Real-Time Scheduling

Scheduling of Reactive Systems

[Some parts of this lecture are based on a real-time systems course
of Colin Perkins

http://csperkins.org/teaching/rtes/index.html]

75

Reminder of Basic Notions

» Jobs are executed on processors and need resources

» Parameters of jobs

» temporal:
release time —r;
execution time — g
absolute deadline — d;
derived params: relative deadline (D;), completion time,
response time, ...
» functional:
> laxity type: hard vs soft
> preemptability
» interconnection
» precedence constraints (independence)
> resource
» what resources and when are used by the job

vy v v.vy

» Tasks = sets of jobs

76

Reminder of Basic Notions

» Schedule assigns, in every time instant, processors and
resources to jobs

» valid schedule = correct (common sense)

» Feasible schedule = valid and all hard real-time tasks meet
deadlines

» Set of jobs is schedulable if there is a feasible schedule for it

» Scheduling algorithm computes a schedule for a set of jobs

» Scheduling algorithm is optimal if it always produces a feasible
schedule whenever such a schedule exists, and if a cost function
is given, minimizes the cost

We have considered scheduling of individual jobs

77

Scheduling Reactive Systems

From this point on we concentrate on reactive systems
i.e. systems that run for unlimited amount of time

Recall that a task is a set of related jobs that jointly provide
some system function.

» We consider various types of tasks
» Periodic
» Aperiodic
» Sporadic

» Differ in execution time patterns for jobs in the tasks

» Must be modeled differently

» Differing scheduling algorithms
» Differing impact on system performance
» Differing constraints on scheduling

78

Periodic Tasks

» A set of jobs that are executed repeatedly at regular time
intervals can be modeled as a periodic task

<i)| o || di2]| s] | de]

liq li2 i3 li4

Time

» Each periodic task T; is a sequence of jobs
JI1IJ12/ Jlnr---
» The phase ¢, of a task T; is the release time r;1 of the first
job J;1 inthe task T; ;
tasks are in phase if their phases are equal
» The period p; of a task T; is the minimum length of all time
intervals between release times of consecutive jobs in T;
» The execution time e; of a task T; is the maximum execution
time of all jobs in T;
» The relative deadline D; is relative deadline of all jobs in T;
(The period and execution time of every periodic task in the system are

known with reasonable accuracy at all times)

Periodic Tasks — Notation

The 4-tuple T; = (i, pi, i, Di) refers to a periodic task T; with phase
@i, period p;, execution time e;, and relative deadline D;
For example: jobs of Ty = (1,10, 3,6) are

> released at times 1, 11, 21, ...,

> execute for 3 time units,

> have to be finished in 6 time units (the first by 7, the second by 17, ...)

Default phase of T; is ¢; = 0 and default relative deadline is d; = p;
T> = (10,3, 6) satisfies ¢ =0, p; =10, e, = 3, D; = 6, i.e. jobs of T, are

> released at times 0, 10, 20, ...,

» execute for 3 time units,

> have to be finished in 6 time units (the first by 6, the second by 16, ...)
Ts = (10, 3) satisfies ¢ = 0, p; =10, &i = 3, D; = 10, i.e. jobs of T3 are

> released at times 0, 10, 20, ...,

> execute for 3 time units,

> have to be finished in 10 time units (the first by 10, the second by 20, ...)

80

Periodic Tasks — Hyperperiod

The hyper-period H of a set of periodic tasks is the least
common multiple of their periods

If tasks are in phase, then H is the time instant after which the pattern of job
release/execution times starts to repeat

H H

5 10 15 20

81

Aperiodic and Sporadic Tasks

>

Many real-time systems are required to respond to
external events
The tasks resulting from such events are sporadic and
aperiodic tasks
» Sporadic tasks — hard deadlines of jobs
e.g. autopilot on/off in aircraft
» Aperiodic tasks — soft deadlines of jobs
e.g. sensitivity adjustment of radar surveilance system
Inter-arrival times between consecutive jobs are identically
and independently distributed according to a probability
distribution A(x)
Execution times of jobs are identically and independently
distributed according to a probability distribution B(x)

In the case of sporadic tasks, the usual goal is to decide,
whether a newly released job can be feasibly scheduled with
the remaining jobs in the system

