
Part VIII

Markov chains - random walks



Chapter 8. RANDOM WALKS - MARKOV CHAINS/MODELS

Random walks on graphs are a very simple, interesting and fundamental
tool with surprisingly many applications in informatics and also in
mathematics and natural sciences. Design and analysis of randomized
algorithms is one of them.

The concept of a random walk is closely related with that of Markov
chain/model – one of the key concepts of discrete stochastic processes.
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APPLICATIONS

In physical sciences, Markov chains provide a fundamental
model for the emergence of global properties from local
interactions.

In informatics, random walks provide a general paradigm
for random exploration of an exponentially large
combinatorial structures (for example graphs), by a
sequence of simple and local transitions.
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HIDDEN MARKOV MODELS

Hidden Markov Model (HMM) is a Markov model,
with random transitions among states, extended by
random outputs of the states. HMM works in such a
way that an observer can see only a sequence of states’
outputs and not the internal structure (states,
transition and emission probabilities) of the underlying
Markov model.
Hidden Markov Model (HMM), has a lot of applications, especially in artificial
intelligence.

For example, almost all fast speech and patterns recognition systems use HMM.
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DEVELOPMENT of MARKOV CHAIN

The concept of Markov chain introduced Andreei Andreevich
Markov in 1906, in order to consider the case of having a sequence
of random experiments in which result of any experiment depends also
on the result of the previous experiment.

Before that only such sequences of random experiments were
considered where the result of each random experiment was fully
independent from all previous experiments.
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UNIVERSALITY of QUANTUM RANDOM WALKS

It can be also shown that any

quantum evolution

can be seen as so-called

continuous quantum walk.
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BASIC CONCEPTS I

Notation Let G = (V ,E) be a connected, undirected, graph with n nodes (in V ) and m
edges (in E). For a node v ∈ V , let ΓG (v) denote the set of neighbors of v in G .

A random walk on G is the following sequence of moves of the process that starts in
some node v0 and then:

a neighbor v1 of v0 is chosen, randomly and independently, and then the
process moves (walks) from v0 to v1; afterwards a neighbor v2 of v1 is chosen
randomly and independently and the process walks from v1 to v2; the process
continues to walk this way . . .for ever.

Typical problems to explore for a given graph G :

What is the expected number of steps to get from a given node u to a given node v .

What is the expected number of steps needed to visit all nodes of G when starting
in a given node u.
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DRUNKARD’s WALK

Let a drunken seaman walk on a linear, both sides infinite graph, each time
choosing a step right or left with the same probability.

What are the probabilities for such a drunken man to be in a particular
position after some steps in case he starts in some other position.
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EXAMPLE

Let

G = Kn be the complete graph of n nodes

u 6= v be any two vertices of G .

It holds:

The expected number of steps of a random walk that begins in u
and ends when first reaching v is

???????
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Simple hypercubes
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6-d hypercube
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EXAMPLE - to finish

Let

G = Kn be the complete graph of n nodes

It holds:

The expected number of steps of a random walk in Kn that begins
in a fixed node u and ends when first reaching a fixed node v is

p = 1 · 1

n − 1
+ (1 + p) · n − 2

n − 1

p = n − 1

prof. Jozef Gruska IV054 8. Markov chains - random walks 12/110



The expected number of steps to visit all nodes in G
starting from any node u is

(n − 1)Hn,

where Hn is so called Harmonic number
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A RELATED PROBLEM - COUPON SELECTION

Coupon selector problem: There are n types of coupons and at
each time a coupon is chosen randomly and returned.

It has been shown that the average number of trials needed to have a
coupon of each type is

nHn.
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EXAMPLE

Let us consider graph K3 with the initial probabilities of its three nodes, say A0, A1, A2,
being

p0, p1, p2

and let 1/2 be the probability of the transmission through through any edge.

If p is the initial probability of a node X, then probability of being in the same node after
one step is

P1 = (1− p)
1

2
=

1

2
− p

2
,

after two steps is

P2 = (1− (1− p)
1

2
)

1

2
=

1

2
− 1

4
+

p

4

and after i steps the probability is

Pi =
i∑

j=1

(−1)j+1 1

2j
+ (−1)i

p

2i
.

Therefore

lim
i→∞

Pi =
1

3
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EXAMPLE – 2-SATISFIABILITY

A simple polynomial-time (Monte Carlo) algorithm will be given to solve
2-SAT problem (for a formula in conjunctive normal form in which each
clause having two literals) satisfiable with a single assignment.

Algorithm

1 Start with an arbitrary assignment.

2 while there is an unsatisfied clause C ,
choose randomly one of two literals of C and complement its value in
the current assignment.

Theorem The expected number of steps of the above algorithm at finding
a satisfying assignment is O(n2) (where n is the number of variables).
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RELATION TO A RANDOM WALK ON THE LINE

Let A be a particular satisfying assignment.

The progress of the above algorithm can be represented by a particle moving between
integers {0, 1, . . . , n} on the real line. The position of the particle will always indicate
how many variables in the current assignment have the correct value (as in A).

Crucial observation. In an unsatisfied clause at least one of two literals has an incorrect
value. Therefore at each step of the algorithm with probability 1

2
we increase by one the

number of variables having their correct value; and with probability 1
2

the number of
variables having correct value is decreased by one. The motion of the particle therefore
resembles a random walk on the line (that is on the linear graph).
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STOCHASTIC PROCESSES in RANDOMIZED ALGORITHMS

A stochastic process is a sequence of random variables {Xt}t≥1, where we think of values
of Xt as values (states) of the process at time t.

Two types of stochastic processes come up over and over again in the analysis of
randomized algorithms:

1 Martingale, where values of each next variable may depend, even in a complicated
way, on the past history, but its expectation is 0.

2 Markov chain where next state depends always only on the current state and not on
ways to get there - not on the past history.

The most useful algorithmic property of Markov chains, to be explored in the next, is
their convergence to a fixed (probability) distributions on states.
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MARKOV CHAINS - 1st DEFINITION

A Markov chain is a discrete-time stochastic process defined over a set of states S in
terms of a matrix P of transition probabilities

P(i , j) = pij = the probability that the next state will be j

if the current state is i .

Probability conditions: For any i , j it has to hold

0 ≤ pij ≤ 1 and
∑
j

pij = 1.

Denote Xt the state of the Markov chain at time t.

The stochastic process {Xt}∞t=0, specifying the history of the evolution of the Markov
chain at time t, has the following memoryless property:

The future behaviors of a Markov chain depends on its current state, and not how the
chain arrived at the current state. That is, it holds, for any t ≥ 1:

Pr[Xt+1 = j |X0 = i0,X1 = i1, . . . ,Xt = it = i ] = Pr[Xt+1 = j |Xt = i ] = pij .
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NOTE

Note: Markov chains do not need to have prespecified
initial states.

In general, initial states are chosen according to some
probability distribution X0 over S .

