
IA159 Formal Verification Methods
Abstraction

Jan Strejček

Department of Computer Science
Faculty of Informatics
Masaryk University

Focus and sources

Focus
principle of abstraction
exact abstractions and non-exact abstractions
predicate abstraction
CEGAR: counterexample-guided abstraction refinement

Sources
Chapter 13 of E. M. Clarke, O. Grumberg, and D. A. Peled:
Model Checking, MIT, 1999.
R. Pelánek: Reduction and Abstraction Techniques for
Model Checking, PhD thesis, FI MU, 2002.
E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith:
Counterexample-guided Abstraction Refinement, CAV
2000, LNCS 1855, Springer, 2000.

IA159 Formal Verification Methods: Abstraction 2/76

Motivation

Abstraction is probably the most important technique
for reducing the state explosion problem.

[CGP99]

Original
system

oo Verification impossible // Properties

large finite systems −→ smaller finite systems
infinite-state systems −→ finite systems

IA159 Formal Verification Methods: Abstraction 3/76

Motivation

Abstraction is probably the most important technique
for reducing the state explosion problem.

[CGP99]

Original
system

oo // Abstract
model

oo Verification // Properties

large finite systems −→ smaller finite systems
infinite-state systems −→ finite systems

IA159 Formal Verification Methods: Abstraction 4/76

Motivation

Abstraction is probably the most important technique
for reducing the state explosion problem.

[CGP99]

Original
system

oo // Abstract
model

oo Verification // Properties

large finite systems −→ smaller finite systems
infinite-state systems −→ finite systems

IA159 Formal Verification Methods: Abstraction 5/76

Intuition

��

x = 0

��

x = 3

??

x = 1

��

x = 2

__

��

x = 0

x > 0

MM

MM

equivalent with respect to F(x > 0)

nonequivalent with respect to GF(x = 0)

IA159 Formal Verification Methods: Abstraction 6/76

Intuition

��

x = 0

��

x = 3

??

x = 1

��

x = 2

__

��

x = 0

x > 0

MM

MM

equivalent with respect to F(x > 0)

nonequivalent with respect to GF(x = 0)

IA159 Formal Verification Methods: Abstraction 7/76

Intuition

��

x = 0

��

x = 3

??

x = 1

��

x = 2

__

��

x = 0

x > 0

MM

MM

equivalent with respect to F(x > 0)

nonequivalent with respect to GF(x = 0)

IA159 Formal Verification Methods: Abstraction 8/76

Intuition

��

x = 0

��

x = 3

??

x = 1

��

x = 2

__

��

x = 0

x > 0

MM

MM

equivalent with respect to F(x > 0)

nonequivalent with respect to GF(x = 0)

IA159 Formal Verification Methods: Abstraction 9/76

Simulation

Given two Kripke structures M = (S,→,S0,L) and
M ′ = (S′,→′,S′0,L′), we say that M ′ simulates M, written
M ≤ M ′, if there exists a relation R ⊆ S × S′ such that:

∀s0 ∈ S0 . ∃s′0 ∈ S′0 : (s0, s′0) ∈ R
(s, s′) ∈ R =⇒ L(s) = L′(s′)
(s, s′) ∈ R ∧ s → p =⇒ ∃p′ ∈ S′ : s′ →′ p′ ∧ (p,p′) ∈ R

Lemma

If M ≤ M ′, then for every path σ = s1s2 . . . of M starting in an
initial state there is a run σ′ = s′1s′2 . . . of M ′ starting in an initial
state and satisfying

L(s1)L(s2) . . . = L′(s′1)L′(s′2)

IA159 Formal Verification Methods: Abstraction 10/76

Simulation

Given two Kripke structures M = (S,→,S0,L) and
M ′ = (S′,→′,S′0,L′), we say that M ′ simulates M, written
M ≤ M ′, if there exists a relation R ⊆ S × S′ such that:

∀s0 ∈ S0 . ∃s′0 ∈ S′0 : (s0, s′0) ∈ R
(s, s′) ∈ R =⇒ L(s) = L′(s′)
(s, s′) ∈ R ∧ s → p =⇒ ∃p′ ∈ S′ : s′ →′ p′ ∧ (p,p′) ∈ R

Lemma

If M ≤ M ′, then for every path σ = s1s2 . . . of M starting in an
initial state there is a run σ′ = s′1s′2 . . . of M ′ starting in an initial
state and satisfying