In the case of aperiodic tasks, the usual goal is to minimize the
average response time 82

Scheduling — Classification of Algorithms

» Off-line vs Online

» Off-line — sched. algorithm is executed on the whole task
set before activation

» Online — schedule is updated at runtime every time a new
task enters the system

» Optimal vs Heuristic

» Optimal — algorithm computes a feasible schedule and
minimizes cost of soft real-time jobs

» Heuristic — algorithm is guided by heuristic function; tends
towards optimal schedule, may not give one

The main division is on
» Clock-Driven
» Priority-Driven

83

Scheduling — Clock-Driven

» Decisions about what jobs execute when are made at specific
time instants

» these instants are chosen before the system begins
execution

» Usually regularly spaced, implemented using a periodic
timer interrupt

» Scheduler awakes after each interrupt, schedules jobs to
execute for the next period, then blocks itself until the next
interrupt
E.g. the helicopter example with the interrupt every 1/180 th of a
second

» Typically in clock-driven systems:

» All parameters of the real-time jobs are fixed and known

» A schedule of the jobs is computed off-line and is stored for
use at runtime; thus scheduling overhead at run-time can
be minimized

» Simple and straight-forward, not flexible

84

Scheduling — Priority-Driven

» Assign priorities to jobs, based on some algorithm

» Make scheduling decisions based on the priorities, when events
such as releases and job completions occur
» Priority scheduling algorithms are event-driven
» Jobs are placed in one or more queues; at each event, the
ready job with the highest priority is executed
(The assignment of jobs to priority queues, along with rules such as
whether preemption is allowed, completely defines a priority-driven alg.)

» Priority-driven algs. make locally optimal scheduling decisions
» Locally optimal scheduling is often not globally optimal
» Priority-driven algorithms never intentionally leave idle
processors
» Typically in priority-driven systems:
» Some parameters do not have to be fixed or known
» A schedule is computed online; usually results in larger

scheduling overhead as opposed to clock-driven scheduling
» Flexible — easy to add/remove tasks or modify parameters

85

Clock-Driven & Priority-Driven Example

T [To | Ts
pil 3|5 |10
e | 1] 2] 1

Clock-Driven:

U0 g [
(1 [] []
]]

012345678 91011121314151617 181920212223 24 2526 27 28 29 30

Priority-driven: Ty > Ty > T3

Jd oo p i
gty Py i Ll
]]]

01234567 8 91011121314151617 18192021 2223 24 25 26 27 28 29 30

86

Real-Time Scheduling
Scheduling of Reactive Systems

Clock-Driven Scheduling

87

Current Assumptions

\4

Fixed number, n, of periodic tasks Ty,..., T,
Parameters of periodic tasks are known a priori
» Execution time e, of each job J;k in a task T; is fixed
» For ajob Jjx in atask T; we have
> 1 = @; =0 (i.e., synchronized)
> Tk = lik-1 + Pi
We allow aperiodic jobs
» assume that the system maintains a single queue for
aperiodic jobs
» Whenever the processor is available for aperiodic jobs, the
job at the head of this queue is executed

We treat sporadic jobs later

v

v

v

88

Static, Clock-Driven Scheduler

» Construct a static schedule offline

» The schedule specifies exactly when each job executes

» The amount of time allocated to every job is equal to its
execution time

» The schedule repeats each hyperperiod
i.e. it suffices to compute the schedule up to hyperperiod

» Can use complex algorithms offline

» Runtime of scheduling algorithm is not relevant

» Can compute a schedule that optimizes some
characteristics of the system
e.g. a schedule where the idle periods are nearly periodic (useful
to accommodate aperiodic jobs)

89

Example

Ty =(4,1), T =(5,1.8), T3 =(20,1), T4 = (20,2)
Hyperperiod H = 20

Aper. | I
T4 |:l
T3 []
o [] L] [] []
T1 0[] ‘{;] D 1 D 1{6:] 2{0:]

8 2 24

90

Implementation of Static Scheduler

» Store pre-computed schedule as a table
» Each entry (i, T(t)) gives
> adecision time
» scheduling decision T(t,) which is either a
task to be executed, or idle (denoted by /)
» The system creates all tasks that are to be
executed:
» Allocates memory for the code and data
» Brings the code into memory