Such a distribution is called the initial (probability)
distribution.
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MARKOV CHAIN –2nd DEFINITION

A Markov chain is a discrete time stochastic process {Xk}k≥0 of random variables with
values in a countable set I such that for every k ≥ 1 and every i0, i1, . . . , ik from I we have

Pr[Xk = ik |Xk−1 = ik−1, . . . ,X0 = i0] = Pr[Xk = ik |Xk−1 = ik−1] = pik−1 ik .

The matrix P(i , j) = pij is called the transition matrix of one-step transition
probabilities.

k-steps transition probabilities p
(k)
ij are defined by

p
(k)
ij = Pr[Xm+k = j |Xm = i ]

and they do not depend on m.

If we define a matrix P(k) by P(k)(i , j) = p
(k)
ij , then (Chapman-Kolmogorov equations)

P(k+m) = P(k)P(m).

The matrix P(k) is said to be the k-steps transition matrix.
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DETAILS of MARKOV’s CHAIN STEPS

Rows of all k-steps transition matrices have non-negative entries and sum up to 1. Such
matrices are called stochastic matrices.

A probability distribution over states of a Markov chain
with a transition matrix P at any time t can be given by a
row vector X , where

xi = Pr[Xt = i ].

Distribution vector at time t + n is then given by vector
XPn.
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BASIC REACHABILITY CONCEPTS

A state j is called reachable/accessible from the state i if

there is a k > 0 such that p
(k)
ij > 0.

We say that states i and j are called mutually reachable if i is
reachable from j and vice verse.

A Markov chain is called irreducible, if any two of its states are
mutually reachable.
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GENERAL OBSERVATION

Systems represented by Markov chains change randomly and therefore it is
generally impossible to determine the exact state of the system in the
future.

However, we often can determine various useful statistical properties
of Markov chains.
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EXAMPLE - EATING HABITS

Example A creature in ZOO eats once a day, either grapes, or cheese, or lettuce,
according to the following rules:

If it ate cheese yesterday it will not eat it today and will eat lettuce and grapes with
the same probability 0.5.

If it ate grapes yesterday, it will eat today grapes with probability 0.1 cheese with
probability 0.4 and lettuce with probability 0.5

If it ate lettuce yesterday, it will eat grapes with probability 0.4 and cheese with
probability 0.6.

These eating habits can be modelled by Markov chain in the next figure.
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MARKOV CHAIN for EATING HABITS

Markov chains are often described by a directed graph with edges labelled by probabilities
for going from one state/node to another one.

letuce

cheese grapes

0.5

0.5

0.4

0.1

0.5
0.40.6

Eating habits of a creature.

One statistical property that can be computed is the percentage of days the creature eats
grapes (or cheese).
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EHRENFEST MODEL

There are two urns that, in total, always contain four balls. At each step, one of the balls
is chosen at random and moved to other urn.

If we choose as states number of balls in the first urn, then the transition matrix, where
rows and columns are labelled (from the top to bottom and from the left to right) 0, 1,
2, 3, 4 looks as follows

P =


0 1 0 0 0

1/4 0 3/4 0 0
0 1/2 0 1/2 0
0 0 3/4 0 1/4
0 0 0 1 0
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ABSORBING DRUNKARD’s WALK

A drunk man walks on a 5 nodes (0, 1, 2, 3, 4) linear graph, where leftmost node (0) is his
home and rightmost one (4) is a bar. If he is at home or in bar he keeps staying there.
Otherwise he moves with probability 1/2 to left node and probability 1/2 to right node.

The transition matrix has therefore the form

P =


1 0 0 0 0

1/2 0 1/2 0 0
0 1/2 0 1/2 0
0 0 1/2 0 1/2
0 0 0 0 1


where rows and columns are labeled by 0, 1, 2, 3, 4 and P(i , j) is probability that if first
urn has i balls, then after one step it has j balls.
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ABSORBING MARKOV CHAINS

Definition A state si of a Markov chain is called absorbing if it is impossible to leave it
(i.e. pii = 1). A Markov chain is called absorbing if it has at least one absorbing state,
and if from any state one can go to an absorbing state, in some number of steps.

The Drunkard’s walk is an example of an absorbing Markov chain.

If the transition matrix of a Markov walk has a absorbing states and t not absorbing
states, one can renumber states so that all first t rows and columns represent not
absorbing states and remaining ones absorbing states. The matrix has then the following
canonical form:

P =

(
Q R
0 I

)
where Q is a t × t matrix, R is a t × a matrix, O is a a× t zero matrix and I is a× a
identity matrix, with first t rows and columns labeled by not absorbing states. This
means that for any integer n,

Pn =

(
Qn ∗
O I

)
where ∗ is a matrix the precise form of which will not be important in the following.
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BASIC CONCEPTS – I.

Given an initial state X0 = i , the probability that the first transition into state j
occurs at time t is given by

r
(t)
ij = Pr[Xt = j and Xs 6= j for 1 ≤ s < t |X0 = i ].

Given an initial state X0 = i , then the probability that there is a visit to state j at
some time t > 0 is given by

fij =
∑
t>0

r
(t)
ij .

fii is the probability that Markov chain will return to the state i at least once when
started in the state i .

If fii = 1 the state i is called persistent/recurrent (vracajuci sa); otherwise it is called
transient (prechodný). A Markov chain is recurrent if every its state is recurrent. All
states of an irreducible Markov chain are recurrent.

If fii < 1, then each time the chain is in the state i , with probability 1− fii will never
return again to i . It therefore holds:

Pr[The number of visits to i from i equals k] = f kii (1− fii ).
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BASIC CONCEPTS II.

Denote as the hitting time (čas dosiahnutia/riešenia) hij the
expected number of steps needed to visit the state/node j for the first
time when starting from the state/node i . Clearly, it holds

hij =
∑
t>0

tr
(t)
ij .

If hii <∞, then the state i is called positive (non-null)
recurrent/persistent; otherwise it is called
null-recurrent/persistent.
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If a state i is reachable from itself, then the greatest
common divisor of the set of positive k ’s such that
p

(k)
ii > 0, is called the period of i and is denoted by di .

If di = 1, then the state i is said to be aperiodic.

recurrent is called ergodic.
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EQUIVALENT DEFINITIONS

A state i has a period k if any return to the state i must occur in time
steps that are multiple of k .

A state i is called aperiodic - if it is not periodic for any k > 1.

A state i is said to be transient, if given that we start in the state i ,
there is non-zero probability that we will never return to i .

If a state i is not transient, then it is called recurrent.

prof. Jozef Gruska IV054 8. Markov chains - random walks 33/110



SUMMARY

A state i is

transient if fii < 1, hii =∞;

null recurrent if fii = 1, hii =∞;

non-null recurrent if fii = 1, hii <∞.
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EXAMPLE of a Markov chain with null-recurrent states

Consider a Markov chain whose states are all positive integers.

From each state i the next states are the state i + 1 (with probability i
i+1

) and the state

1 (with probability 1
i+1

)

Starting at state 1, the probability of not having returned to state 1 within the first t
steps is

t∏
j=1

j

j + 1
=

1

t + 1
.

