
Part V

Games and design of randomized algorithms



Chapter 5. MOMENTS AND DEVIATIONS

In this chapter we present several methods that make use of the second degree moments,
variance and standard deviation, for solving various problems related to randomized
algorithms.

We first show how so called second moment method can be used to determine
thresholds of some events.
Threshold of a sequence of events Ep,n, that depends on a probability p and a
size-parameter n,, is a number tE ,n such that if p < tE ,n, then the probability of the event
Ep,n goes to 0 (if n→∞), and if p > tE ,n, then the probability of Ep,n goes to 1.

We will then discuss, in various details, in this chapter also
three important problems: Occupancy (Balls-into-Bins)
problem, Stable marriage problem and Coupon selection
problem that have many applications.
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VARIANCE of the SUM of RANDOM VARIABLES

If Xi , i = 1, 2, . . . , n, are random variables, and

X =
n∑

i=1

Xi ,

then

VAR[X ] = E[X 2]− (E[X ])2 (1)

=
n∑

i=1

E[X 2
i ] +

∑
i 6=j

E[XiXj ]−
n∑

i=1

(E[Xi ])
2 −

∑
i 6=j

E[Xi ]E[Xj ] (2)

=
n∑

i=1

(E[X 2
i ]− (E[Xi ])

2) +
∑
i 6=j

(E[XiXj ]− E[Xi ]E[Xj ]) (3)

=
n∑

i=1

VAR[Xi ] +
∑
i 6=j

(E[XiXj ]− E[Xi ]E[Xj ]) (4)

Covariance of Xi and Xj , denoted by Cov(Xi ,Xj) is defined by:

E[XiXj ]− E[Xi ]E[Xj ] = E[(Xi − E[Xi ])(Xj − E[Xj ])]
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THRESHOLDS – BASICS

Many interesting/important graph properties have threshold functions in the family of
random graphs Gn,p.

Definition: The family of random graphs Gn,p is defined to be the family of all
graphs on n nodes where each edge is chosen with probability p.

Threshold for a property P of graphs from Gn,p is such a value p∗ that if p < p∗,
then the probability that a graph sampled from Gn,p has the property P goes to 0,
and if p > p∗, then such a probability goes to 1 (for n→∞).

Useful fact: Let X be a non-negative random variable with E[X ] = µ and VAR[X ] = σ2.
By Chebyshev’s inequality

Pr[|X − µ| ≥ λσ] ≤ 1

λ2
.

By choosing λ = µ
σ

, we get

Pr[X = 0] ≤ Pr[(X = 0) ∪ (X ≥ 2µ)] = Pr[|X − µ| ≥ µ] ≤ σ2

µ2
=

VAR[X ]

E [X ]2
. (5)

Therefore, if VAR[X ] = o(E[X ]2), we get Pr[X = 0]→ 0.
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CONDITIONS WHEN PROBABILITY GOES TO 0

Let E1, . . . , En be events having the same probability p and let Xi be the indicator
variable for Ei . Finally, let X =

∑n
i=1 Xi .

Denote by i v j the case that events Ei and Ej are dependent and i 6= j . By definition

VAR[X ] =
n∑

i=1

VAR[Xi ] +
∑
ivj

Cov(Xi ,Xj),

where
Cov(Xi ,Xj) = E[XiXj ]− E[Xi ]E[Xj ] ≤ E[XiXj ] = Pr[Xi ∩ Xj ].

Since Xi are Bernoulli random variables, it holds

VAR[Xi ] = p(1− p) ≤ p = E[Xi ] =⇒ VAR[X ] ≤
n∑

i=1

E[Xi ] +
∑
ivj

Pr[Xi ∩ Xj ]

By (5), and using the notation ∆∗ =
∑

ivj Pr[Xi ∩ Xj ], we get

Pr[X = 0] ≤ VAR[X ]

E[X ]2
≤ E[X ] + ∆∗

E[X ]2
=

1

E[X ]
+

∆∗

E[X ]2
,

Therefore, if E[X ]→∞ and ∆∗ = o(E[X ]2), then Pr[X = 0]→ 0.
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THRESHOLD FUNCTION for CLIQUE 1/2

For a graph G let SLC(G) be the size of the largest clique of G .
Theorem: Event SLC(Gn,p) ≥ 4 has a threshold (function) p∗ = n−2/3.