L(s1)L(s2) . . . = L′(s′1)L′(s′2)

IA159 Formal Verification Methods: Abstraction 11/76

Relations between original and abstract systems

Original
system

M
oo M ≤ A //

Abstract
model

A
oo

A |= ϕ
// Property
ϕ ∈ LTL66

M |= ϕ

hh

M ≤ A =⇒ all behaviours of M are also in A
(but not vice versa)

IA159 Formal Verification Methods: Abstraction 12/76

Relations between original and abstract systems

Original
system

M
oo M ≤ A //

Abstract
model

A
oo

A |= ϕ
// Property
ϕ ∈ LTL66

M |= ϕ

hh

M ≤ A =⇒ all behaviours of M are also in A
(but not vice versa)

IA159 Formal Verification Methods: Abstraction 13/76

Relations between original and abstract systems

Original
system

M
oo M ≤ A //

Abstract
model

A
oo

A |= ϕ
// Property
ϕ ∈ LTL66

M |= ϕ

hh

M ≤ A =⇒ all behaviours of M are also in A
(but not vice versa)

IA159 Formal Verification Methods: Abstraction 14/76

Relations between original and abstract systems

Original
system

M
oo M ≤ A //

Abstract
model

A
oo

A 6|= ϕ
// Property
ϕ ∈ LTL66

???

hh

M ≤ A =⇒ all behaviours of M are also in A
(but not vice versa)

IA159 Formal Verification Methods: Abstraction 15/76

Relations between original and abstract systems

Original
system

M
oo M ≤ A //

Abstract
model

A
oo

A 6|= ϕ
// Property
ϕ ∈ LTL66

???

hh

If A has a behaviour violating ϕ (i.e. A 6|= ϕ), then either
1 M has this behaviour as well (i.e. M 6|= ϕ), or
2 M does not have this behaviour, which is then called

false positive or spurious counterexample
(M |= ϕ or M 6|= ϕ due to another behaviour violating ϕ).

IA159 Formal Verification Methods: Abstraction 16/76

Relations between original and abstract systems

Original
system

M
oo M ≥ A //

Abstract
model

A
oo

A |= ϕ
// Property
ϕ ∈ LTL66

M |= ϕ

hh

M ≥ A =⇒ all behaviours of A are also in M
(but not vice versa)

IA159 Formal Verification Methods: Abstraction 17/76

Relations between original and abstract systems

Original
system

M
oo M ≥ A //

Abstract
model

A
oo

A 6|= ϕ
// Property
ϕ ∈ LTL66

M 6|= ϕ

hh

M ≥ A =⇒ all behaviours of A are also in M
(but not vice versa)

IA159 Formal Verification Methods: Abstraction 18/76

Relations between original and abstract systems

Original
system

M
oo M ≥ A //

Abstract
model

A
oo

A 6|= ϕ
// Property
ϕ ∈ LTL66

M 6|= ϕ

hh

M ≥ A =⇒ all behaviours of A are also in M
(but not vice versa)

IA159 Formal Verification Methods: Abstraction 19/76

Relations between original and abstract systems

Original
system

M
oo M ≥ A //

Abstract
model

A
oo

A |= ϕ
// Property
ϕ ∈ LTL66

M |= ϕ

hh

M ≥ A =⇒ all behaviours of A are also in M
(but not vice versa)

IA159 Formal Verification Methods: Abstraction 20/76

Relations between original and abstract systems

Original
system

M
oo M ≥ A //

Abstract
model

A
oo

A |= ϕ
// Property
ϕ ∈ LTL66

???

hh

M ≥ A =⇒ all behaviours of A are also in M
(but not vice versa)