Hence the probability of never returning to state 1 from 1 is 0, and state 1 is recurrent.
It holds also

r t1,1 =
1

t
· 1

t + 1
=

1

t(t + 1)
.

However, the expected number of steps until the first return to state 1 from state 1 is

h1,1 =
∞∑
t=1

t · r t1,1 =
∞∑
t=1

1

t + 1
.

which is unbounded.

However, it holds: In a finite Markov chain at least one state is recurrent and all
recurrent states are positive recurrent.
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ERGODIC MARKOV CHAINS REVISITED

An equivalent definition of ergodic Markov chains.

Definition A Markov chain with a transition matrix P is called
ergodic if it is possible to go from every state to every state and there
is an integer n such that all entries of the matrix Pn are positive.
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ERGODIC THEOREM

Let us have an ergodic Markov chain with the set of states S = {1, . . . , n}. Then, it
holds:

There exists a vector π = (π1, . . . , πn) such that for every i , j ∈ S it holds

πj = lim
k→∞

p
(k)
ij

and the limit does not depend on i .

The vector π is the only non-negative solution of the system of linear equalities

πj =
n∑

i=1

πipij ,
n∑

j=1

πj = 1.

The vector π satisfies the identity π = πP.

For every 1 ≤ i ≤ n, it holds that fii = 1 and hii = 1
πi
.

If N(i , t) denotes the number of visits to the state i within the t first steps, then

lim
t→∞

N(i , t)

t
= πi .

Implications: Ergodic Markov chains always “forget”, after a while, their initial
probability distribution.
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WEATHER FORECAST

The following Markov chain depicts probabilities for going from sunny days to rainy and
vice verse.

Sunny
day

Rainy
day

0.9

0.1

0.5

0.5

Transition matrix has the form

P =

(
0.9 0.1
0.5 0.5

)

and the stationary probability distribution is π = (0.833, 0.167). It holds πP = π.

prof. Jozef Gruska IV054 8. Markov chains - random walks 38/110



EXAMPLE - QUEUE - Qn - I.

Let us consider, for any integer n, the bounded queue Qn in which each time moment
exactly one of the following steps happen.

If a queue has fewer than n customers, then with probability λ a new customer joins
the queue.

If the queue is not empty, then with probability µ the head of the line is served and
leaves the queue.

With remaining probability, the queue is unchanged.

Let us consider stochastic process with Xt being the number of customers at time t. This
is a Markov chain and its transition matrix has the following non-zero entries:

prof. Jozef Gruska IV054 8. Markov chains - random walks 39/110



EXAMPLE - QUEUE - Qn - II.

Pi ,i+1 = λ if i < n;

Pi ,i−1 = µ if i > 0;

Pi ,i =

 1− λ if i = 0;
1− λ− µ if 1 ≤ i ≤ n − 1;
1− µ if i = n;

This Markov chain is ergodic and therefore it has a unique stationary
distribution π. It holds

π0 = π0(1− λ) + π1µ

πi = πi−1λ+ πi (1− λµ) + πi+1µ, 1 ≤ i ≤ n − 1

πn = πn−1λ+ πn(1− µ)
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EXAMPLE - QUEUE - Qn - III.

From that one can show that

πi = π0

(
λ

µ

)i

is the solution of the above system of equations. Since

1 =
n∑

i=0

πi =
n∑

i=0

π0

(
λ

µ

)i

it holds

π0 =
1∑n

i=0(λ/µ)i
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MARKOV CHAINS for GRAPHS

Let G = (V ,E) be a connected, non-bipartite, and undirected graph with |V | = n and
|E | = m. G induces a Markov chain, denoted by MG , states of which are nodes of G and
for any two nodes u, v ∈ V

P(u, v) =

{ 1
d(u)

, if (u, v) ∈ E ;

0, otherwise;

where d(u) is the degree of u (in G).

Properties of MG

MG is irreducible.

Periodicity of MG is the greatest common divisor of the length of all closed walks in
G .

Since G is undirected, there are closed walks of length 2;

Since G is non-bipartite, it has odd cycles and therefore the greatest common divisor
of all closed walks is 1. Hence, MG is aperiodic.
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STATIONARY DISTRIBUTION of MARKOV CHAINS on GRAPHS

Ergodic theorem therefore implies that MG has a unique
stationary distribution π. This π is easy to determine.
Indeed, it holds

Lemma For all v ∈ V , πv = d(v)
2m . Proof Let [πP]v be the

v -th component of πP . Then

πv = [πP]v =
∑
u

πuP(u, v) =
∑

(u,v)∈E

d(u)

2m
× 1

d(u)
=

∑
(u,v)∈E

1

2m
=

d(v)

2m
.
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Corollary: For all v ∈ V , hvv = 1
πv

= 2m
d(v) .

Comment: Google’s page ranking algorithm is essentially
a Markov chain over the graph of the web.
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APPLICATIONS of MARKOV CHAINS

Physics - especially thermodynamics and statistical mechanics.

Chemistry

The PageRank of a webpage, as used by Google, is defined by a Markov chain. It is
the probability to be at page i in the stationary distribution on the following Markov
chain on all known webpages.

If N is the number of known webpages, and a page i has links to ki webpages, then
the probability to go to any of these pages is

α

ki
+

1− α
N

and the probability to go to any other page is

1− α
N

,

where the parameter α (experimentally chosen) is about 0.85.

Economics and finance

Social sciences

Mathematical biology

Algorithmic music composition
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APPLICATIONS - SAMPLING

APPLICATONS - SAMPLING
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SAMPLING

Sampling in a set S according a given probability
distribution π, on elements of S , is a picking up an
element x ∈ S with probability π(x).
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MONTE CARLO ESTIMATION OF π

Let Z = (X ,Y ) be a point chosen randomly in a 2× 2 square centered in (0, 0).

This is equivalent to choosing X and Y randomly from interval [−1, 1].

Let Z be considered as random variable that has value 1 (0) if the point (X ,Y ) lies
in the circle of radius 1 centered in the point (0, 0).

Clearly

Pr(Z = 1) =
π

4

If we perform such an experiment m times and Zi be the value of Z at the ith run,
and W =

∑m
i=1 Zi , then

E[W ] = E

[
m∑
i=1

Zi

]
=

m∑
i=1

E[Zi ] =
mπ

4

and therefore W ′ = (4/m)W is a natural estimation for π
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A natural question now is how good is the estimation of π
that we get from

E[W ] =
mπ

4
W ′ = (4/m)W

An application of the Chernoff bound gives:

Pr(|W ′ − π| ≥ επ) = Pr
(∣∣∣W − mπ

4

∣∣∣ ≥ εmπ

4

)
= Pr([W − E[W ] ≥ εE[W ])

≤ 2e−mπε
2/12

Therefore, taking m large enough we get an arbitrarily
good approx. of π
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SAMPLING

Sampling in a set S according a given probability
distribution π, on elements of S , is a picking up an
element x ∈ S with probability π(x).
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HOW to do SAMPLING?

