
Real-Time Scheduling

Multiprocessor Real-Time Systems

218



Multiprocessor Real-time Systems

� Many embedded systems are composed of many processors
(control systems in cars, aircraft, industrial systems etc.)

� Today most processors in computers have multiple cores
The main reason is that increasing frequency of a single processor is
no more feasible (mostly due to power consumption problems, growing
leakage currents, memory problems etc.)

Applications must be developed specifically for multiprocessor
systems.

219



Multiprocessor Frustration

In case of real-time systems, multiple processors bring serious
difficulties concerning correctness, predictability and efficiency.

The “root of all evil” in global scheduling: (Liu, 1969)

Few of the results obtained for a single processor generalize
directly to the multiple processor case; bringing in additional
processors adds a new dimension to the scheduling problem.
The simple fact that a task can use only one processor even
when several processors are free at the same time adds a
surprising amount of difficulty to the scheduling of multiple
processors.

220



The Model

� A job is a unit of work that is scheduled and executed by
a system
(Characterised by the release time ri , execution time ei and deadline di)

� A task is a set of related jobs which jointly provide some
system function

� Jobs execute on processors

In this lecture we consider m processors

� Jobs may use some (shared) passive resources

221



Schedule

Schedule assigns, in every time instant, processors and resources to
jobs.

A schedule is feasible if all jobs with hard real-time constraints
complete before their deadlines.

A set of jobs is schedulable if there is a feasible schedule for the set.

A scheduling algorithm is optimal if it always produces a feasible
schedule whenever such a schedule exists.
(and if a cost function is given, minimizes the cost)

We also consider online scheduling algorithms that do not use any
knowlede about jobs that will be released in the future but are given
a complete information about jobs that have been released.
(e.g. EDF is online)

222



Multiprocessor Taxonomy

� Identical processors: All processors identical, have the same
computing power

� Uniform processors: Each processor is characterized by its own
computing capacity κ, completes κt units of execution after t
time units

� Unrelated processors: There is an execution rate ρij associated
with each job-processor pair (Ji ,Pj) so that Ji completes ρij t
units of execution by executing on Pj for t time units

In addition, cost of communication can be included etc.

223



Assumptions – Priority Driven Scheduling

Throughout this lecture we assume:

� Unless otherwise stated, consider m identical processors

� Jobs can be preempted at any time and never suspend
themselves

� Context switch overhead is negligibly small
i.e. assumed to be zero

� There is an unlimited number of priority levels

� For simplicity, we assume independent jobs that do not contend
for resources

Unless otherwise stated, we assume that scheduling decisions take
place only when a job is released, or completed.

224



Multiprocessor Scheduling Taxonomy

Multiprocessor scheduling attempts to solve two problems:

� the allocation problem, i.e., on which processor a given job
executes

� the priority problem, i.e., when and in what order the jobs
execute

225



Issues

What results from single processor scheduling remain valid in
multiprocessor setting?

� Are there simple optimal scheduling algorithms?
� Are there optimal online scheduling algorithms

(i.e. those that do not know what jobs come in future)

� Are there efficient tests for schedulability?

In this lecture we consider:
� Individual jobs
� Periodic tasks

Start with n individual jobs {J1, . . . , Jn}

226



Individual Jobs – Timing Anomalies

Priority order: J1 � · · · � J4

227



Individual Jobs – EDF

EDF on m identical processors: At any time instant, jobs with
the earliest absolute deadlines are executed on available processors.
(Recall: no job can be executed on more than one processor at a given time!)

Is this optimal? NO!

Example:
J1, J2, J3 where

� ri = 0 for i ∈ {1, 2,3}
� e1 = e2 = 1 and e3 = 5

� d1 = 1, d2 = 2, d3 = 5

228



Individual Jobs – Online Scheduling

Theorem 33
No optimal on-line scheduler can exist for a set of jobs with two or
more distinct deadlines on any m > 1 processor system.

Proof.
Assume m = 2 and consider three jobs J1, J2, J3 are released at time
0 with the following parameters:

� e1 = e2 = 2 and e3 = 4

� d1 = d2 = 4 and d3 = 8

Depending on scheduling in [0, 2], new tasks T4,T5 are released at 2:

� If J3 is executed in [0, 2], then at 2 release J4, J5 with d4 = d5 = 4
and e4 = e5 = 2.

� If J3 is not executed in [0, 2], then at 4 release J4, J5 with
d4 = d5 = 8 and e4 = e5 = 4.

In either case the schedule produced is not feasible. However, if the
scheduler is given either of the sets {J1, . . . , J5} at the beginning, then
there is a feasible schedule. �

229



Individual Jobs – Speedup Helps(?)

Theorem 34
If a set of jobs is feasible on m identical processors, then the same
set of jobs will be scheduled to meet all deadlines by EDF on identical
processors in which the individual processors are (2 − 1

m ) times as
fast as in the original system.

