
Real-Time Scheduling

Scheduling of Reactive Systems

Priority-Driven Scheduling

106

Current Assumptions

� Single processor
� Fixed number, n, of independent periodic tasks

i.e. there is no dependency relation among jobs
� Jobs can be preempted at any time and never suspend

themselves
� No aperiodic and sporadic jobs
� No resource contentions

Moreover, unless otherwise stated, we assume that
� Scheduling decisions take place precisely at

� release of a job
� completion of a job

(and nowhere else)

� Context switch overhead is negligibly small
i.e. assumed to be zero

� There is an unlimited number of priority levels
107

Fixed-Priority vs Dynamic-Priority Algorithms
A priority-driven scheduler is on-line
i.e. it does not precompute a schedule of the tasks

� It assigns priorities to jobs after they are released and places the
jobs in a ready job queue in the priority order
with the highest priority jobs at the head of the queue

� At each scheduling decision time, the scheduler updates the
ready job queue and then schedules and executes the job at the
head of the queue
i.e. one of the jobs with the highest priority

Fixed-priority = all jobs in a task are assigned the same priority

Dynamic-priority = jobs in a task may be assigned different priorities

Note: In our case, a priority assigned to a job does not change. There are
job-level dynamic priority algorithms that vary priorities of individual jobs – we
won’t consider such algorithms.

108

Fixed-priority Algorithms – Rate Monotonic
Best known fixed-priority algorithm is rate monotonic (RM) scheduling
that assigns priorities to tasks based on their periods
� The shorter the period, the higher the priority
� The rate is the inverse of the period, so jobs with higher rate

have higher priority

RM is very widely studied and used

Example 13
T1 = (4, 1), T2 = (5, 2), T3 = (20, 5)
with rates 1/4, 1/5, 1/20, respectively

The priorities: T1 � T2 � T3

0 4 8 12 16 20

T3

T2

T1

109

Fixed-priority Algorithms – Deadline Monotonic

The deadline monotonic (DM) algorithm assigns priorities to
tasks based on their relative deadlines
� the shorter the deadline, the higher the priority

Observation: When relative deadline of every task matches its
period, then RM and DM give the same results

Proposition 1
When the relative deadlines are arbitrary DM can sometimes
produce a feasible schedule in cases where RM cannot.

110

Rate Monotonic vs Deadline Monotonic

T1 = (50, 50, 25, 100), T2 = (0, 62.5, 10, 20), T3 = (0, 125, 25, 50)

DM is optimal (with priorities T2 � T3 � T1):

50 100 150 200 250

0 62.5 125 187.5 250

0 125 250

20 82.5 145 207.5

50 175

T3

T2

T1

RM is not optimal (with priorities T1 � T2 � T3):

50 100 150 200 250

0 62.5 125 187.5 250

0 125 250

20 82.5 145 207.5

50 175

T3

T2

T1

111

Dynamic-priority Algorithms

Best known is earliest deadline first (EDF) that assigns
priorities based on current (absolute) deadlines
� At the time of a scheduling decision, the job queue is

ordered by earliest deadline

Another one is the least slack time (LST)
� The job queue is ordered by least slack time

Recall that the slack time of a job Ji at time t is equal to di − t − x where x is
the remaining computation time of Ji at time t

Comments:
� There is also a strict LST which reassigns priorities to jobs whenever

their slacks change relative to each other – won’t consider
� Standard “non real-time” algorithms such as FIFO and LIFO are also

dynamic-priority algorithms

We focus on EDF here, leave some LST for homework
112

EDF – Example

T1 = (2, 1) and T2 = (5, 2.5)

0 1 2 3 4 5 6 7 8 9 10

T2

T1

Note that the processor is 100% “utilized”, not surprising :-)

113

Summary of Priority-Driven Algorithms
We consider:
Dynamic-priority:
� EDF = at the time of a scheduling decision, the job queue is

ordered by the earliest deadline

Fixed-priority:

� RM = assigns priorities to tasks based on their periods

� DM = assigns priorities to tasks based on their relative deadlines

(In all cases, ties are broken arbitrarily.)

We consider the following questions:

� Are the algorithms optimal?

� How to efficiently (or even online) test for schedulability?