In the previous example the Monte Carlo method used a uniform sampling in a square to
achieve a counting - to determine the value of π.

This method can be generalised. In many cases we can count the number of sets with a
special property P in a graph in case we can generate almost uniform sample from the
sets with the property P.

In various other cases we can do efficient computation provided we can implement
sampling according to a fixed given probability distribution.

A Markov-chains-induced Monte Carlo method provides a very general approach to
sample according to a desired probability distribution.

The basic idea is to create an Ergodic Markov Chain whose states form the sample space
and whose stationary distribution is the required sampling distribution.

Let X0,X1, . . . be a run of such a Markov chain. The chain converges to the stationary
distribution from any state X0 and so after a sufficiently large number of steps r , the
distribution of the state Xr will be close to the stationary distribution and so it can be
used for a sampling. We can repeat the same argument starting with Xr and getting to
X2r and so on.
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DESIGN of MARKOV CHAINS with UNIFORM STATIONARY
DISTRIBUTION - I.

We show first how to construct a Markov Chain with a stationary
distribution that is uniform over the given state space Ω.

The first step is to define on Ω a neighbourhood relation - that is to make
out of Ω a graph - and in such a way that the graph obtained will be
irreducible.

The second step is to define transition probabilities in such a way that the
resulting stationary distribution is uniform.

The next lemma show that this can be done in case we can introduce also
self-loops.
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DESIGN of MARKOV CHAINS with UNIFORM STATIONARY
DISTRIBUTION - II.

Notation: For any x ∈ Ω let N(x) be the set of
neighbours in the created graph and let
M > N = maxx∈Ω |N(x)|.

Lemma: For a finite state space Ω and a given
neighbourhood structure and any M > N design a Markov
chain such that for any x , y ∈ Ω

Px ,y =


1/M if x 6= y , y ∈ N(x);
0 if x 6= y , y 6∈ N(x);
1− N(x)/M if x = y ;

Then if this chain is irreducible and aperiodic, then its
stationary distribution is the uniform distribution.
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EXAMPLE - INDEPENDENT SETS of a GRAPH - I.

A set S of nodes of a graph G is called independent if no
two nodes in S are connected by an edge in G .

prof. Jozef Gruska IV054 8. Markov chains - random walks 54/110



EXAMPLE - INDEPENDENT SETS of a GRAPH - II.

Consider a Markov chain, whose states are independent sets of a graph
G = (V ,E ).

1 Let X0 be an arbitrary independent set in G .
2 To compute Xi+1 do the following

choose a node v uniformly and randomly from V ;
if v ∈ Xi , then Xi+1 = Xi − {v};
if v 6∈ Xi and if adding v to X still gives an independent set, then Xi+1 = Xi ∪ {v};
otherwise set Xi+1 = Xi

Using the construction from previous lemma one can show that if x , y are
neighbouring independent sets then Px ,y = 1/|V | and the stationary
distribution is the uniform distribution.
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EXERCISES

1 From a bag of white and black balls you should pick up a white
(black) ball with probability 1

3
( 2

3
). How can you do that?

2 You have 11 boxes of balls. You should pick
a ball from the first box with probability 1

36
;

a ball from the second box with probability 2
36

;

a ball from the third box with probability 3
36

;

a ball from the fourth box with probability 4
36

;

a ball from the fifth b0x with probability 5
36

;

a ball from the sixth b0x with probability 6
36

;

a ball from the seventh box with probability 5
36

;

a ball from the eighth box with probability 4
36

;

a ball from the ninth box with probability 3
36

;

a ball from the tenth box with probability 2
36

;

a ball from the eleventh box with probability 1
36

;

How can you do that?
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The METROPOLIS ALGORITHM

This is a general method to transform any irreducible Markov chain on a state space Ω to
a Markov chain with a required stationary distribution.

Let us assume that we have already designed an irreducible state space for our Markov
chain and now we want to construct a Markov chain on this state space with a stationary
distribution πx = b(x)/B, where b(x) > 0 for all x ∈ Ω and B =

∑
x∈Ω b(x) is finite.

Theorem For a finite state space Ω, neighbourhood structure {N(x) | x ∈ Ω},
N = maxx∈Ω |N(x)| let M ≥ N be any such number. For any x ∈ Ω, let πx be the
desired probability of state x in the stationary distribution. Consider a Markov chain with

Px,y =


; 1
M
·min{1, πy/πx} if x 6= y ∈ N(x);

0 if x 6= y 6∈ N(x);
1−

∑
y 6=x Px,y if x=y;

Then, if this chain is irreducible and aperiodic, the stationary distribution is given by
probabilities πx .
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DOING SAMPLING - once more

In many important applications we need to do sampling/use of elements of a set S
according to a given probability distribution π on S .

One way to do that is to design such a Markov chain M on the set S that has π as the
stationary distribution and then to start a random walk on M and to stop when one can
expect that stationary distribution is (almost) reached.

To find time for halting we need an estimation of convergence rate of any initial
distribution to the stationary one.
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CONVERGENCE of RANDOM WALKS

CONVERGENCE Of RANDOM WALKS

prof. Jozef Gruska IV054 8. Markov chains - random walks 59/110



CONVERGENCE of RANDOM WALKS - BASICS

In the next slides we deal with the following problem: how many steps are needed for a
random walk (that starts at some node), to converge to the stationary distribution -that
means to be in each node with probability specified by the stationary distribution.

We present two techniques to deal with the above problem.

Stopping rule method calculates the rate of convergence directly by defining a proper
stopping rule.

Coupling method reduces the problem of determining the rate of convergence to that of
calculating the number of steps needed to meet another, imaginary,
random walk, that starts at the stationary distribution.

PRELIMINARIES
Variation distance:, ||P − Q||, between two probability distributions, P and Q, on a set
I of states is defined by

||P − Q|| = max
I ′⊆I
|P(I ′)− Q(I ′)|.

Lemma: Let P and Q be probability distributions over a set I of states. Then

||P − Q|| =
1

2

∑
i∈I

|P(i)− Q(i)|.
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STOPPING RULE (TIME)- REPETITION

Given is a sequence of random variables Z1,Z2, . . ., and another random variable T ,
whose range are natural numbers. T is a stopping rule for random variables Z1,Z2, . . .,
if, for every i , the event T = i is independent of variables Zj , for all j > i .

The idea is that the variables Zi are observed in the order one at each time step: at first
Z1, then Z2 and so on. The value of the variable T then shows the number of variables
observed when such a process has to stop.

It is sometimes required that Pr(T <∞) = 1, or that T is almost surely finite.

The intuition behind such a definition of the stopping rule is that at any particular time it
is enough to look at the sequence so far in order to be able to tell if it is time to stop.
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STOPPING RULE - OBSERVATIONS

Stopping rule can be seen as a mechanism for deciding whether to continue or to stop a
process on the basis of the present position and past events, and which will always lead
to a decision to stop at some time.