The result is tight for EDF (assuming dynamic job priority):

Theorem 35
There are sets of jobs that can be feasibly scheduled on m identical
processors but EDF cannot schedule them on m processors that are
only (2 − 1

m − ε) faster for every ε > 0.

... there are also general lower bounds for online algorithms:

Theorem 36
There are sets of jobs that can be feasibly scheduled on m (here m is
even) identical processors but no online algorithm can schedule
them on m processors that are only (1 + ε) faster for every ε < 1

5 .

[Optimal Time-Critical Scheduling Via Resource Augmentation, Phillips et al, STOC 1997] 230



Reactive Systems
Consider fixed number, n, of independent periodic tasks
T = {T1, . . . ,Tn}
i.e. there is no dependency relation among jobs

� Unless otherwise stated, assume no phase and deadlines equal
to periods

� Ignore aperiodic tasks
� No sporadic tasks unless otherwise stated

Utilization ui of a periodic task Ti with period pi and execution time ei
is defined by ui := ei/pi
ui is the fraction of time a periodic task with period pi and execution time ei

keeps a processor busy

Total utilization UT of a set of tasks T = {T1, . . . ,Tn} is defined as the
sum of utilizations of all tasks of T , i.e. by UT :=

�n
i=1 ui

Given a scheduling algorithm ALG, the schedulable utilization UALG of
ALG is the maximum number U such that for all T : UT ≤ U implies T
is schedulable by ALG.

231



Multiprocessor Scheduling Taxonomy

Allocation (migration type)

� No migration: each task is allocated to a processor

� (Task-level migration: jobs of a task may execute on different
processors; however, each job is assigned to a single processor)

� Job-level migration: A single job can migrate and execute on
different processors
(however, parallel execution of one job is not permitted and migration
takes place only when the job is rescheduled)

Priority type

� Fixed task-level priority (e.g. EDF)

� Fixed job-level priority (e.g. RM)

� (Dynamic job-level priority)

Partitioned scheduling = No migration
Global scheduling = job-level migration

232



Fundamental Limit – Fixed Job-Level Priority

Consider m processors and m + 1 tasks T = {T1, . . . ,Tm+1}, each
Ti = (L , 2L − 1).

Then UT =
�m+1

i=1 L/(2L − 1) = (m + 1) (L/(2L − 1))

For very large L , this number is close to (m + 1)/2.

The set T is not schedulable using any fixed job-level priority
algorithm.

In other words, the schedulable utilization of fixed job-level priority
algorithms is at most (m + 1)/2, i.e., half of the processors capacity.

There are variants of EDF achieving this bound (see later slides).

233



Partitioned vs Global Scheduling

Most algorithms up to the end of 1990s based on partitioned
scheduling
� no migration

From the end of 1990s, many results concerning global
scheduling
� job-level migration

The task-level migration has not been much studied, so it is not covered in
this lecture.

We consider fixed job-level priority (e.g. EDF) and fixed
task-level priority (e.g. RM).
As before, we ignore dynamic job-level priority.

234



Partitioned Scheduling & Fixed Job-Level Priority

The algorithm proceeds in two phases:

1. Allocate tasks to processors, i.e., partition the set of tasks into m
possibly empty modules M1, . . . ,Mm

2. Schedule tasks of each Mi on the processor i according to
a given single processor algorithm

The quality of task assignment is determined by the number of
assigned processors

� Use EDF to schedule modules

� Suffices to test whether the total utilization of each module is ≤ 1
(or, possibly, ≤ Û where Û < 1 in order to accomodate aperiodic jobs ...)

Finding an optimal schedule is equivalent to a simple uniform-size
bin-packing problem (and hence is NP-complete)

Similarly, we may use RM for fixed task-level priorities (total utilization in
modules ≤ log 2, etc.)

235



Partitioned Scheduling & Fixed Job-Level Priority
Assume that tasks are assigned to modules using the First Fit (FF)
algorithm and that EDF is used in modules (the algorithm EDF-FF).

Theorem 37
Given a set of tasks T , denote by β the number �1/maxi ui� where
maxi ui is the maximum utilization of tasks in T .

1. Assume n > βm. If UT ≤ βm+1
β+1 , then T is schedulable using any

EDF-FF algorithm.

2. For every ε > 0 there is a set of n > βm tasks T such that
UT =

βm+1
β+1 + ε and T is not schedulable by any EDF-FF.

The theorem holds also for other allocation heuristics (+ EDF) such
as First Fit Ordered, Best Fit, Best Fit Ordered.

No reasonable allocation algorithm can give a scheduling algorithm
with better schedulable utilization than βm+1

β+1 .

There is an analogous result (with different bounds) for fixed task-level
priority systems, where RM-FF is used.