IA159 Formal Verification Methods: Abstraction 21/76

Relations between original and abstract systems

Original
system

M
oo M ≤ A

M ≥ A
//
Abstract
model

A
oo

A |= ϕ
// Property
ϕ ∈ LTL66

M |= ϕ

hh

M ≤ A ≤ M =⇒ A and M have tha same behaviours
A is an exact abstraction of M

Note: A and M are bisimilar =⇒ M ≤ A ≤ M
⇐=6

IA159 Formal Verification Methods: Abstraction 22/76

Relations between original and abstract systems

Original
system

M
oo M ≤ A

M ≥ A
//
Abstract
model

A
oo

A |= ϕ
// Property
ϕ ∈ LTL66

M |= ϕ

hh

M ≤ A ≤ M =⇒ A and M have tha same behaviours
A is an exact abstraction of M

Note: A and M are bisimilar =⇒ M ≤ A ≤ M
⇐=6

IA159 Formal Verification Methods: Abstraction 23/76

Relations between original and abstract systems

Original
system

M
oo M ≤ A

M ≥ A
//
Abstract
model

A
oo

A |= ϕ
// Property
ϕ ∈ LTL66

M |= ϕ

hh

M ≤ A ≤ M =⇒ A and M have tha same behaviours
A is an exact abstraction of M

Note: A and M are bisimilar =⇒ M ≤ A ≤ M
⇐=6

IA159 Formal Verification Methods: Abstraction 24/76

Relations between original and abstract systems

Original
system

M
oo M ≤ A

M ≥ A
//
Abstract
model

A
oo

A 6|= ϕ
// Property
ϕ ∈ LTL66

M 6|= ϕ

hh

M ≤ A ≤ M =⇒ A and M have tha same behaviours
A is an exact abstraction of M

Note: A and M are bisimilar =⇒ M ≤ A ≤ M
⇐=6

IA159 Formal Verification Methods: Abstraction 25/76

Relations between original and abstract systems

Original
system

M
oo M ≤ A

M ≥ A
//
Abstract
model

A
oo

A 6|= ϕ
// Property
ϕ ∈ LTL66

M 6|= ϕ

hh

M ≤ A ≤ M =⇒ A and M have tha same behaviours
A is an exact abstraction of M

Note: A and M are bisimilar =⇒ M ≤ A ≤ M
⇐=6

IA159 Formal Verification Methods: Abstraction 26/76

Relations between original and abstract systems

Original
system

M
oo M ≤ A

M ≥ A
//
Abstract
model

A
oo

A 6|= ϕ
// Property
ϕ ∈ LTL66

M 6|= ϕ

hh

All these relations hold even for ϕ ∈ CTL∗.

IA159 Formal Verification Methods: Abstraction 27/76

Abstraction

Exact abstractions

IA159 Formal Verification Methods: Abstraction 28/76

Cone of influence (aka dead variables)

Idea

We eliminate the variables that do not influence the variables in
the specification.

IA159 Formal Verification Methods: Abstraction 29/76

Cone of influence (aka dead variables)

let V be the set of variables appearing in specification
cone of influence C of V is the minimal set of variables
such that

V ⊆ C
if v occurs in a test affecting the control flow, then v ∈ C
if there is an assignment v := e for some v ∈ C, then all
variables occurring in the expression e are also in C

C can be computed by the source code analysis
variables that are not in C can be eliminated from the code
together with all commands they participate in

IA159 Formal Verification Methods: Abstraction 30/76

Cone of influence: example

S: v := getinput();
x := getinput();
y := 1;
z := 1;
while v > 0 do

z := z ∗ x ;
x := x − 1;
y := y ∗ v ;
v := v − 1;

z := z ∗ y ;
E:

Specification: F(pc = E)

V = ∅, C = {v}

IA159 Formal Verification Methods: Abstraction 31/76

Cone of influence: example

S: v := getinput();
x := getinput();
y := 1;
z := 1;
while v > 0 do

z := z ∗ x ;
x := x − 1;
y := y ∗ v ;
v := v − 1;

z := z ∗ y ;
E:

Specification: F(pc = E)
V = ∅, C = {v}

IA159 Formal Verification Methods: Abstraction 32/76

Cone of influence: example

S: v := getinput(); S: v := getinput();
x := getinput(); skip;
y := 1; skip;
z := 1; skip;
while v > 0 do while v > 0 do

z := z ∗ x ; skip;
x := x − 1; skip;
y := y ∗ v ; skip;
v := v − 1; v := v − 1;

z := z ∗ y ; skip;
E: E:

Specification: F(pc = E)
V = ∅, C = {v}

IA159 Formal Verification Methods: Abstraction 33/76

Other exact abstractions

Symmetry reduction
in systems with more identical parallel components, their
order is not important

Equivalent values
if the set of behaviours starting in a state s is the same for
values a,b of a variable v , then the two values can be
replaced by one
applicable to larger sets of values as well
used in timed automata for timer values

IA159 Formal Verification Methods: Abstraction 34/76

Abstraction

Non-exact abstractions

IA159 Formal Verification Methods: Abstraction 35/76

Concept

We face two problems
1 to find a suitable abstract domain (i.e. a set of abstract

states) and a mapping between the original states and the
abstract ones

2 to compute a transition relation on abstract states

IA159 Formal Verification Methods: Abstraction 36/76

Finding abstract states

Abstract states are usually defined in one of the following ways:

1 for each variable x , we replace the original variable domain
Dx by an abstract domain Ax and we define a total function
hx : Dx → Ax

a state s = (v1, . . . , vm) ∈ Dx1 × . . .× Dxm given by values
of all variables corresponds to an abstract state

h(s) = (hx1(v1), . . . ,hxm (vm)) ∈ Ax1 × . . .× Axm

2 predicate abstraction - we choose a finite set
Φ = {φ1, . . . , φn} of predicates over the set of variables;
we have several choices of abstract domains

The first approach can be seen as a special case the latter one.

IA159 Formal Verification Methods: Abstraction 37/76

Popular abstract domains for integers

Sign abstraction
Ax = {a+,a−,a0}

hx (v) =

a− if v < 0
a0 if v = 0
a+ if v > 0

Parity abstraction
Ax = {ae,ao}

hx (v) =

{
ae if v is even
ao if v is odd

good for verification of properties related to the last bit of
binary representation

IA159 Formal Verification Methods: Abstraction 38/76

Popular abstract domains for integers

Congruence modulo an integer
hx (v) = v (mod m) for some m
nice properties:

((x mod m) + (y mod m)) mod m = x + y (mod m)
((x mod m)− (y mod m)) mod m = x − y (mod m)

((x mod m) · (y mod m)) mod m = x · y (mod m)

Representation by logarithm
hx (v) = dlog2(v + 1)e
the number of bits needed for representation of v
good for verification of properties related to overflow
problems

IA159 Formal Verification Methods: Abstraction 39/76

Popular abstract domains for integers

Single bit abstraction
Ax = {0,1}
hx (v) =the i-th bit of v for a fixed i

Single value abstraction
Ax = {0,1}

hx (v) =

{
1 if v = c
0 otherwise

...and others

IA159 Formal Verification Methods: Abstraction 40/76

Predicate abstraction

Let Φ = {φ1, . . . , φn} be a set of predicates over the set of
variables.

Abstract domain {0,1}n

a state s = (v1, . . . , vm) corresponds to an abstract state
given by a vector of truth values of {φ1, . . . , φn}, i.e.

h(s) = (φ1(v1, . . . , vm), . . . , φn(v1, . . . , vm)) ∈ {0,1}n

example: φ1 = (x1 > 3) φ2 = (x1 < x2) φ3 = (x2 > 10)

s = (5,7)
h(s) = (1,1,0)

IA159 Formal Verification Methods: Abstraction 41/76

Abstract structures

Assume that
we have a Kripke structure M = (S,→,S0,L)

we have an abstract domain A and a mapping h : S → A

To define abstract model (A,→′,A0,LA), we set
A0 = {h(s0) | s0 ∈ S0}
LA : A→ 2AP has be correctly defined, i.e.

for abstraction based on variable domains, validity of atomic
propositions is determined by abstract states in Ax1×...×Axm

for predicate abstraction, validity of atomic propositions is
determined by abstraction predicates {φ1, . . . , φn} (AP is
typically a subset of it)

and it LA has to agree with L, i.e. L(s) = LA(h(s))

IA159 Formal Verification Methods: Abstraction 42/76

Abstract structures

Assume that
we have a Kripke structure M = (S,→,S0,L)

we have an abstract domain A and a mapping h : S → A

We define two abstract models:

Mmay = (A,→may ,A0,LA), where
a1 →may a2 iff there exist s1, s2 ∈ S such that

h(s1) = a1, h(s2) = a2, and s1 → s2

IA159 Formal Verification Methods: Abstraction 43/76

Example Mmay

x=0EE // x=1 //
aa x=2 //
aa x=3 //
xx

x=4 //
xx

x=5 //

· · ·

xx
. . .

Mmay with abstract domain {0,1}2 generated by predicate
abstraction with predicates φ1 = (x > 0) and φ2 = (x > 2).

(0,0)
HH

// (1,0)
VV

//
ff

(1,1)
VV

vv

IA159 Formal Verification Methods: Abstraction 44/76

Example Mmay

x=0EE // x=1 //
aa x=2 //
aa x=3 //
xx

x=4 //
xx

x=5 //

· · ·

xx
. . .

Mmay with abstract domain {0,1}2 generated by predicate
abstraction with predicates φ1 = (x > 0) and φ2 = (x > 2).