Examples Consider a gambler playing roulette, starting with $ 100.

Playing one and only one game corresponds to the stopping time T = 1, and this is
a stopping rule.

Playing until she either runs out of money or has played 500 games is a stopping rule.

Playing until she doubles her money is not a stopping rule (here it is assured that
betting systems has some limitations on doubling or tripling the money).

Playing until she is the maximum amount ahead she will ever be is not a stopping
rule (as it requires information about future, present and past).
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STRONG UNIFORM STOPPING RULE

Given are random variables Z1,Z2, . . ., and a random variable T , whose range are natural
numbers. T is a stopping rule for variables Z1,Z2, . . ., if, for every i , the event T = i is
independent of variables Zj , for all j > i .

For a finite ergodic Markov chain, a strong uniform stopping time T is a stopping rule
which satisfies the condition

Pr[Zk = i |T = k] = πi ,

where Zk is the state at the kth step in the Markov chain, and πi is the probability, under
the stationary distribution, of being at the state i .

Next theorem relates strong uniform stopping rule (time) and the rate of convergence of
the random walk.
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Theorem Let π be the stationary distribution of a random walk, and Q(t) be the
probability distribution after t steps. In addition, let T be a strong uniform stopping
time. Then

||Q(t)) − π|| ≤ Pr[T > t].

Proof. Let Xt be the random variable producing states from I visited by a random walk
at step t.

∀I ′ ⊆ I ,Q(t)(I ′) = Pr[Xt ∈ I ′]

= (
∑
j≤t

Pr[(Xt ∈ I ′) ∩ (T = j)]) + Pr[(Xt ∈ I ′) ∩ (T > t)]

=
∑
j≤t

Pr[Xt ∈ I ′|T = j ]Pr[T = j ]

+ Pr[Xt ∈ I ′|T > t]Pr[T > t]

=
∑
j≤t

π(I ′)Pr[T = j ] + Pr[Xt ∈ I ′|T > t]Pr[T > t]

= π(I ′)(1− Pr[T > t]) + Pr[Xt ∈ I ′|T > t]Pr[T > t]

≤ π(I ′) + Pr[T > t]Pr[Xt ∈ I ′|T > t] ≤ π(I ′) + Pr[T > t]
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The third equality from the end follows from the fact that T is a strong
uniform stopping time and that if a random walk is in a stationary
distribution, then it stays in it forever.

The last but one equality follows from the fact that∑
j≤t

Pr[T = j ] = Pr[T ≤ t] = 1− Pr[T > t].

Finally, the last equality implies, since both Pr[Xt ∈ I ′|T > t] and π(I ′) are
at most 1,

∀I ′ ⊆ I , |Q(t)(I ′)− π(I ′)| ≤ Pr[T > t].
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EXAMPLE – HYPERCUBE

We show how fast converges to the stationary distribution a special random walk on a
hypercube.

Consider the following random walk

1 Choose uniformly a neighbor (of the currently visited node).

2 With probability 1
2

move to the chosen node; otherwise do not move at all.

(Last trick is needed in order to have an ergodic (aperiodic) Markov chain.)

Let us define the stopping rule T to be the number of coordinates chosen so far (even if
not all choices of coordinates yielded a move).

Note that T is a strong uniform stopping rule (informally said, this happens because we
have an equal probability of being at any node after all coordinates are chosen).

In order to be able to use the last theorem we need to determine Pr[T > t]. However,
this is exactly the coupon selector problem, since we can see coordinates as being
coupons that need to be collected.

For coupon selector problem, the expected number of trials needed to see all n coupons is
O(n lg n). Therefore, the expected number of steps until we choose all coordinates is
O(n lg n).

Using Markov’s inequality we get Pr[T > t] ≤ E[T ]
t

= O( n lg n
t

).
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EXAMPLE – CARD SHUFFLING I.

Suppose we want to shuffle a pack of n cards, numbered 1, 2, . . . , n, according to
the following policy:
Move the top card to a random location in the pack.

How long it will take to have all cards in a random distribution (to reach the
stationary distribution)?

This problem can be viewed as a random walk in a graph with n! vertices
corresponding to all possible permutations. Edges are determined by the shuffling
policy.

Denote by BOTTOM the card that was originally at the bottom of the pack.

Let T be the number (name) of the card moved from the top at the last step. T
is stopping rule and T = BOTTOM is the stopping time.

We claim that T is strong uniform time.
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This is due to the fact that once we remove BOTTOM from the top of the pack, we are
already in the stationary distribution. (It can be shown by induction on the number of
cards bellow BOTTOM that the cards below BOTTOM are always in a random order.)
We show now that the above stopping rule behaves as a coupon collector.

Indeed, define Ti to be the number of steps until there are i cards bellow BOTTOM
(including BOTTOM). Since T = Tn we have

T = T1 + (T2 − T1) + (T3 − T2) + . . .+ (Tn − Tn−1).

Moreover, Ti+1 − Ti has a geometric distribution with parameter n−i
n

.

This is similar to the situation in coupon selection. Indeed, let Vi denote the number of
steps until we see i coupons and let V = Vn. Similarity between V and T follows from
the fact that

V = V1 + (V2 − V1) + (V3 − V2) + . . .+ (Vn − Vn−1)

and that Vi+1 − Vi has also geometric distribution with parameter n−i
n

. Hence

Pr[T > t] ≤ E[T ]

t
= O

(
n lg n

t

)
.
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COUPLING METHOD – BASIC IDEA

The goal is again to investigate how fast a random walk X , starting at a fixed point,
approaches the stationary distribution.

To do that we consider another random walk Y that starts at the stationary distribution.

Y always remains at the stationary distribution.

These two walks are correlated in the sense that once they meet, their future moves are
the same.

Therefore, to determine how fast X approaches stationary distribution, it is sufficient to
determine when such two random walks meet.
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EXAMPLE I – HYPERCUBE II.

Let coordinator be a super-player that coordinates moves of two walks X and Y , at each
step, as follows.

1 The coordinator chooses randomly an i ∈ {1, . . . , n}. Let Xi (Yi ) be the ith bit of
the node currently visited by X (Y ).

2 If Xi = Yi , then with probability 1
2

both X and Y move, and with probability 1
2

both
of them stay still. The move, if any, is to the neighbor that differs in the ith bit
from the node currently visited.

3 If Xi 6= Yi , then with probability 1
2

player X moves and Y stay still, and with the
same probability it is vice verse. (Move is again to the node that differs in the ith
coordinate.)

From the point of view of both, X and Y , they perform a random walk.

It is now easy to see that the following claim holds

If, for some i , Xi = Yi , then it always stays as such. If a coordinate i is chosen, (and
Xi 6= Yi ), then Xi = Yi at the end of the step.

Hence, the random variable that counts the number of steps needed for X and Y to
meet behaves as a coupon collector.