Proof: Let us consider a random Gn,p graph.
For any set S of 4 vertices of Gn,p let AS be the event that S forms a clique in G and let
XS be the indicator variable of AS .

Clearly, Pr[AS ] = p6 for any set S of 4 vertices.

If X =
∑

S,|S|=4 XS , then E[X ] =
(
n
4

)
· p6 ≈ n4p6

24
and, by Markov’s inequality

Pr[X ≥ 1] ≤ E[X ]

1

Therefore, (1): if p � n−2/3, then E[X ] = o(1). Hence

Pr[SLC(Gn,p) ≥ 4] = Pr[X ≥ 1]→ 0.
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THRESHOLD FUNCTION for CLIQUE 2/2

Let now (2): p � n−2/3.

Firstly, note that then E[X ] ≈ n4p6

24
→∞. Secondly, observe that two cliques are

dependent iff they intersect in at least two vertices.

Let now S and T be any two sets of four vertices:

1 If |S ∩ T | = 2, then Pr[AT |AS ] = p5. (Observe that for any fixed set S there are
O(n2) such sets T .)

2 If |S ∩ T | = 3, then Pr[AT |AS ] = p3. (Observe that for any fixed set S there are
O(n) such sets T .)

Therefore, for ∆∗ defined on previous slide it holds:

∆∗ =
∑
TvS

Pr[At ∩ AS ] ≤
∑
TvS

Pr[AT |AS ] ≈ np3 + n2p5.

Hence, if p � n−2/3, then E[X ]→∞, ∆∗ = o(E[X ]). Therefore,

Pr[SLC(Gn,p) < 4] = Pr[X = 0]→ 0.
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OCCUPANCY (BALLS-INTO-BINS) PROBLEM

PROBLEM: Each of m distinguishable objects (balls) is randomly and
independently assigned to one of n distinct classes (bins/boxes). How does
the distribution of balls into bins look like?

Subproblem 1: How many of the bins will be empty? For a given k
what is the probability that k boxes will be empty?

Subproblem 2: What is the maximum number of balls in a box?
(What is the probability pk that maximum number of balls in some box is
(at least) k?)

Subproblem 3: What is the expected number ek of boxes with k balls
for a given k?
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Subproblem 4: What is probability that all balls land
in different boxes? (For n = 365 and m < n we get
so-called birthday problem)

Surprisingly, these simple probability problems are at
the core of the analyses of many randomized
algorithms.
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Remainder I. - Mealy’s inequality

For arbitrary events ξ1, ξ2, . . . ξn

Pr

[
n⋃

i=1

ξi

]
≤

n∑
i=1

Pr(ξi)

Usefulness of this inequality lies in the fact that it makes no
assumption about dependencies among events!

Therefore, this inequality allows to analyse phenomena with very
complicated interactions (without revealing these interactions).
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Remainder III. - COMBINATORIAL INEQUALITIES– I.

Let us now present several combinatorial inequalities that are often used at the
analysis of algorithms. (

n
k

)
=

(
n

n − k

)
=

n!

k!(n − k)!

ex = 1 + x +
x2

2!
+

x3

3!
+ . . .

e−x > 1− x

ln(1 + x) = x − x2

2
+

x3

3
− x4

4
+ . . .

(
n
k

)
≤ nk

k!
,

(
n
k

)
≤
(ne
k

)k
,
(n
k

)k
≤
(
n
k

)
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For large n (
n

k

)
∼ nk

k!
.
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Remainder IV. - COMBINATORIAL INEQUALITIES – II

et ≥ 1 + t if t ∈ R.

If n ≥ 1 and |t| ≤ n, then

et
(

1− t2

n

)
≤
(

1 +
t

n

)n
≤ et .

For all t, n ∈ R+, it holds

(1 +
t

n
)n ≤ et ≤ (1 +

t

n
)n+t/2.

nth Harmonic number Hn is defined as follows

Hn =
n∑

i=1

1

i
= ln n + θ(1).
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BASIC RESULT for OCCUPANCY PROBLEM

Case: n = m
Notation: Xj – the number of balls in the j th bin.
E [Xi ] = 1 - this can be shown similarly as in case of the sailor problem.
Notation: ξj(k) – the event that bin j has k or more balls in it.

