
Part IX

Algebraic techniques - fingerprinting



Chapter 9. FINGERPRINTING - ALGEBRAIC TECHNIQUES

Some of the most interesting results in the design of efficient computations were
obtained using algebraic techniques combined with randomization.

Fingerprinting technique

Example: Decide equality of two elements x , y drawn from a large universe U.

Complexity under any reasonable model seems to be Ω(lg |U|).

Alternative approach: Pick a random mapping

f : U −→ V |U| >> |V |.

such that there is a good chance that

f (x) = f (y) implies x = y

and declare that x = y (x 6= y) if f (x) = f (y) (f (x) 6= f (y).

Complexity under any reasonable model is now Ω(lg |V |)
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FINGERPRINTING METHOD - BASICS

The basic idea is to find out whether two given objects are equal (given their full
representations), by comparing their fingerprints (incomplete representations).

An important requirement of this method is that fingerprints should always be chosen
randomly from the set of potential fingerprints.

Another requirement is that chosen fingerprints should preserve some essential differences
between objects they represent.

Third requirement fingerprints should satisfy:

Fingerprints should be short, simple, and easy to obtain.
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BASIC SCHEME

Given a set of objects O, find a set F of fingerprints and a set M of mappings

f : O ↔ F

such that for any two different objects o1 and o2 from O there is a lot of such mappings
f ∈ M that

f (o1) 6= f (o2)

Fingerprint method can therefore be seen as a special case of the method of abundance
of the witnesses discussed in the next chapter.

prof. Jozef Gruska IV054 9. Algebraic techniques - fingerprinting 4/19



FREIVALDS TECHNIQUE - I.

Matrix multiplication for matrices of degree n:
there is a classical (school) algorithm of complexity — O(n3)
there is a sophisticated algorithm of complexity— O(n2.376)

Problem: to check whether AB = C for iven n-dimensional matrices A, B
and C .
Method: choose a random column vector r ∈ {0, 1}n.

Compute: x = Br , y = Ax , z = Cr – {O(n2) steps} - and
declare AB = C iff y = z .

What is the probability that conclusion is wrong? It means that: it is zero
if AB = C and less then 1

2 if AB 6= C
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FREIVALDS TECHNIQUE - II.

Theorem Let A,B,C be n × n matrices, such that AB 6= C.Then for randomly chosen
r ∈ {0, 1}n it holds that Pr [ABr = Cr ] ≤ 1

2
.

Proof: Denote D = AB− C 6= 0. We wish to upper-bound the probability that
y = z (⇔ Dr = 0)

Without loss of generality, we may assume that the first row in D has a non-zero element
and that all its non-zero elements are first. Let d be the first row of D with the first k
elements 6= 0. We now concentrate on the probability that Dr 6= 0. This will yield a
lower bound on the probability that y 6= z .

Dr = 0 iff r1 =
−
∑k

i=2 di ri

d1
(∗).

Invoking the Principle of Deferred Decision we assume that r2, . . . , rn are chosen
(randomly) before r1. Since r1 is also chosen randomly, the probability of Dr 6= 0 is = 1

2
.
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VERIFICATION of POLYNOMIAL IDENTITIES - I.

Polynomial product verification problem

Given two polynomials of degree n – P1(x),P2(x) – and one of degree 2n – P3(x) –
verify whether P1(x) · P2(x) = P3(x)

polynomial evaluation complexity:
multiplication complexity:

O(n)
O(n lg n)

Randomized verification:
Let S be a set of integers and |S | ≥ 2n + 1.

Pick r ∈ S uniformly and randomly and evaluate P1(r),P2(r),P3(r).

Declare the identity P1(x) · P2(x) = P3(x) as correct unless P1(r) · P2(r) 6= P3(r).
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VERIFICATION of POLYNOMIAL IDENTITIES - II.

Analysis: Polynomial Q(x) = P1(x) · P2(x)− P3(x) has degree ≤ 2n, and has therefore
at most 2n roots.

Unless Q(x) ≡ 0, for at most 2n random choices of r ∈ S , it holds Q(r) = 0.

The probability of error of the above verification is therefore at most 2n
|S| .

The above verification procedure can be extended to verify any polynomial identity
P1(x) = P2(x), where P1,P2 are given implicitly.