(0,0)
HH

// (1,0)
VV

//
ff

(1,1)
VV

vv

IA159 Formal Verification Methods: Abstraction 45/76

Abstract structures

Assume that
we have a Kripke structure M = (S,→,S0,L)

we have an abstract domain A and a mapping h : S → A

We define two abstract models:

Mmust = (A,→must ,A0,LA), where
a1 →must a2 iff for each s1 ∈ S satisfying h(s1) = a1

there exists s2 ∈ S such that h(s2) = a2
and s1 → s2

IA159 Formal Verification Methods: Abstraction 46/76

Example Mmust

x=0EE // x=1 //
aa x=2 //
aa x=3 //
xx

x=4 //
xx

x=5 //

· · ·

xx
. . .

Mmust with abstract domain {0,1}2 generated by predicate
abstraction with predicates φ1 = (x > 0) and φ2 = (x > 2).

(0,0)
HH

// (1,0)
ff

(1,1)
VV

vv

IA159 Formal Verification Methods: Abstraction 47/76

Example Mmust

x=0EE // x=1 //
aa x=2 //
aa x=3 //
xx

x=4 //
xx

x=5 //

· · ·

xx
. . .

Mmust with abstract domain {0,1}2 generated by predicate
abstraction with predicates φ1 = (x > 0) and φ2 = (x > 2).

(0,0)
HH

// (1,0)
ff

(1,1)
VV

vv

IA159 Formal Verification Methods: Abstraction 48/76

Relations between M, Mmust , and Mmay

Lemma

For every Kripke structure M, abstract domain A with a
mapping function h it holds:

Mmust ≤ M ≤ Mmay

computing Mmust and Mmay requires constructing M first
(recall that M can be very large or even infinite)
we compute an under-approximation M ′must of Mmust and
an over-approximation M ′may of Mmay directly from an
implicit representation of M
it holds that M ′must ≤ Mmust ≤ M ≤ Mmay ≤ M ′may

IA159 Formal Verification Methods: Abstraction 49/76

Relations between M, Mmust , and Mmay

Lemma

For every Kripke structure M, abstract domain A with a
mapping function h it holds:

Mmust ≤ M ≤ Mmay

computing Mmust and Mmay requires constructing M first
(recall that M can be very large or even infinite)
we compute an under-approximation M ′must of Mmust and
an over-approximation M ′may of Mmay directly from an
implicit representation of M
it holds that M ′must ≤ Mmust ≤ M ≤ Mmay ≤ M ′may

IA159 Formal Verification Methods: Abstraction 50/76

Abstraction

Abstraction in practice

IA159 Formal Verification Methods: Abstraction 51/76

Predicate abstraction: abstracting sets of states

Abstract domain {0,1}n is not used in practice (too many
transitions) =⇒ it is better to assign a single abstract state to a
set of original states.

Abstract domain 2{0,1}
n

let ~b = 〈b1, . . . ,bn〉 be a vector of bi ∈ {0,1}
we set [~b,Φ] = b1 · φ1 ∧ . . . ∧ bn · φn,
where 0 · φi = ¬φi and 1 · φi = φi

let X denotes the set of original states
h(X) = {~b ∈ {0,1}n | ∃s ∈ X : s |= [~b,Φ]}
example: φ1 = (x1 > 3) φ2 = (x1 < x2) φ3 = (x2 > 10)

X = {(5,7), (4,5), (2,9)}
h(X) = {(1,1,0), (0,1,0)}

nice theoretical properties
not used in practice (this abstract domain grows too fast)

IA159 Formal Verification Methods: Abstraction 52/76

Predicate abstraction: abstracting sets of states

Abstract domain {0,1, ∗}n (predicate-cartesian abstraction)

let ~b = 〈b1, . . . ,bn〉 be a vector of bi ∈ {0,1, ∗}
we set [~b,Φ] = b1 · φ1 ∧ . . . ∧ bn · φn,
where 0 · φi = ¬φi , 1 · φi = φi , and ∗ · φi = φi

h(X) = min{~b ∈ {0,1, ∗}n | ∀s ∈ X : s |= [~b,Φ]},
where min means “the most specific”
example: φ1 = (x1 > 3) φ2 = (x1 < x2) φ3 = (x2 > 10)