Analysis of ξ1(k)
The probability that bin 1 receives exactly i balls is(

n
i

)(
1

n

)i (
1− 1

n

)n−i

≤
(
n
i

)(
1

n

)i

≤
(ne

i

)i (1

n

)i

=
(e
i

)i
Therefore

Pr[ξ1(k)] ≤
n∑

i=k

(e
i

)i
≤
( e
k

)k (
1 +

e

k
+
( e
k

)2
+ . . .

)
and for k = k∗ =

⌈
e ln n
ln ln n

⌉
Pr [ξ1(k∗)] ≤

( e

k∗

)k∗ 1

1− e
k∗
≤ n−2.
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BASIC COROLLARIES

Problem: What is the probability that at least one bin has at least k∗ balls
in it?
Solution: It holds

Pr

[
n⋃

i=1

ξi (k
∗)

]
≤

n∑
i=1

Pr [ξi (k
∗)] ≤ 1

n
.

Corollary With the probability at least 1− 1
n no bin has more than

k∗ =
e ln n

ln ln n

balls in it.
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COMPLEXITY of SORTING

It is well known that for sorting n elements:

Worst case complexity is O(n lg n);

Average case complexity is O(n lg n).

Both bounds are with respect to the number of comparisons. Can we
do better? In some reasonable sense? In some interesting cases?
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Reminder - Binomial distribution

Let now values of a random variable Y be the number of successes of trials
with success probability p in n trials. Then

Pr(Y = k) =

(
n
k

)
pkqn−k

Such a probability distribution is called the binomial distribution and it
holds

EY = np VY = npq G (z) = (q + pz)n

and also
EY 2 = n(n − 1)p2 + np
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BUCKET SORT

Bucket sort is a deterministic sorting algorithm that, under certain
probabilistic assumptions on inputs, sorts numbers in the expected
linear time.

Suppose that we have a set of n = 2m integers that are to be
sorted and they are chosen independently and uniformly at random
from the interval [0, 2k) for a k ≥ m.

Using Bucket sort we can sort such numbers in the expected time
O(n).
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BUCKET SORT ALGORITHM - STAGE 1

Stage 1. All to be sorted numbers will go to n buckets in such a way that all
numbers whose first m bits represent a number j will go to the j-th bucket.

As a consequence, when j < l all elements in the j-th bucket comes before all
elements in the l-bucket once all elements are sorted.

If we assume that each element can be put in the appropriate bucket in constant
time, the above stage requires O(n) time.

Because of the assumption that the elements to be sorted are chosen uniformly,
the number of elements that land uniformly in a bucket follows the binomial
distribution B(n, 1n ) introduced in Chapter 3.
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BUCKET SORT ALGORITHM - STAGE 2

Sort each bucket using a standard quadratic time algorithm and concatenate all sorted
lists

Analysis; If Xi is the number of elements in the ith bucket then they can be sorted in
time cX 2

i for some constant c.

The expected time to do this sorting is therefore

E

[
n∑

j=1

cX 2
j

]
= c

n∑
j=1

E[X 2
j ] = cnE[X 2

1 ]

Since Xi is a binomial random variable B(n, 1
n

), by using the result from Chapter 3 we get

E[X 2
1 ] =

n(n − 1)

n2
+ 1 = 2− 1

n
< 2

and therefore the expected time of the bucket sort is at most 2cn.
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BIRTHDAY PARADOX

Let us assume that the birthday of each person in a room is a random day chosen
uniformly and independently from a 365-day year. If there are k such people in a room
than probability that each of them has birthday in a different day is

(1− 1

365
)(1− 2

365
)(1− 3

365
) . . . (1− k − 1

365
) =

k−1∏
j=1

(1− j

365
)

what equals to

k!

(
365
k

)
365−k .