236



Partitioned Scheduling – EDF-FF

The value
�
βm+1
β+1 /m

�
(vertical axis) w.r.t. the number of processors m

(horizontal axis), here α = maxi ui is the maximum utilization
237



Global Scheduling – Fixed Job-Level Priority

Dhall’s effect:

� Consider m > 1 processors

� Let ε > 0

� Consider a set of tasks T = {T1, . . . ,Tm,Tm+1} such that

� Ti = (2ε, 1) for 1 ≤ i ≤ m
� Tm+1 = (1, 1 + ε)

� T is schedulable

� Stadnard EDF and RM schedules are not feasible (whiteb.)

However,

UT = m
2ε
1

+
1

1 + ε

which means that for small ε the utilization UT is close to 1
(i.e., UT /m is very small for m >> 0 processors)

238



How to avoid Dhall’s effect?

� Note that RM and EDF only account for task periods and
ignore the execution time!

� (Partial) Solution: Dhall’s effect can be avoided by giving
high priority to tasks with high utilization

Then in the previous example, Tm+1 is executed whenever
it comes and the other tasks are assigned to the remaining
processors – produces a feasible schedule

239



Global Scheduling – Fixed Job-Level Priority

Theorem 38
A set of periodic tasks T with deadlines equal to periods can be
EDF-scheduled upon m unit-speed identical processors, provided its
cumulative utilization is bounded from above as follows:

UT ≤ m − (m − 1)max
i

ui

(This holds also for systems with relative deadlines bounded by periods – just
substitute utilizations with densities ei/Di .)
The above bound on EDF is tight:

Theorem 39
Let m > 1. For every 0 < umax < 1 and small 0 < ε << umax there is
a set of tasks T such that

� maximum utilization in T is umax,

� UT = UT ≤ m − (m − 1)umax + ε,

� T is not schedulable by EDF.

[Priority-Driven Scheduling of Periodic Task Systems on Multiprocessors, Goossens et al, R-T S., 2003] 240



Global Scheduling – Fixed Job-Level Priority

Apparently there is a problem with long jobs due to Dhall’s effect.

There is an improved version of EDF called EDF-US(1/2) which

� assigns the highest priority to tasks with ui ≥ 1/2

� assigns priorities to the rest according to deadlines

which reaches the generic schedulable utilization bound (m + 1)/2.

241



Global Scheduling – Fixed Task-Level Priority
RM algorithm – always execute the jobs with highest rate

Lemma 40
If ui ≤ m/(3m − 2) for all 1 ≤ i ≤ n and UT ≤ m2/(3m − 2), then T is
schedulabe by RM.

There is a problem with long jobs due to Dhall’s effect.

Solution: Deal with long jobs separately which gives RM-US:

� Assign the same maximum priority to all Ti with ui > m/(3m − 2),
break ties arbitrarily.

� If ui ≤ m/(3m − 2) assign rate-monotonic priority.

Theorem 41
If UT ≤ m2/(3m − 2), then T is schedulabe by RM-US.

Note that for large m this bound is close to m/3 (i.e., the utilization is
33%).

242



Partitioned vs Global

Advantages of the global scheduling:

� Load is automatically balanced

� Better average response time (follows from queueing theory)

Disadvantages of the global scheduling:

� Problems caused by migration (e.g. increased cache misses)

� Schedulability tests more difficult (active area of research)

Is either of the approaches better from the schedulability standpoint?

243



Global Beats Partitioned

There are sets of tasks schedulable only with global scheduler:
� T = {T1,T2,T3} where T1 = (1, 2),T2 = (2, 3),T3 = (2, 3),

can be scheduled using a global scheduler:

� No feasible partitioned schedule exists, always at least one
processor gets tasks with total utilization higher than 1.

244



Partitioned Beats Global

There are task sets that can be scheduled only with partitioned
scheduler (assuming fixed task-level priority assignment):

� T = {T1, . . . ,T4} where
T1 = (2, 3),T2 = (3, 4),T3 = (5, 15),T4 = (5, 20), can be
scheduled using a fixed task-level priority partitioned schedule:

� Global scheduling (fixed job-level priority): There are 9 jobs
released in the interval [0, 12). Any of the 9! possible priority
assignments leads to a deadline miss.

245



Optimal Algorithm?
There IS an optimal algorithm in the case of job-level migration &
dynamic job-level priority. However, the algorithm is time driven.

The priority fair (PFair) algorithm is optimal for periodic systems with
deadlines equal to periods

Idea (of PFair): In any interval (0, t ] jobs of a task Ti with utilization ui
execute for amount of time W so that uit − 1 <W < uit + 1
(Here every parameter is assumed to be a natural number)

This is achieved by cutting time into small quanta and scheduling jobs
in these quanta so that the execution times are always (more or less)
in proportion.

There are other optimal algorithms, all of them suffer from a large
number of preemptions/migrations.

No optimal algorithms are known for more general settings: deadlines
bounded by periods, arbitrary deadlines.

Recall, that no optimal on-line scheduling possible
246