This way we get the same result as using the previous method.
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EXAMPLE II – CARD SHUFFLING II.

We will consider again an n cards shuffling problem, but this time with a
different shuffling policy.

Uniformly and randomly choose a card and put it, alternatively,
either to the top or to the bottom of the pack.

To demonstrate the coupling argument we will consider two initial packs of
cards. One that is fully ordered (first is the card number 1, last the card
number n), second that is randomly ordered.

The coordinator chooses, randomly, a card i and in both packs the card is
moved alternatively to top or to bottom.
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EXAMPLE II – CARD SHUFFLING III.

Claim The stationary distribution is reached after all cards are picked.

By induction, one can show that after i steps each pack can be partition
into three parts: top, middle and bottom.

The cards in the top and bottom parts have all already been selected and
appear in the same order in both packs. The cards in the middle part have
not been selected yet and appear in some arbitrary order in both packs.

Therefore, after all cards have been picked at least once, the two packs are
in the same order.

Observe now that the problem of picking all cards is again similar to the
coupon selector problem. The expected number of steps needed to shuffle
the pack is therefore O(n lg n).
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COMMUTE and COVER TIME

COMMUTE and COVER TIME
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COMMUTE and COVER TIME - BASIC CONCEPTS

The commute time Cuv between u and v is defined as

Cuv = huv + hvu = Cvu,

and it is the expected time for a random walk starting at node u to return
to u after at least one visit to node v .

Cu(G ) denotes the expected length of a walk that starts at u and ends
upon visiting every node in G at least once.

The cover time of G , notation C (G ), is defined by

C (G ) = max
u

Cu(G ).
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EXAMPLES

For the lollipop graph (cukrátko) Ln

K
n/2

n/2

u v

it holds
huv = θ(n3), hvu = θ(n2)

(Ln is an example showing that adding more edges can reduce the cover time – contrary
to our usual intuition.)

A chain of n vertices has the cover time θ(n2).

Ln has cover time θ(n3).

Complete graph Kn has the cover time θ(n lg n).
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COMMUTE TIME - BASIC RESULT

Lemma If G = (V ,E), m = |E |, (u, v) ∈ E , then huv + hvu ≤ 2m.

Proof: Let us assign to G a new Markov chain, MG , states of which are oriented versions
of the edges of E (2m of them), and let the transition matrix Q of MG have only the
following non-zero values

Q(u,v),(v,w) = pvw =
1

d(v)
.

Matrix Q is doubly stochastic (rows and also columns sum-up to 1). Indeed, for each
v ,w ∈ V : ∑

x∈V ,y∈Γ(x)

Q(x,y),(v,w) =
∑

v∈Γ(x)

Q(x,v),(v,w) =
∑

v∈Γ(x)

pvw = d(v)× 1

d(v)
= 1.

It can be shown, that for any Markov chain with a doubly stochastic matrix the uniform
distribution on edges is stationary.
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Therefore, (by ergodic theorem) stationary probability of each edge is 1
2m

. Consequently,
the expected time between successive traversals of the directed edge (v , u) is
2m = 1/(1/2m).

Let us now go back to the original problem huv + hvu =???

Conditioned on the event that the initial entry into u was through edge (v , u), we can
conclude, from the above analysis of MG , that the expected time to go from there to v
and then back to u, along (v , u) is at most 2m.

The memoryless property of Markov chains allows now to remove conditioning and to get
the Lemma.
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ELECTRICAL NETWORKS - BASICS 1/2

Many random variables associated with simple random walks on undirected graphs can
be studied conveniently using concepts and language of the electrical network theory.
A resistive electrical network is an undirected graph where to each edge an edge
resistance (as a positive integer) is associated.

 u  v

a1 1

2

1 ampere 1 ampere

Figure: Potentials of nodes are φ(u) = 2;φ(a) = 3
2

;φ(v) = 1; voltage difference between u and v

is 1 and between a and v is 1
2

.

Kirchhoff law: The sum of all currents entering a node u of a network equals the sum of
all currents leaving u.
Ohm law: I = V

R
, where I is current; V is voltage; R is resistance.

For each edge e, let Re be the resistance of e. For each node u, let iu be the
current that enters (and exits) the node u.
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ELECTRICAL NETWORKS - BASICS 2/2

 u  v

a1 1

2

1 ampere 1 ampere

Figure: Potentials of nodes are φ(u) = 2;φ(a) = 3
2

;φ(v) = 1; voltage difference between u and v

is 1 and between a and v is 1
2

; resistance between u and v is 2; effective resistance is only 1.

We would like to compute the potential φ(v) for each node v and the current iuv for each
edge e = (u, v). By Ohm’s Law

iuv =
φ(u)− φ(v)

Re
.

Effective resistance Ruv between two nodes u and v is the voltage difference between u
and v when one ampere is injected into u and removed from v . Hence
Ruv = φ(u)− φ(v).

Observe that effective resistance between nodes of an edge can be smaller than the
resistance of the edge (see the above figure).
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ELEKTRICKÝ POTENCIÁL a NAPÄTIE

Elektrický potenciál je práca potrebná k preneseniu jednotkového náboja z
nekonečna na dané miesto silového pǒla po ľubovolnej dráhe.

Elektrický potenciál je veličina charakterizujúca energetický stav v danom
bode elektrického silového pǒla.

Elektrické napätie je práca, ktorá sa vykoná v elektrickom poli pri preneseni
jednotkového elektrického množstva po určitej dráhe.

V potenciálovom elektrickom poli nezávisi napätie na dráhe a rovná sa
rozdielu potenciálov.
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COMMUTE TIME and EFFECTIVE RESISTANCE

To each graph G we associate an electrical network N (G ) at which the
resistance of each edge is 1.

Theorem Commute time for any two vertices u and v in G is

Cuv = 2mRuv = huv + hvu.

Proof: Notation:

d(x) is the degree of any node x .

Φzv is the potential of any node z , relative to v , when d(x) units of
current enter each node x ∈ V , and 2m units of the current exit v .

For every edge (u,w) ∈ E it holds, by Ohm’s law:

Φuv − Φwv = iuwRuw = iuw .
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COMMUTE TIME and EFFECTIVE RESISTANCE-I

Kirchhoff’s law implies that for every u ∈ V − {v}

d(u) =
∑

w∈Γ(u)

iuw =
∑

w∈Γ(u)

Φuv − Φwv .

On the other hand, definition of huv , (u, v) ∈ E (G ), implies that for each
u ∈ V − {v}:

huv =
∑

w∈Γ(u)

1

d(u)
(1 + hwv ).

It can be shown, that both above systems of equations are in fact the same
system of linear equations and therefore they have the same solution for
each u, v ∈ V : huv = Φuv .
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DERIVATION

Kirchhoff’s law implies that for every u ∈ V − {v}

d(u) =
∑

w∈Γ(u)

iuw =
∑

w∈Γ(u)

Φuv − Φwv .