Using the inequality 1− j
n
≈ e−j/n for j small - comparing to n - we have

k−1∏
j=1

(1− j

n
) ≈

k−1∏
j=1

e−j/n = e−
∑k−1

j=1
j
n = e−k(k−1)/2n ≈ e−k2/2n

Hence the probability that k people all have different birthday from a set of n possible
birthdays is 1

2
is approximately given by equation

k2

2n
= ln 2

what gives, for the case n = 365, k = 22.49.
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VARIATIONS on BIRTHDAY PARADOX

It is well known that if we have 23 (30) [50] people in one room, then the
probability that two of them have the same birthday is more than
50.7%(70.6%)[97%] -this is so called Birthday Paradox. In the case we have 57
[100] people in the room the probability is 99% [99.99997%]

More generally, if we have n objects and r people each choosing one object (and
several of them can choose the same object), then if r ≈ 1.177

√
n (r ≈

√
2λ),

then probability that two people choose the same object is 50% (1− eλ)%.
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Birthday paradox - graph - I.
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Birthday paradox - graph - II.
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ANOTHER VERSION of THE BIRTHDAY PARADOX

Let us have n objects and two groups of r people. If r ≈
√
λn then the

probability that someone from one group chooses the same object as
someone from the other group is 1− e−λ.
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STABLE MARRIAGE PROBLEM - INFORMAL FORMULATION

Given is n men and n women and each of them has ranked all members of
the opposite sex with a unique number between 1 and n in order to express
of his/her preferences.

Task: Marry all men and women together in such a way that there are no
two (unsatisfied) people of the opposite sex who would both rather have
each other than their current partners.

If there is a no dissatisfied couple in a (group) marriage we consider the
(group) marriage as stable.
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THE STABLE MARRIAGE PROBLEM

Consider a society of n men A,B,C , . . .
and n women a, b, c, . . .

A marriage is 1-1 correspondence between men and women of that society. Assume that

each person has a preference list of the members of the opposite sex, organised in a
decreasing order of desirability.

Example A : abcd
a : ABCD

B : bacd
b : DCBA

C : adcb
c : ABCD

D : dcab
d : CDAB

A marriage is said to be unstable if there exist two married couples X − x , Y − y such
that X desires y more than x

y desires X more than Y

Such a pair (X , y) is called dissatisfied.

The task is to find a stable marriage. (At least one always exist!)

Example of an unstable marriage: A− a, B − b, C − c, D − d .
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COMMENTS

The stable marriage problem, and its variations, form one of the most
famous and important groups of algorithmic problems with a variety of
interesting and important applications.

A related book: Donald E. Knuth: Stable marriage and its relation to
other combinatorial problems: an introduction to the mathematical
analysis of algorithms, CRM Proceedings and Lecture Notes,
Algorithms to deal with this type of problems are used, for example:

To assign graduates of medical schools in North America (about 30 000) to hospitals;
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EXISTENCE and OPTIMALITY of SOLUTIONS

NOTE 1 We will show later that a stable marriage always exists.

NOTE 2 A stable marriage assignment does not need to be optimal for all.

EXAMPLE: Let us have three men M1, M2 and M3 and three women W1, W2 and W3

with preferences:

M1 : W2W1W3, M2 : W3W2W1, M3 : W1W3W2

W1 : M2M1M3, W2 : M3M2M1, W3 : M1M3M2

There are three stable solutions:

All men get their first choice and women the third one:

M1W2,M2W3,M3W1

All get their second choice:

M1W1,M2W2,M3W3

Women get their first choice and men the third one:

M1W3,M2W1,M3W2
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A naive, but bad, randomized algorithm

1 Start with some marriage of all.

2 until marriage is stable do randomly choose a dissatisfied pair,
marry them and also their partners together

Algorithm is bad because a loop can occur.
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EXAMPLE 1

Let us have the followig preferences:

M1 : W3W2W4W1 M2 : W2W1W3W4

M3 : W2W4W1W3 M4 : W3W1W4W2

and

W1 : M1M2M4M3 W2 : M3M1M4M2

W3 : M3M2M4M1 W4 : M2M1M3M4

Successful developments of marriages:

M1W1 M2W2 M3W3 M4W4 −−unstable

M1W2 M2W1 M3W3 M4W4 −−unstable

M1W3 M2W1 M3W2 M4W4 −−unstable

M1W4 M2W1 M3W2 M4W3 −−!stable!
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EXAMPLE 2

For choices:

M1 : W2W1W3 M2 : arbitrary M3 : W1W2W3

and

W1 : M1M3M2 W2 : M3M1M2 W3 : arbitrary

we have the following cyclic development of marriages

M1W1 M2W2 M3W3

M1W2 M2W1 M3W3

M1W3 M2W1 M3W2

M1W3 M2W2 M3W1

M1W1 M2W2 M3W3

prof. Jozef Gruska IV054 5. Games and design of randomized algorithms 32/59



EXAMPLE 3

For choices

M1 : W1W2W3W4W5 M2 : W2W3W4W5W1 M3 : W3W4W5W1W2

M4 : W4W5W1W2W3 M5 : W5W1W2W3W4W5

and

W1 : M2M3M4M5M1 W2 : M3M4M5M1M2 W3 : M4M5M1M2M3

W4 : M5M1M2M3M4 W5 : M1M2M3M4M5

we have exactly 5 stable marriages

M1W1 M2W2 M3W3 M4W4 M5W5

M1W2 M2W3 M3W4 M4W5 M5W1

M1W3 M2W4 M3W5 M4W1 M5W2

M1W4 M2W5 M4W1 M4W2 M5W3

M1W5 M2W1 M4W2 M5W3 M5W4

In the x-th of the above marriages each man is married with his x-th choice.

prof. Jozef Gruska IV054 5. Games and design of randomized algorithms 33/59



PROPOSAL ALGORITHMS

The naive approach – to start with an arbitrary marriage and to try to stabilize it by
pairing up dissatisfied couples – does not always work.

MEN PROPOSAL ALGORITHM -“man proposes, woman disposes”
Assume that all men are numbered somehow.

At any step of the algorithm (due to Gale-Shapley), there will be a partial marriage, and
the lowest-number unmarried man M proposes ”marriage” to the most desirable women
W on his list who has not rejected him yet. The woman W then decides whether to
accept his proposal or to reject it.

The women W accepts the proposal if

she is not yet married or

she likes M more than her current partner.

The algorithm repeats the process and terminates after every person has been married. It
is a linear time algorithm, concerning the worst case complexity.

It is easy to see that the process terminates and resulting marriage is stable.
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CORRECTNESS of the ALGORITHM

Everyone gets married Observe that once a women gets married she will stay married
(though she can change her partners - even several times).

It cannot be the case that at the end there is a man and a woman who
are not married. Indeed, the men would have proposed her marriage at
some point and being unmarried she could not refused him.

Final marriage is stable Indeed, let at the end M be a men and W a women who are
married, but not to each other and they are dissatisfied. If M prefers W
over his current partner, he must have proposed marriage to W before he
did that to his current partner. If W accepted his proposal yet is not
married with him at the end, she must have changed him for someone
she likes more and therefore she cannot like M more than her current
partner. If W rejected his proposal, she was already married with
someone she liked more than M.
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COMPLEXITY of the PROPOSAL ALGORITHM

At each proposal step one women is eliminated from a man
list. Total number of proposals is therefore at most n2.

The result of the men-proposal algorithm does not depend
on the order men are chosen to make their proposals.
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PROPERTIES of the GALE-SHAPLEY-ALGORITHM

Gale-Shapley marriage is men-optimal and women-pessimal. To see that
consider the following definition of a feasible marriage.

A marriage between a man A and a woman B is called feasible if there
exists a stable pairing (marriage) in which A and B are married.

It is said that a marriage is men-optimal if every man is married with his
highest ranked feasible partner.

It is said that a marriage is women-pessimal if each woman is married with
her lowest ranked feasible partner.
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SOME APPLICATIONS

National residency matching program.

Dental residencies and medical specialities in the USA, Canada
and parts of UK

National university entrance exam in Iran

Placement of Canadian lawyers in Ontario and Alberta

Matching of new reform rabbis to their first congregation

Assignment of students to high-schools in NYC
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STABLE HUSBANDS

A stable husband of a woman, with respect to a given rankings, is a man she can
be married with in a stable marriage.

D. E. Knuth and et al. showed that

In case of n men and n women, any woman has at least ( 1
2 − ε) ln n and at most

(1 + ε) ln n different stable husbands in the set of all Gale-Shapley stable
matchings defined by these rankings, with probability approaching 1 as n→∞ , if
ε is any positive constant.