» Scheduler sets the hardware timer to interrupt
at the first decision time fo = 0
» On receipt of an interrupt at fx:

» Scheduler sets the timer interrupt to tx 1

» If previous task overrunning, handle failure

» If T(tx) = I and aperiodic job waiting, start
executing it

» Otherwise, start executing the next job in T(i)

g

0.0

1.0

20

38

4.0

5.0

6.0

8.0

9.8

10.8

12.0

138

148

17.0

17.0

18.0

19.8

91

Example

Ty =(4,1), T, =(5,1.8), T3 =(20,1), T4 = (20, 2)
Hyperperiod H = 20

Aper. | B H BN

Ta []

T[]

oo [] L1 [[]
][] L i [

0 4 8 12 16 20 24

t]0.0[1.0[2.0[38[4.0][5.0]6.0
Tt) | T | Ta | T2 | T | Tv | I | Ta

92

Frame Based Scheduling

» Arbitrary table-driven cyclic schedules flexible, but
inefficient
» Relies on accurate timer interrupts, based on execution
times of tasks
» High scheduling overhead
» Easier to implement if a structure is imposed
» Make scheduling decisions at periodic intervals (frames) of
length f
» Execute a fixed list of jobs within each frame;
no preemption within frames

» Gives two benefits:
» Scheduler can easily check for overruns and missed

deadlines at the end of each frame.
» Can use a periodic clock interrupt, rather than
programmable timer.
How to choose the size of frames? How to compute
a schedule?
To simplify further development, assume that periods are in IN and choose

frame sizes in IN.

93

Frame Based Scheduling — Frame Size
How to choose the frame length?
1. Necessary condition for avoiding preemption of jobs is
f > maxe;

(i.e. we want each job to have a chance to finish within a frame)

2. To minimize the number of entries in the cyclic schedule, the
hyper-period should be an integer multiple of the frame size, i.e.

di: mod (p;,f)=0
for some task T;.

3. To allow scheduler to check that jobs complete by their deadline,
at least one frame should lie between release time of a job and
its deadline, which is equivalent to

2xf— ng(pir f) < Di
for all tasks T;

All three constraints should be satisfied.

94

Frame Based Scheduling — Frame Size — Example

Example 12
Ty =(4,1.0), T = (5,1.8), T3 = (20,1.0), T4 = (20,2.0)
Then f € N satisfies 1.-3. iff f = 2.

With f = 2 is schedulable:

Aol o] [T]m] (=] [7
16

0 4 8 12

95

Frame Based Scheduling — Job Slices

» Sometimes a system cannot meet all three frame size
constraints simultaneously (and even if it meets the
constraints, no non-preemptive schedule is feasible)

» Can be solved by partitioning a job with large execution
time into slices with shorter execution times
This, in effect, allows preemption of the large job

» Consider T1 = (4,1), T, =(5,2,7), T3 = (20,5)

» Cannot satisfy constraints: 1. = f>5but3. = f<4

» Solve by splitting T3 into T31 = (20,1), T32 = (20, 3), and
T33 =(20,1)
(Other splits exist)

» Result can be scheduled with f = 4

T T, |Gy Ty Tsx |Th| T2 Ty T T T I3

0 4 8 12 16 20

v

Building a Structured Cyclic Schedule

To construct a schedule, we have to make three kinds of design
decisions (that cannot be taken independently):

» Choose a frame size based on constraints
» Partition jobs into slices
» Place slices into frames

There are efficient algorithms for solving these problems based
e.g. on a reduction to the network flow problem.

97

Frame Based Scheduling — Cyclic Executive

» Modify previous table-driven scheduler to be frame based

» Table that drives the scheduler has F entries, where
F=H/f
» The k-th entry L(k) lists the names of the job slices that are
to be scheduled in frame k (L (k) is called scheduling block)
» Each job slice is implemented by a procedure
» Cyclic executive executed by the clock interrupt that
signals the start of a frame:
» If an aperiodic job is executing, preempts it; if a periodic
overruns, handles the overrun
» Determines the appropriate scheduling block for this frame
» Executes the jobs in the scheduling block
» Executes jobs from the head of the aperiodic job queue for
the remainder of the frame

» Less overhead than pure table driven cyclic scheduler,

since only interrupted on frame boundaries, rather than on
each job

98

Scheduling Aperiodic Jobs

So far, aperiodic jobs scheduled in the background after all jobs
with hard deadlines
This may unnecessarily delay aperiodic jobs

Note: There is no advantage in completing periodic jobs early
Ideally, finish periodic jobs by their respective deadlines.

