its
pivot permutation (PP):
Πx on {1, . . . , k} such that Πx(i)
is the i-th closest pivot from x
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Pivot space is defined by a set of k pivots {p1, . . . , pk} ⊆ D

Formally:
object x ∈ X is mapped to its
pivot permutation (PP):
Πx on {1, . . . , k} such that Πx(i)
is the i-th closest pivot from x

each Voronoi cell corresponds to
a pivot permutation prefix (PPP)
of length l : Πx(1..l)
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PPP-Codes Approach Multiple Pivot Space Partitioning

Multiple Pivot Space Partitioning

We propose to create λ independent pivot space partitionings
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data objects x ∈ X are encoded as

PPP1..λ
l (x) = 〈Π1

x(1..l), . . . ,Πλ
x (1..l)〉
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data objects x ∈ X are encoded as

PPP1..λ
l (x) = 〈Π1

x(1..l), . . . ,Πλ
x (1..l)〉

in the example above λ = 2, k = 8, l = 4:

PPP1..2
4 (x5) = 〈〈7, 4, 8, 5〉, 〈7, 8, 4, 6〉〉
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PPP-Codes Approach Ranking of the Data Objects

Ranking within a Single Pivot Space

Task: Having data x ∈ X encoded by PPP Πx(1..l) (single recursive
Voronoi partitioning), define ranking of the PPPs with respect to q ∈ D

David Novak (MU Brno) PPP-Codes CEMI meeting 8 / 17



PPP-Codes Approach Ranking of the Data Objects

Ranking within a Single Pivot Space

Task: Having data x ∈ X encoded by PPP Πx(1..l) (single recursive
Voronoi partitioning), define ranking of the PPPs with respect to q ∈ D

p
3

p
2

p
4

C<2,1>

C<1,2>

C<4,3>

<4,1>C

C<3,4>

<1,3>C

q

p
1

C<3,2>

C<1,4>

CC <2,3><3,1>

David Novak (MU Brno) PPP-Codes CEMI meeting 8 / 17



PPP-Codes Approach Ranking of the Data Objects

Ranking within a Single Pivot Space

Solution: We define distance between Voronoi cell C〈i1,...,il 〉 and query q as
a weighted arithmetic mean of distances δ(q, pi1), . . . , δ(q, pil )
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PPP-Codes Approach Ranking of the Data Objects

Ranking using Multiple Pivot Spaces

Task: Having λ rankings of PPPs from λ pivot spaces, aggregate these
rankings effectively into a final ranking
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Task: Having λ rankings of PPPs from λ pivot spaces, aggregate these
rankings effectively into a final ranking

q ∈ D

ψq
1:  {x  y1 y2}  {y3 y4 y5}  {y6} ...

ψq
2:  {y3 y2}  {y1 y4 y6 y7} {x  y8} ...
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3:  {x} {y3 y4 y5}  {y2 y6} ...

ψq
4:  {y1 y2} {y3 y4 y5}  {y8}  {y6} ...

ψq
5:  {y1 y2 } {y4 y5} {y3} {x  y7} ...

objects with the rank '1'

rank '2'
rank '3'
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PPP-Codes Approach Ranking of the Data Objects

Ranking using Multiple Pivot Spaces

Solution: Ranking of object x is p-percentile (e.g. median) of its λ ranks

Ψp(q, x) = percentilep(ψ1
q(x), ψ2

q(x), . . . , ψλq (x))
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PPP-Codes Approach Ranking of the Data Objects

Idea Behind the Rank Aggregation

the Voronoi cells span large areas of the space

given a query, the “close” cells contain also distant data objects

there is many more distant ones

having several “orthogonal” partitionings

the query-relevant objects should be often at top positions
the distant objects vary

the percentile-based aggregation increases probability that
query-relevant objects are ranked higher than the distant ones
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PPP-Codes Approach Indexing and Searching

Indexing the PPP-Codes

We build trie-like structure for each pivot space

leafs: only suffixes of PPPs (spare memory)

dynamic splits to optimize the memory usage

possible grouping and delta-encoding of IDs in leaves

1 2 k3 ...

2 k3 ... 1 k3 ...Π(2)=

Π(1)=

3 k4 ...Π(3)= −1k

−1k

Π l  (4..  ),ID Π l  (4..  ),ID Π l  (4..  ),ID Π l  (4..  ),ID

Π l  (3..  ),ID

...

1 3 ...

1 2 ...

... ... ...