There is an algorithm that outputs all stable husbands of a given women.
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RANDOMIZED VERSIONS of the PROPOSAL ALGORITHM

Next goal: The average-case analysis of the proposal algorithm under the
assumptions:

men’s lists are chosen independently and randomly,
women’s lists can be arbitrary, but are fixed in advance.

Let Tp be the random variable that denote the number of proposals made during
the execution of the Proposal algorithm – what is proportional to the overall time
of algorithm.

Distribution of Tp seems to be very difficult to determine or even to analyse.

Our goal is to show that the expected value of the number of proposals is about
O(n lg n).
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Game “CLOCK SOLITAIRE”

We illustrate first, on a simple card game, a simple technique that allows to analyse
randomized algorithms with seemingly complex behaviour.

1. Game ”Clock Solitaire”

A standard deck of 52 cards is randomly shuffled and then divided into 13 piles (columns)
of 4 cards each. Each pile is arbitrarily labeled with a distinct symbol from {A, 2, . . . ,
10, J, Q, K}

A 2 3 4 5 6 7 8 9 10 J Q K
A 2 3 4 5 6 7 8 9 10 J Q K
4 3 4 5 6 7 8 9 10 J Q K A
2 4 5 6 7 8 9 10 J Q K A 3
3 5 6 7 8 9 10 J Q K A 2 2

On the first move a card is drawn from the pile labeled K.

At each subsequent move, a card is drawn from the pile whose label is the face value of
the card at the previous move.

The game ends, if an attempt is made to draw a card from an empty pile.

We win the game if, on termination, all 52 cards have been drawn. In all other cases we
lose the game. What is the probability to win the game?
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A 2 3 4 5 6 7 8 9 10 J Q K
A 2 3 4 5 6 7 8 9 10 J Q K
2 3 4 5 6 7 8 9 10 J Q K A
3 4 5 6 7 8 9 10 J Q K A 2
4 5 6 7 8 9 10 J Q K A 2 3

A 2 3 4 5 6 7 8 9 10 J Q K
A 2 3 4 5 6 7 8 9 10 J Q K
2 3 4 5 6 7 8 9 10 J Q K A
3 4 5 6 7 8 9 10 J Q K A 2
4 5 6 7 8 9 10 J Q K A 2 3

A 2 3 4 5 6 7 8 9 10 J Q K
A 2 3 4 5 6 7 8 9 10 J Q K
2 3 4 5 6 7 8 9 10 J Q K A
3 4 5 6 7 8 9 10 J Q K A 2
4 5 6 7 8 9 10 J Q K A 2 3
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PRINCIPLE od ”DEFERRED RANDOM DECISIONS”

1. Game ”Clock Solitaire” – repetition

A standard deck of 52 cards is randomly shuffled and then divided into 13 piles of 4 cards
each. Each pile is arbitrarily labeled with a distinct symbol from {A, 2, . . . , 10, J, Q, K}
At each subsequent move, a card is drawn from the pile whose label is the face value of
the card at the previous move.

The game ends, if an attempt is made to draw a card from an empty pile.

Observe that our game always terminates in an attempt to draw a card from the K-pile.
(Why?)

ANALYSIS of ALGORITHM How to choose the probability space? Let the random
choices unfold with progress of the game: that is at any step each of the yet unseen
cards is likely to appear.

Thus, the process of playing this game is equivalent to the process of repeatedly drawing
cards uniformly and randomly from the deck of 52 cards. A winning game corresponds
to the situation where the first 51 cards drawn in this fashion contain exactly 3 kings!

Probability of winning our game is therefore, clearly, 1/13.
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The idea of the Principle of Deferred Decisions is not to
assume that the entire set of random choices is made in
advance, rather, that at each step of the algorithm we fix
only that random choice that needs to be revealed at
that step.
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ANALYSIS of RANDOMIZED VERSION of PROPOSAL
ALGORITHM 1/2

Principle of deferred decision: Do not assume that entire set of random choices is
made in advance. Rather, at each step of the process fix only that random choices that
must be revealed at that step to the algorithm.

An application to the Proposal Algorithm: We will remove dependencies by do not
assuming that men have chosen their preference lists in advance.