Hence,
d(u) = Φuvd(u)−

∑
w∈Γ(u)

Φwv

and therefore

1 = Φuv −
1

d(u)

∑
w∈Γ(u)

Φwv

and

Φuv = 1 +
1

d(u)

∑
w∈Γ(u)

Φwv.

Hence

Φuv =
1

d(u)

∑
w∈Γ(u)

1 +
1

d(u)

∑
w∈Γ(u)

Φwv =
∑

w∈Γ(u)

1

d(u)
(1 + Φwv ).

and so we got the same equation as huv =
∑

w∈Γ(u)
1

d(u)
(1 + hwv ).
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PROOF – CONTINUATION I.1

Consider now the following network: a current of magnitude 2m enters u and a current
of magnitude d(x) exits every node x ∈ V .

If the potential of u in this network is assumed to be equal to 0, then the potential of v
is equal to −φuv = −huv .

Let us now perform a superposition of such a network with the network considered on
previous slide (at which d(x) units of current enter each node x ∈ V , and 2m units of
the current exit v).

In the resulting network, all external currents cancel, except for those in vertices u (where
the current of magnitude 2m enters) and v (where the current of magnitude 2m exits).
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PROOF – CONTINUATION I.2

The difference of potentials between u and v is:

huv − (−hvu) = huv + hvu = Φuv + Φvu = Cuv .

Therefore, Cuv is the voltage between u and v in the last network.

Hence, by Ohm law
Cuv = 2mRuv

Claim: For every pair of vertices u and v , the effective resistance Ruv

is not more than the distance between u and v in G .
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Corollary: Let G = (V ,E ) be a graph, n = |V |, m = |E |
and u, v ∈ V .

If (u, v) ∈ N (G ), then Cuv ≤ 2m;

If u, v ∈ V , then Cuv ≤ 2m(n − 1).

If u, v ∈ V , then Cuv < n3.
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COVER TIME

Theorem: For a graph G with n nodes and m edges C(G) ≤ 2m(n − 1).

Proof: Let T be any spanning tree of G = (V ,E). Then there is a traversal of T visiting
nodes

v0, v1, . . . , v2n−2 = v0

that traverses each edge of T exactly once in each direction.

Consider a random walk that starts at v0, visits all nodes in the order prescribed by the
traversal, and terminates after returning to v0.

An upper bound on the expected length of such a walk is an upper bound on Cv0 (G).

Cv0 (G) ≤
2n−3∑
j=0

hvj vj+1 =
∑

(u,v)∈T

Cuv .

Since (vj , vj+1) ∈ E , Cvj vj+1 ≤ 2m by previous corollary.

Therefore
Cv0 (G) ≤ 2m(n − 1).

The above bound is independent of the choice of v0. Hence

C(G) ≤ 2m(n − 1).
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SPECIAL TYPES of GRAPHS

Let us derive cover time for several special graphs.

A complete graph Kn. The problem to determine cover time is essentially the
Coupon Collector problem. Therefore

C(Kn) = n lg n + cn.

A star graph Sn The problem of calculating the cover time is again essentially the
Coupon Collector problem. Therefore

C(Sn) = 2n lg n + cn.

A line Ln: Let u1, u2 be the end points of Ln. Since Ru1,u2 = n − 1, we have

Cu1,u2 = 2|E(Ln)|Ru1,u2 = 2(n − 1)(n − 1) = 2(n − 1)2.

By symmetry,
hu1,u2 = (n − 1)2.

Then
C(Ln) = (n − 1)2.

Lollipop graph Ln: C(Ln) = θ(n3).
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EFFECTIVE RESISTANCE of GRAPHS - II.

The effective resistance R(G ) of a graph G is defined by

R(G ) = max
{u,v}⊂V (G)

Ruv .

Theorem mR(G ) ≤ C (G ) ≤ 2e3mR(G ) ln n + n.
Proof. Lower bound: Let R(G ) = Ruv for some vertices u, v ∈ V . Then

C (G ) ≥ max (huv , hvu) ≥ Cuv

2
=

2mRuv

2
= mR(G ).
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Upper bound. Create a random walk of length 2e3mR(G ) ln n and divide
it into ln n phases of the same length.

For any vertices u and v , the hitting time huv is at most 2mR(G ). (This is
the average time to get through any of ln n phases.)
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EFFECTIVE RESISTANCE of GRAPHS - III.

By Markov inequality (Pr [Y ≥ t] ≤ E[Y ]
t

), the probability that v is not visited during a

single phase is at most 2mR(G)

2e3mR(G)
(= huv

2e3mR(G)
) = 1

e3 .

Therefore, the probability that v is not visited during any of the ln n phases is at most
( 1
e3 )ln n = 1

n3 .

Summing over n choices of v , we get that the probability that there is a node not visited
within 2e3mR(G) ln n steps is at most 1

n2 .

When this happens (that is if there is a node not visited during 2e3mR(G) ln n steps), we
“continue to walk until all nodes are visited” (and n3 steps suffices for that).

The expected total time is therefore

2e3mR(G) ln n + (
1

n2
)n3 = 2e3mR(G) ln n + n.
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USTCON PROBLEM

It is the problem to decide, given an undirected graph G and two vertices s and t,
whether there is a path from s to t.

Let RLP be the family of languages L for which there exists a probabilistic off-line
log-space TM M such that for any input x

Pr[M accepts x ]

{
≥ 1

2
if x ∈ L

= 0 if x 6∈ L

Theorem USTCON ∈ RLP.

Proof Let a log-space bounded probabilistic TM M simulate a random walk of length
2n3 through the given graph starting from s.

If M encounters t during such a walk, it outputs YES, otherwise it outputs NO. The
probability of the output YES instead of NO is 0.

What is the probability that M outputs NO instead of YES?

We know that hst ≤ n3. By Markov inequality, if t is reachable from s, then the
probability that t is not visited during 2n3 steps is at most 1

2
.

M needs a space to count till 2n3 and to keep track of its position in the graph during
the walk. Therefore it needs space

O(lg n).
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Nonuniform, deterministic, log-space algorithms for USTCON

We will consider regular d-degree graphs with n nodes such that all edges of each node
are labeled by labels from {1, 2, . . . , d}.

2 1

2

1 1

2

Any σ ∈ {1, 2, . . . , d}∗ or σ ∈ {1, 2, . . . , d}∞ and any starting node v specify a walk
through the given graph.

A sequence σ is said to traverse a graph G if the walk it prescribes visits every node of
G regardless of the starting node.

A sequence σ is said to be a universal traverse sequence for a class of labeled graphs if
it traverses every labeled graph in the class (for any starting node).

A universal traversal sequence whose length is polynomial in n can be used by a
deterministic log-space off-line TM to decide instances of USTCON.

(However, in order to be a uniform log-space algorithm, the universal traversal sequence
should be constructable by a log-space TM, rather than be encoded in the machine’s
finite state control.)
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UNIVERSAL TRAVERSAL SEQUENCE

G – a family of connected regular graphs on n-nodes and m edges.