...
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PPP-Codes Approach Indexing and Searching

PPPRank: The Search Algorithm

ψq
1:  {x  y1 y2}  {y3 y4 y5}  {y6} ...

ψq
2:  {y3 y2}  {y1 y4 y6 y7} {x  y8} ...

ψq
3:  {x} {y3 y4 y5}  {y2 y6} ...

ψq
4:  {y1 y2} {y3 y4 y5}  {y8}  {y6} ...

ψq
5:  {y1 y2 } {y4 y5} {y3} {x  y7} ...

objects with the rank '1'

Ψ0.5 (q, x) = percentile0.5{1, 1, 3, 4, ?} = 3 

rank '2'
rank '3'

Given query q ∈ D, our search algorithm:

1 generates one-by-one individual rankings ψj
q

(GetNextIDs algorithm, it uses the trie structures)

2 outputs objects with the best aggregated ranks
(PPPRank algorithm based on MedRank by Fagin et al.)
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PPP-Codes Approach Indexing and Searching

PPPRank: The Search Algorithm

calculate λ∙k 
query-pivot 
distances δ(q,pi

j ) 

K-NN(q) PPPRank(q,p,R): 
merge λ ranks to 
get top R objects

GetNextIDs(q,2):
generate  ψq

2 
ranking

GetNextIDs(q,1):
generate ψq

1 
ranking

... GetNextIDs(q,λ):
generate ψq

λ 
ranking

retrieve 
R objects

SSD

refine R objects 
by δ(q,x)

1 2
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4 5
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q

(GetNextIDs algorithm, it uses the trie structures)

2 outputs objects with the best aggregated ranks
(PPPRank algorithm based on MedRank by Fagin et al.)

David Novak (MU Brno) PPP-Codes CEMI meeting 12 / 17



Efficiency of our Approach

Evaluation: Accuracy of the Candidate Set

Given K -NN, we consider recall(A) = |A∩AP |
K · 100% vs. candidate set size
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Efficiency of our Approach

Evaluation: Accuracy of the Candidate Set

Given K -NN, we consider recall(A) = |A∩AP |
K · 100% vs. candidate set size
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Candidate set size R necessary to achieve 80% of 1-NN recall

Settings: 1M CoPhIR dataset, l = 8 and p = 0.75

David Novak (MU Brno) PPP-Codes CEMI meeting 13 / 17



Efficiency of our Approach

Experimental Evaluation Criteria

three datasets:

100M CoPhIR (280-dim, complex metric, obj.: 600 B, δ time 0.01 ms)

1M SQFD (quadratic form distance, obj.: 2 kB, δ time 0.5 ms)

10M ADJ ([0, 1]32 uniform, L2, obj.: 0.5–4.0 kB, δ time 0.001–1.0 ms)

technical evaluation of our approach:

mutual influence of various parameters to recall

k, l , λ, p, size of the PPP-Code representation

k ∈ {64, 128, 256, 512}, l = 8, λ = 5, p = 0.5 (3rd rank out of 5)
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Efficiency of our Approach

Evaluation: Candidate Set vs. Recall

candidate set size R vs. recall

1−NN recall (left axis)
10−NN recall (left axis)
50−NN recall (left axis)
search time (righ axis)
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Recall and search time on while increasing candidate set size R.

Settings: 100M CoPhIR dataset, k = 512
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Efficiency of our Approach

Evaluation: Tradeoff

complexity of the PPPRank algorithm vs. candidate set reduction

PPP-Code / size of an object [bytes]
M-Index [ms] 512 1024 2048 4096

δ
ti
m
e 0.001ms 370 / 240 370 / 410 370 / 1270 370 / 1700

0.01ms 380 / 660 380 / 750 380 / 1350 380 / 1850
0.1ms 400 / 5400 400 / 5400 420 / 5500 420 / 5700
1ms 1100 / 52500 1100 / 52500 1100 / 52500 1100 / 52500

Search times [ms] of PPP-Codes / M-Index smaller search times are in boldface.

Settings: 10M ADJUSTABLE dataset, 10-NN recall = 85 %, k = 128;

PPP-Codes: R = 1000; M-Index: R = 400000
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Summary

Conclusions

The PPP-Codes technique

use multiple pivot spaces to encode data objects

rank data with respect to query within individual pivot spaces

final candidate set is aggregation of these rankings

efficient indexing and searching mechanisms are defined

The results show that

even two pivot spaces help, more than five do not help much

the candidate set is reduced by one–two orders of magnitude

the rank & merge algorithm is complex but usually worth
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