We will assume that each time a man has to make a proposal he picks a random woman
from the list od women not already proposed by him, and proceeds to propose her.
(Clearly this is equivalent to choosing a random preference list prior the execution of the
algorithm.)

The only dependency that remains is that the random choice of a women at any step
depends on the proposals made so far by the current proposer.

To eliminate the above dependency let us change the algorithm. Each time a man makes
proposal he chooses randomly a woman from the set of all women. Call this new
algorithm Amnesiac Algorithm.
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ANALYSIS of RANDOMIZED VERSION of PROPOSAL
ALGORITHM 2/2

Let TA(TP) be the number of proposal made by the Amnesiac (Proposal) algorithm. It
is obvious that for all m

Pr[TA > m] ≥ Pr[TP ≥ m]

and therefore an upper bound on TA is an upper bound on TP .
The advantage of analyzing TA is that we need only to count the total number of
proposals made – without regard to the name of the proposer at each stage.

New algorithm terminates with a stable marriage once each woman has received at least
one proposal (for a “marriage”).

To task to determine a good upper bound of TA is a special case of the task to
determine such a bound for so-called Coupon Selection Problem discussed next.

At the end we will get:

Theorem For any constant c ∈ < and m = n ln n + cn

lim
n→∞

Pr [TA > m ] = 1− e−e
−c
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COUPON SELECTION PROBLEM

There are n types of coupons and at each time a coupon is chosen at random. The
task is to determine for each m ≥ n the probability of having collected at least one of
each of the n types of coupons in m trials.

Elementary analysis Let X be a random variable the value of which is the number of
trials required to collect at least one of each type of coupons.

Let C1, . . . ,CX denote a sequence of trials.

The i-th trial Ci will be called success if the coupon selected in the trial Ci was not
drawn in any of the first i − 1 selections.

Sequence C1, . . . ,CX will be divided into epochs. i-th epoch begins with the trial
following the i-th success and ends with the trial which is (i + 1)-th success.

Let Xi , 0 ≤ i < n, be the number of trials in the i-th epoch. Then

X =
n−1∑
i=0

Xi
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If pi is the probability of the success on any trial of the i-th epoch then

pi =
n − i

n
.

Random variable Xi is geometrically distributed, with the parameter pi , and therefore its
average value is E [Xi ] = 1

pi
= n

n−i
and its variance V [Xi ] = σ2

Xi
= 1−pi

p2i
= ni

(n−i)2
.

By the linearity of expectations we have:

E[X ] = E

[
n−1∑
i=0

Xi

]
=

n−1∑
i=0

E[Xi ] =
n−1∑
i=0

n

n − i
= n

n∑
i=1

1

i
= nHn.

Since Xi are independent

σ2
X =

n−1∑
i=0

σ2
Xi

=
n−1∑
i=0

ni

(n − i)2
=

n−1∑
i=0

n(n − i)

i2
= n2

n∑
i=1

1

i2
− nHn

Since limn→∞
∑n

i=1
1
i2

= π2

6
we have

lim
n→∞

σ2
X

n2
=
π2

6
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We show now that X unlikely deviates much from expectation

Let εri denote the event that a coupon of type i is not collected in the first
r trials.

Pr [εri ] = (1− 1

n
)r ≤ e−

r
n = n−β for r = βn ln n

Therefore, for r = βn ln n, we get

Pr[X > r ] = Pr [∪ni=1ε
r
i ] ≤

n∑
i=1

Pr[εri ] ≤
n∑

i=1

n−β = n−(β−1)

Next aim: To study the probability that X deviates from its expectation
nHn by the amount cn for any real c.
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A TECHNICAL LEMMA and MAIN THEOREM

Lemma Let c be a real number and m = n ln n + cn for a positive
integer n. Then, for any fixed k it holds

lim
n→∞

(
n

k

)
(1− k

n
)m =

e−ck

k!
.
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MAIN THEOREM 1/4

Theorem Let the random variable X denote the number of trials for collecting each of
the n types of coupons. Then for any c ∈ R and m = n ln n + cn

lim
n→∞

Pr[X > m] = 1− e−e−c

Proof Consider the event {X > m} =
⋃n

i=1 ε
m
i . By the principle of the

Inclusion-Exclusion

Pr

[
n⋃

i=1

εmi

]
=

n∑
k=1

(−1)k+1Pn
k (∗)

where

Pn
k =

∑
1≤i1<···<ik≤n

Pr

[
k⋂

j=1

εmij

]
.