To measure abilities of scheduling algorithms and to get fast online
tests of schedulability we use a notion of utilization

114

Utilization

� Utilization ui of a periodic task Ti with period pi and
execution time ei is defined by ui := ei/pi
ui is the fraction of time a periodic task with period pi and execution time
ei keeps a processor busy

� Total utilization UT of a set of tasks T = {T1, . . . ,Tn} is
defined as the sum of utilizations of all tasks of T , i.e. by

UT :=

n�

i=1

ui

� U is a schedulable utilization of an algorithm ALG if all sets
of tasks T satisfying UT ≤ U are schedulable by ALG.
Maximum schedulable utilization UALG of an algorithm ALG
is the supremum of schedulable utilizations of ALG.

� If UT < UALG , then T is schedulable by ALG.
� If U > UALG , then there is T with UT ≤ U that is not

schedulable by ALG.
115

Utilization – Example

� T1 = (2, 1) then u1 = 1
2

� T1 = (11, 5,2, 4) then u1 = 2
5

(i.e., the phase and deadline do not play any role)

� T = {T1,T2,T3} where T1 = (2, 1),T2 = (6, 1),T3 = (8, 3)
then

UT =
1
2
+

1
6
+

3
8
=

25
24

116

Real-Time Scheduling

Priority-Driven Scheduling

Dynamic-Priority

117

Optimality of EDF

Theorem 14
Let T = {T1, . . . ,Tn} be a set of independent, preemptable
periodic tasks with Di ≥ pi for i = 1, . . . ,n. The following
statements are equivalent:

1. T can be feasibly scheduled on one processor
2. UT ≤ 1
3. T is schedulable using EDF

(i.e., in particular, UEDF = 1)

Proof.

1.⇒2. We prove that UT > 1 implies that T is not schedulable (whiteb.)

2.⇒3. Next slides and whiteboard ...

3.⇒1. Trivial

�
118

Proof of 2.⇒3. – Simplified
Let us start with a proof of a special case (see the assumptions A1 and A2
below). Then a complete proof will be presented.

We prove ¬3.⇒ ¬2. assuming that Di = pi for i = 1, . . . ,n.
(Note that the general case immediately follows.)

Assume that T is not schedulable according to EDF.
(Our goal is to show that UT > 1.)

This means that there must be at least one job that misses its
deadline when EDF is used.

Simplifying assumptions:

A1 Suppose that all tasks are in phase, i.e. the phase ϕ� = 0 for
every task T�.

A2 Suppose that the first job Ji,1 of a task Ti misses its deadline.

By A1, Ji,1 is released at 0 and misses its deadline at pi . Assume
w.l.o.g. that this is the first time when a job misses its deadline.
(To simplify even further, you may (privately) assume that no other job has its
deadline at pi .)

119

Proof of 2.⇒3. – Simplified

Let G be the set of all jobs that are released in [0, pi] and have their
deadlines in [0, pi].

Crucial observations:

� G contains Ji,1 and all jobs that preempt Ji,1.
(If there are more jobs with deadline pi , then these jobs do not have to
preempt Ji,1. Assume the worst case: all these jobs preempt Ji,1.)

� The processor is never idle during [0, pi] and executes only jobs
of G.

Denote by EG the total execution time of G, that is, the sum of
execution times of all jobs in G.

Corollary of the crucial observation: EG > pi because otherwise
Ji,1 (and all jobs that preempt it) would complete by pi .

Let us compute EG .

120

Proof of 2.⇒3. – Simplified

Since we assume ϕ� = 0 for every T�, the first job of T� is released
at 0, and thus

�
pi
p�

�
jobs of T� belong to G.

E.g., if p� = 2 and pi = 5 then three jobs of T� are released in [0, 5] (at times
0, 2, 4) but only 2 =

�
5
2

�
=
�

pi
p�

�
of them have their deadlines in [0, pi].

Thus the total execution time EG of all jobs in G is

EG =

n�

�=1

�
pi

p�

�
e�

But then

pi < EG =

n�

�=1

�
pi

p�

�
e� ≤

n�

�=1

pi

p�
e� ≤ pi

n�

�=1

u� ≤ pi · UT

which implies that UT > 1.

121

Proof of 2.⇒3. – Complete
Now let us drop the simplifying assumptions A1 and A2 !