Slack Stealing:

» Slack time in a frame = the time left in the frame after all
(remaining) slices execute

» Schedule aperiodic jobs ahead of periodic in the slack time of
periodic jobs

» The cyclic executive keeps track of the slack time left in
each frame as the aperiodic jobs execute, preempts them
with periodic jobs when there is no more slack

» As long as there is slack remaining in a frame and the
aperiodic jobs queue is hon-empty, the executive executes
aperiodic jobs, otherwise executes periodic

» Reduces resp. time for aper. jobs, but requires accurate timers

99

Example
Assume that the aperiodic queue is never empty.

Aperiodic at the ends of frames:

Aper. l [| [| [| [|
T4 [1
Ts [
T2 L 1 L1] []
T O 1] 1 []
0 4 8 12 16 20 24

Slack stealing:
Aper. | || || || ||

T]

T3]

T2] 1 []

T [[] O [o o

100

Slack Stealing — cont.

Period. [] LT T[T LI [T]

Rel. aper. [| 1

Standard || [T] d | ! | d |]
s.s. [] l_ [| Q—F

101

Frame Based Scheduling — Sporadic Jobs

Let us allow sporadic jobs
i.e. hard real-time jobs whose release and exec. times are not known a priori

The scheduler determines whether to accept a sporadic job when it
arrives (and its parameters become known)

» Perform acceptance test to check whether the new sporadic job
can be feasibly scheduled with all the jobs (periodic and
sporadic) in the system at that time
Acceptance check done at the beginning of the next frame; has to keep
execution times of the parts of sporadic jobs that have already executed

> If there is sufficient slack time in the frames before the new job’s
deadline, the new sporadic job is accepted; otherwise, rejected

» Among themselves, sporadic jobs scheduled according to EDF
This is optimal for sporadic jobs

Note: rejection is often better than missing deadline
e.g. a robotic arm taking defective parts off a conveyor belt: if the arm cannot

meet deadline, the belt may be slowed down or stopped
102

51(17,4.5) 5:(29,4) 53(22,1.5) 54044, 5.00)

b T 55,

| A B B L[
[} 154 T 3 0] 12 I5 16 19 20
Ss
I B . J
0 24 2% iz 34 40
I | | | L
41 44 4% 52 56 (]

S1(17,4.5) released at 3 with abs. deadline 17 and execution time 4.5;
acceptance test at 4; must be scheduled in frames 2, 3, 4; total slack in
these frames is 4, i.e. rejected

S2(29, 4) released at 5 with abs. deadline 29 and exec. time 4; acc. test
at 8; total slack in frames 3-7 is 5.5, i.e. accepted

S5(22,1.5) released at 11 with abs. deadline 22 and exec. time 1.5;
acc. test at 12;

2 units of slack in frames 4,5 as S; will be executed ahead of the
remaining parts of S, by EDF — check whether there will be enough
slack for the remaining parts of S,, accepted

S4(44,5.0) is rejected (only 4.5 slack left) 103

Handling Overruns

Overruns may happen due to failures
e.g. unexpectedly large data over which the system operates, hardware
failures, etc.

Ways to handle overruns:
» Abort the overrun job at the beginning of the next frame;
log the failure; recover later
e.g. control law computation of a robust digital controller
» Preempt the overrun job and finish it as an aperiodic job
use this when aborting job would cause “costly” inconsistencies

» Let the overrun job finish — start of the next frame and the
execution jobs scheduled for this frame are delayed

This may cause other jobs to be delayed
depends on application

104

Clock-drive Scheduling: Conclusions

Advantages:
» Conceptual simplicity
» Complex dependencies, communication delays, and
resource contention among jobs can be considered when
constructing the static schedule
» Entire schedule in a static table
» No concurrency control or synchronization needed

» Easy to validate, test and certify

Disadvantages:
» Inflexible
» If any parameter changes, the schedule must be usually
recomputed
Best suited for systems which are rarely modified (e.g. controllers)
» Parameters of the jobs must be fixed
As opposed to most priority-driven schedulers