Example:

M =

∣∣∣∣∣∣∣∣∣
1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2

...
1 xn x2

n . . . xn−1
n

∣∣∣∣∣∣∣∣∣
Task: Verify that Det(M) =

∏
i<j(xj − xi ).
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SCHWARZ-ZIPPEL THEOREM - I

Theorem: Let Q(x1, . . . , xn) be a polynomial of the degree d . Fix any finite set S of
reals, and let r1, . . . , rn be chosen independently and randomly from S . Then

Pr [Q(r1, . . . , rn) = 0 |Q(x1, x2, . . . , xn) 6≡ 0] ≤ d

|S |

Proof: By induction on n.

The case n = 1 was actually already discussed on the previous page.

Induction step: Let Q(x1, x2, . . . , xn) =
∑k

i=1 x
i
1Qi (x2, . . . , xn)

where Qk 6≡ 0. Since the total degree of Qk is at most d − k, the induction hypothesis
shows, that the probability that Qk(r2, . . . , rn) = 0 is at most d−k

|S| .

Suppose that Qk(r2, . . . , rn) 6= 0. Consider the following polynomial

q(x1) = Q(x1, r2, . . . , rn) =
k∑

i=0

x i
1Qi (r2, . . . , rn)
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SCHWARZ-ZIPPEL THEOREM - II.

Degree of q is k and q(x1) 6≡ 0. The base case implies that the probability that
q(r1) = Q(r1, . . . , rn) = 0 is at most k

|S| .

Hence

Pr [Qk(r2, . . . , rn) = 0] ≤ d − k

|S |

Pr [Q(r1, r2, . . . , rn) = 0 | Qk(r2, . . . , rn) 6= 0] ≤ k

|S |
=⇒

Pr [Q(r1, . . . , rn) = 0] ≤ d

|S |

because for any two events E1 and E2, it holds

Pr(E1) ≤ Pr(E1|Ē2) + Pr(E2).
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TESTING SIMILARITIES of MATRICES

Definition Two n × n matrices A and B are called similar matrices if there exists a
non-singular matrix T such that TAT−1 = B.

To decide whether two given matrices A and B are similar, one has to decide whether
TA = BT for some matrix T such that det(T ) 6= 0.

We can see entries of unknown T as variables and denote by t̄ the vector of such n2

variables.

In such a case the equality TA = BT can be seen as a system of n2 linear equations, with
entries of t̄ as variables. These equations can be expressed as Ct̄ = 0, where C is an
n2 × n2 matrix.

This way we get a homogeneous system of equations and it is possible to find, in polylog
time on a parallel computer, a basis for the solution space.
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Let {t̄1, . . . , t̄k} denote such a basis for the solution space of the equation TA = BT .

In such a case any solution matrix has the form

T = c1T1 + c2T2 + . . .+ ckTk ,

where the matrix Ti corresponds to the basis vector t̄i .

We are interested now in a non-singular solution. Such a solution exists iff there is a
c1, . . . , ck vector for which det(T ) 6≡ 0.

That is if det(T ) as a polynomial in the variables c1, . . . , ck is not identically zero. As we
already know, we can checked efficiently whether det(T ) 6≡ 0.
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PERFECT MATCHING of GRAPHS

Let G = (U,V ,E) be a bipartite graph, |U| = |V | = n. A matching of G is a collection
of edges M ⊂ E such that each node occurs at most once in an edge of M. A matching
of size n is perfect. (A note: {Each perfect matching defines a permutation π of the set
{1, . . . , n}}) .

Theorem Let A be an n × n matrix obtained from G as follows

Aij =

{
xij if (ui , vj) ∈ E
0 if (ui , vj) 6∈ E

}

Then G has a perfect matching iff det(A) 6≡ 0.
Proof: Let Sn be the set of all permutations of {1, 2, . . . , n}

det(A) =
∑
π∈Sn

sgn(π)A1π(1) · · ·Anπ(n)

Since each indeterminate xij occurs at most once in A there can be no cancellation of
terms in the above sum.

=⇒

det(A) 6≡ 0 iff there exist a π ∈ Sn such that A1π(1), . . . ,Anπ(n) 6= 0
iff there is a perfect matching
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Implications: There is a simple randomized algorithm for
testing the existence of a perfect matching in bipartite
graphs
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VERIFICATION of EQUALITY of STRINGS - A REPETITION - I.

Problem story: Both Alice and Bob maintain a copy of database. Periodically they have
to verify its consistency. How to do that efficiently?