Notation: Given a set of tasks L, we denote by
�L the set of all

jobs of the tasks in L.

We prove ¬3.⇒ ¬2. assuming that Di = pi for i = 1, . . . ,n (note that
the general case immediately follows).
Assume that T is not schedulable by EDF. We show that UT > 1.
Suppose that a job Ji,k of Ti misses its deadline at time t = ri,k + pi .
Assume that this is the earliest deadline miss.

Let T � be the set of all tasks whose jobs have deadlines (and thus
also release times) in [ri,k , t]
(i.e., a task belongs to T � iff at least one job of the task is released in [ri,k , t]).

Let t− be the end of the latest interval before t in which either jobs of�
(T � T �) are executed, or the processor is idle.

Then ri,k ≥ t− since all jobs of
�
(T � T �) waiting for execution during

[ri,k , t] have deadlines later than t (thus have lower priorities than Ji,k).
122

Proof of 2.⇒3. – Complete (cont.)
It follows that

� no job of
�
(T � T �) is executed in [t−, t],

(by definition of t−)

� the processor is fully utilized in [t−, t].
(by definition of t−)

� all jobs (that all must belong to
�T �) executed in [t−, t] are

released in [t−, t] and have their deadlines in [t−, t] since
� no job of

�T � executes just before t−,
� all jobs of

�T � released in [t−, ri,k] have deadlines before t ,
� jobs of

�T � released in [ri,k , t] with deadlines after t are not
executed in [ri,k , t] as they have lower priorities than Ji,k .

Let G be the set of all jobs that are released in [t−, t] and have their
deadlines in [t−, t].
Note that Ji,k ∈ G since ri,k ≥ t−.

Denote by EG the sum of all execution times of all jobs in G (the total
execution time of G).

123

Proof of 2.⇒3. – Complete (cont.)
Now EG > t − t− because otherwise Ji,k would complete in [t−, t].

How to compute EG?

For T� ∈ T �, denote by R� the earliest release time of a job in T�
during the interval [t−, t].

For every T� ∈ T �, exactly
�

t−R�
p�

�
jobs of T� belong to G. (For every

T� ∈ T � T �, exactly 0 jobs belong to G.)

Thus

EG =
�

T�∈T �

�
t − R�

p�

�
e�

As argued above:

t−t− < EG =
�

T�∈T �

�
t − R�

p�

�
e� ≤

�

T�∈T �

t − t−
p�

e� ≤ (t−t−)
�

T�∈T �
u� ≤ (t−t−)UT

which implies that UT > 1.
124

Density and EDF

What about tasks with Di < pi ?

Density of a task Ti with period pi , execution time ei and relative
deadline Di is defined by

ei/min(Di , pi)

Total density ΔT of a set of tasks T is the sum of densities of
tasks in T
Note that if Di < pi for some i, then ΔT > UT

Theorem 15
A set T of independent, preemptable, periodic tasks can be
feasibly scheduled on one processor if ΔT ≤ 1.
Note that this is NOT a necessary condition! (Example whiteb.)

125

Schedulability Test For EDF

The problem: Given a set of independent, preemptable, periodic
tasks T = {T1, . . . ,Tn} where each Ti has a period pi , execution time
ei , and relative deadline Di , decide whether T is schedulable by EDF.

Solution using utilization and density:

If pi ≤ Di for each i, then it suffices to decide whether UT ≤ 1.

Otherwise, decide whether ΔT ≤ 1:
� If yes, then T is schedulable with EDF
� If not, then T does not have to be schedulable

Note that
� Phases of tasks do not have to be specified
� Parameters may vary: increasing periods or deadlines, or

decreasing execution times does not prevent schedulability

126

Schedulability Test for EDF – Example

Consider a digital robot controller
� A control-law computation

� takes no more than 8 ms
� the sampling rate: 100 Hz, i.e. computes every 10 ms

Feasible? Trivially yes
� Add Built-In Self-Test (BIST)

� maximum execution time 50 ms
� want a minimal period that is feasible (max one second)

With 250 ms still feasible
� Add a telemetry task

� maximum execution time 15 ms
� want to minimize the deadline on telemetry

period may be large

Reducing BIST to once a second, deadline on telemetry
may be set to 100 ms

127