U(G) — length of the shortest universal traversal sequence for G.
R(G) — maximum resistance between any two nodes of any graph in G,

Theorem U(G) ≤ 5mR(G) lg(n|G|).

Proof Given G ∈ G, v ∈ G , let us consider a random walk of the length

5mR(G) lg(n|G|)

divided into lg(n|G|) sections of length 5mR(G).

The probability that the walk fails to visit v in any section is at most 2
5
. (Due to the

Markov inequality and the fact that Cuv = 2mRuv .)

Probability that v is not visited during any of the lg(n|G|) sections is thus at most

(
2

5
)lg(n|G|) = (

2

5
)(lg2/5(n|G|)/ lg(2/5) = (n|G|)1/(lg(2/5) = (n|G|)−c for a c > 1.

Summing up over n choices of v and |G| choices of the labeled graph G , the probability
that the random walk (sequence) fails to be universal is less than 1.

As a consequence, there is a sequence of such a length that is universal for the class G.
(We have just used the probabilistic method.)
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HIDDEN MARKOV MODELS

HMM - HIDDEN MARKOV MODELS
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HIDDEN MARKOV MODELS - DEFINITIONS

Hidden Markov Model (HMM) has, similarly as Markov model considered so far, a set
of states and their transition probabilities (that are given). However, in addition, it has a
set of outputs each state can produce, according to its given emission probabilities, each
time the system comes to that state. However, in this model states are hidden, as well as
their transition and emission probabilities, before any observer.

An observer can see only the sequences of outputs states produce. The task is determine,
from the large amount of such outputs, all parameters, its transition and production
probabilities.

Hidden Markov Model have been very successfully used in pattern recognition, speech
recognition, handwriting and gestures recognition, machine translations, gene predictions,
bio-informatics, human activities recognition, as well as in many other applications.

In general, HMM can be applied when the goal is to recover a data sequence that is not
immediately observable (but other data that depend on the sequence are).
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HMM - Figure
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EXAMPLE: URN PROBLEM

In a room not visible to an observer there is a genie and urns, X1,X2, . . . ,Xn each
containing a known mixture of balls labeled as {y1, y2, . . .}.
Genie works as follows. Chooses randomly, according a given probability distribution,
one urn, randomly draw a ball from it, emails its label to the observer, puts ball back
and, according to the probability distribution associated with that urn chooses next
one and the process continues.

This process can continue many times. Observes see each time only a sequence of
labels yi1, yi2, ....yik .

The task for observers is to determine parameters: transition probabilities for states
(as an ordinary Markov model has) and number of different balls in different urns
(and emission probabilities - actually number of different balls in urns).
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EXAMPLE - WEATHER

Alice and Bob live far apart from each other and talk daily about what Bob did. His
actions (waking, shopping, cleaning) depend on the weather in the following way.

From their phone calls Alice tries to deduce how was and is weather in the place Bob
lives.

prof. Jozef Gruska IV054 8. Markov chains - random walks 99/110



INFERENCE PROBLEMS

In the following picture x(t) is the state at time t and y(t) is the output.

Probability of observed sequence: The probability of observing an output sequence

Y = y(0), y(1), . . . , y(l − 1)

of length l is given by

Pr(Y ) =
∑
X

Pr(Y |X )Pr(X )

where the sum runs over all possible hidden-node sequences
X = x(0), x(1), . . . , x(L− 1). This problem can be handled effective using so called
forward algorithm.
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Filtering: The task is to compute, given the model’s parameters and a sequence of
observations, the last states at the end of observations:, i.e. to compute

Pr(x(t) | y(1), . . . , y(t))
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EXAMPLE

In the following HMM and its output sequence

the following state sequences are possible:

5, 3, 2, 5, 3, 2

4, 3, 2, 5, 3, 2

3, 1, 2, 5, 3, 2
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EXAMPLE 2. Markov model

For Markov model

show that:

Provided that today is sunny, show that 0.04 is probability that tomorrow is sunny
and the day after is rainy.
Show that 0.34 is probability that it will be rainy two days from now provided it is
foggy today.
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EXAMPLE 2. Hidden Markov Model

Let us add to the previous model two outputs ”umbrella” and ”no umbrella” and let
probability of having umbrella be 0.1 (0.8) [0.3] for the sunny (rainy) [foggy] day.
Supposed you were locked in a room for several days and you were asked about weather
outside. The only piece of evidence you have is whether a man bringing you food carries
umbrella or not.

Suppose the day you were locked in was sunny. The next day man carrying food
came with the umbrella. Assume that the prior probability of the man carrying an
umbrella on any day is 0.5. Show that 0.08 is the probability that the second day
was rainy.

Suppose the day you were locked in the room was sunny and that man brought an
umbrella on day 2 but not on day 3. Show that 0.19 is the probability that it was
foggy on day 3.

prof. Jozef Gruska IV054 8. Markov chains - random walks 104/110



HMM - speech recognition - example
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HIERRARCHICAL HIDDEN MARKOV MODEL

In Hierrachical Hidden Markov Model (HHMM) each state can itself be a HHMM.

HHMM is nowadays the basil model to model brain activities at speeach recognition and
in speech recognition, creation and understanding.
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HHMM and SPEECH RECOGNITION

A huge amount of samples of speech, from many different
individuals, are applied to a HHMM to infer the hierarchy
of states and all transition and trnsmission probabilities
(essentially a simulation of neocortex for producing
speech), and then the resulting HHMM is used to
recognize new utterences.
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Appendix

APPENDIX
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SECRETARY PROBLEM

The problem:

There is a single secretariat position to fill.

There are n applicants for the position, and the value of n is known.

Each applicant has a unique ”quality value” - the interview making
committee has no knowledge of quality values of those applicants that
have not been interviewed yet and no knowledge how large is the best
quality value of applicants.

The applicants are interviewed in a random order.

After each interview, the applicant is immediately accepted or rejected.

The decision to accept or reject an applicant can be based only on the
relative ”quality value” of the applicants interviewed so far.

Rejected applicants cannot be recalled.

The goal is to select an applicant with the best ’quality value”. The
payoff is 1 for the best applicant and 0 otherwise.

How should selection committee proceeds at the best?
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SOLUTION

Terminology: A candidate is an applicant who, when interviewed, is better than all the
applicants interviewed previously. Since the goal in the secretary problem is to select the
single best applicant, only candidates will be considered for acceptance.

Optimal policy for this problem (the stopping rule): For large n the optimal policy is to
interview and reject the first n

e
applicants and then accept the next one who is better

than candidates interviewed till then.

As n gets larger, the probability of selecting the best applicant goes to 1
e

, which is around
37%.
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ANDREY ANDREEVITCH MARKOV

Russian mathematician (1856-1922)

Introduced Markov chains in 1906

The original motivation was to extend the law of large numbers to
dependent events.

In 1913 he applied his findings to the first 20 000 letters of
Pushkin’s Eugene Onegin
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