Let
Sn
k = Pn

1 − Pn
2 + Pn

3 − · · ·+ (−1)k+1Pn
k

denote the partial sum formed by the first k terms in (∗)

By Boole-Bonferroni inequalities

Sn
2k ≤ Pr

[
n⋃

i=1

εmi

]
≤ Sn

2k+1

prof. Jozef Gruska IV054 5. Games and design of randomized algorithms 51/59



MAIN THEOREM 2/4

By symmetry, all the k-wise intersections of the events εmi are equally likely, and therefore

Pn
k =

(
n
k

)
Pr

[
k⋂

i=1

εmi

]
.

Probability of the intersection of k events εm1 , . . . , ε
m
k is the probability of not collecting

any of the first k coupons in m trials, namely (1− k
n

)m. Therefore Pn
k =

(
n
k

)(
1− k

n

)m
.

By the last Lemma, for m = n ln n + cn

limn→∞Pn
k =

e−ck

k !
= Pk — {notation}.

Let us denote also:

Sk =
k∑

j=1

(−1)j+1Pj =
k∑

j=1

(−1)j+1 e
−cj

j !
. (∗∗)

The right hand side of (∗∗) consists precisely of k terms of the power series expansion of

f (c) = 1− e−e−c

.
Hence

lim
k→∞

Sk = f (c).
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MAIN THEOREM 3/4

Therefore, for all ε > 0 there exists k∗ > 0 such that for any k > k∗

|Sk − f (c)| < ε.

Since limn→∞ Pn
k = Pk , we have limn→∞ Sn

k = Sk . Equivalently, for all ε > 0 and all k,
for all sufficiently large. n

|Sn
k − Sk | < ε

Thus, for all ε > 0 any fixed k > k∗, and n sufficiently large

|Sn
k − Sk | < ε, |Sk − f (c)| < ε

=⇒ |Sn
k − f (c)| = |Sn

k − Sk |+ |Sk − f (c)| < 2ε

and
|Sn

2k − Sn
2k+1| < 4ε.

As a consequence ∣∣∣∣∣Pr
[

n⋃
i=1

εmi

]
− f (c)

∣∣∣∣∣ < 4ε

and therefore

lim
n→∞

Pr

[
n⋃

i=1

εmi

]
= f (c) = 1− e−e−c
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MAIN THEOREM 4/4

what implies

lim
n→∞

Pr [X > n(ln n + c)] = 1− e−e
−c

Implications With extremely high probability, the number of trials, for
collecting all n coupon types, lies in a small interval centered about its
expected value.
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A SUMMARY of the ANALYSIS of STABLE MARRIAGE
PROBLEM

In case of the stable marriage problem of n men and women we have

The worst case complexity (of the number of proposals) in n2,

The average case complexity is O(n lg n).

Deviation is small from the expected case.
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APPENDIX
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SIMILAR PROBLEMS

Generalised stable marriage problem A man (woman) may not be
willing to marry some partners from the opposite sex and
may prefer to stay single.

Stable roommate problem is similar to the stable marriage problem,
but all participants belong to a single pool (Group).

Hospitals-students(medical) problem This differs from the stable
marriage problem that a women [hospital] can accept
”proposals” from more than one man [student].

Hospital-students problems with couples Similar problem as the above
one, but among students can be couples that have to be
assigned either to the same hospital or to a specific pair
of hospitals chosen by couples.

prof. Jozef Gruska IV054 5. Games and design of randomized algorithms 57/59



A COUPON SELECTION PROBLEM APPLICATION

Let packets be sent in a stream from a source node to a destination node
along a fixed path of routers.

Let us assume that the destination node would like/need to know which
routers the stream of packets has passed through.

Let us assume that each packet can store, randomly chosen, the name of
one of the routers it goes through.

Determining all the routers on the path is like a coupon collector’s problem.

This means that if there are n routters on the path then the expected
number of packets that need to be sent so the destination node knows all
routers is nH(n).
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EXERCISES

1 What is larger, eπ or πe, for the basis e of

natural logarithms
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