Alice’s data: a = (a1, . . . , an) ∈ {0, 1}n. Bob’s data: (b = b1, . . . , bn) ∈ {0, 1}n.
Solution: To use a fingerprinting mapping: Define first

num(a) =
n∑

i=1

ai2
i−1, num(b) =

n∑
i=1

bi2
i−1

and then define the fingerprinting mapping: Fp(x) = x mod p, where x is an integer
and p is a prime.
Aim: We would like that it holds: a 6= b ⇒ Fp(num(a)) 6= Fp(num(b)).

At this technique the number of bits transmitted is O(lg p). This strategy can be easily
fooled by an adversary.

Way to get around: to choose p randomly.
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VERIFICATION of EQUALITY of STRINGS - A REPETITION - II.

Lemma: The number of distinct prime divisors of any integer less than 2n

is at most n.

The fingerprint comparison fails if p divides |num(a)− num(b)|. Choose a
threshold τ > n, and choose p < τ .

Theorem Pr [Fp(num(a)) = Fp(num(b)) | a 6= b ] ≤ n
π(τ) and if

τ = tn ln tn, then

Pr [Fp(num(a)) = Fp(num(b)) | a 6= b ] ≤ O(
1

t
),

where π(x) = x
ln x is the number of primes smaller than x .
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PATTERN MATCHING

Given: text X = x1, . . . , xn, pattern Y = y1, . . . , ym, both over the alphabet {0, 1}, and
m < n. Find the leftmost occurrence of Y in X (if possible).

Trivial solution - by exhaustive comparisons: O(nm).
Sophisticated solution - by Knuth-Morris algorithm: O(n + m).

We present now Monte Carlo and Las Vegas algorithms as another solutions that are
based on the fingerprinting technique.

Notation: X (j) = xjxj+1, . . . , xj+m−1, num(X (j)) =
∑j+m−1

k=j xk2j+m−k−1.

Basic idea: Interpret any m - bit string x as an integer num(x) and use as the fingerprint
function Fp(x) = num(x) (mod p), where p ≤ τ – a chosen threshold.

Pr [Fp(Y ) = Fp(X (j)) | Y 6= X (j) ] ≤ m

π(τ)
= O

(
m ln τ

τ

)

Taking τ = nm ln nm we get

Pr [a false match occurs] = O(
1

n
)
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Monte Carlo algorithm

Compare, for j = 1, . . . , n −m, fingerprints of Y and X (j), and output the smallest j at
which a match occurs.

Key fact for complexity analysis: The cost of computing Fp(X (j + 1)) from Fp(X (j)) is
only O(1) operations.

Indeed, for 1 ≤ j ≤ n −m + 1,

num(X (j + 1)) = 2
[
num((X (j))− 2m−1xj

]
+ xj+m

=⇒

Fp(num(X (j + 1))) = (2[num(Fp(X (j)))− 2m−1xj ] + xj+m) mod p
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Conversion into a Las Vegas algorithm

Whenever a match occurs between the fingerprints of Y and X (j), we compare strings Y
and X (j) in O(m) time. If this is a false match, we abandon the whole process in favor
of using a brute-force (O(nm)) – algorithm.

Resulting algorithm does not make any error and has as the expected running time

O

(
m + (n)(1− 1

n
) + nm(

1

n
)

)
= O(n + m)

prof. Jozef Gruska IV054 9. Algebraic techniques - fingerprinting 19/19


	Algebraic techniques - fingerprinting
	Chapter 9. FINGERPRINTING - ALGEBRAIC TECHNIQUES
	FINGERPRINTING METHOD - BASICS
	BASIC SCHEME
	FREIVALDS TECHNIQUE - I.
	FREIVALDS TECHNIQUE - II.
	VERIFICATION of POLYNOMIAL IDENTITIES - I.
	VERIFICATION of POLYNOMIAL IDENTITIES - II.
	SCHWARZ-ZIPPEL THEOREM - I
	SCHWARZ-ZIPPEL THEOREM - II.
	TESTING SIMILARITIES of MATRICES
	
	PERFECT MATCHING of GRAPHS
	
	VERIFICATION of EQUALITY of STRINGS - A REPETITION - I. 
	VERIFICATION of EQUALITY of STRINGS - A REPETITION - II.
	PATTERN MATCHING
	
	