X = {(5,7), (4,5), (2,9)}
h(X) = (∗,1,0)

this one is used in practice

IA159 Formal Verification Methods: Abstraction 53/76

Guarded command language

Syntax
let V be a finite set of integer variable
expressions over V use standard boolean (=, <,>) and
binary (+,−, ·, . . .) operations
Act is a set of action names
model is a pair M = (V ,E), where E = {t1, . . . , tm} is a
finite set of transitions of the form ti = (ai ,gi ,ui), where

ai ∈ Act
gi is a boolean expression over V
ui is a sequence of assignments over V

Semantics
M defines a labelled transition system where

states are valuations of variables S = 2V→Z

initial state is the zero valuation s0(v) = 0 for all v ∈ V
s ai→ s′ whenever s |= gi and s′ = ui (s)

IA159 Formal Verification Methods: Abstraction 54/76

Guarded command language

Syntax
let V be a finite set of integer variable
expressions over V use standard boolean (=, <,>) and
binary (+,−, ·, . . .) operations
Act is a set of action names
model is a pair M = (V ,E), where E = {t1, . . . , tm} is a
finite set of transitions of the form ti = (ai ,gi ,ui), where

ai ∈ Act
gi is a boolean expression over V
ui is a sequence of assignments over V

Semantics
M defines a labelled transition system where

states are valuations of variables S = 2V→Z

initial state is the zero valuation s0(v) = 0 for all v ∈ V
s ai→ s′ whenever s |= gi and s′ = ui (s)

IA159 Formal Verification Methods: Abstraction 55/76

Example

x=0

b

EE
a // x=1 a //

c

aa x=2 a //

c

aa x=3 a //

d
xx

x=4 a //

d

xx
x=5 a //

d · · ·

xx
. . .

implicit description in guarded command language:

V = {x}
(a, >, x := x + 1)
(b, ¬(x > 0), x := 0)
(c, (x > 0) ∧ (x ≤ 2), x := 0)
(d , (x > 2), x := 0)

IA159 Formal Verification Methods: Abstraction 56/76

Abstraction in practice

we use predicate abstraction with domain {0,1, ∗}n

given a formula ϕ with free variables from V , we set

pre(ai , ϕ) = (gi =⇒ ϕ[~x/ui(~x)])

we use a sound decision procedure is_valid , i.e.

is_valid(ϕ) = > =⇒ ϕ is a tautology

(the procedure is_valid does not have to be complete)

IA159 Formal Verification Methods: Abstraction 57/76

Abstraction in practice

for every abstract state ~b ∈ {0,1, ∗}n and for every transition
ti = (ai ,gi ,ui), we compute an over-approximation of a
may -successor of ~b under ti as

if is_valid([~b,Φ] =⇒ ¬gi) then there is no successor

otherwise, the successor ~b′ is given by

b′j =

1 if is_valid([~b,Φ] =⇒ pre(ai , φj))

0 if is_valid([~b,Φ] =⇒ pre(ai ,¬φj))
∗ otherwise

IA159 Formal Verification Methods: Abstraction 58/76

Example

b′j =

1 if is_valid([~b,Φ] =⇒ pre(ai , φj))

0 if is_valid([~b,Φ] =⇒ pre(ai ,¬φj))
∗ otherwise

(a, >, x := x + 1)

using the predicates φ1 = (x > 0), φ2 = (x > 2), we compute
the transition

(1,0)
a→may ′ (1, ∗)

(x > 0) ∧ (x ≤ 2) =⇒ (> =⇒ (x + 1 > 0)) is true
(x > 0) ∧ (x ≤ 2) =⇒ (> =⇒ (x + 1 > 2)) is not true
(x > 0) ∧ (x ≤ 2) =⇒ (> =⇒ (x + 1 ≤ 2)) is not true

IA159 Formal Verification Methods: Abstraction 59/76

Example

b′j =

1 if is_valid([~b,Φ] =⇒ pre(ai , φj))

0 if is_valid([~b,Φ] =⇒ pre(ai ,¬φj))
∗ otherwise

(a, >, x := x + 1)

using the predicates φ1 = (x > 0), φ2 = (x > 2), we compute
the transition

(1,0)
a→may ′ (1, ∗)

(x > 0) ∧ (x ≤ 2) =⇒ (> =⇒ (x + 1 > 0)) is true

(x > 0) ∧ (x ≤ 2) =⇒ (> =⇒ (x + 1 > 2)) is not true
(x > 0) ∧ (x ≤ 2) =⇒ (> =⇒ (x + 1 ≤ 2)) is not true

IA159 Formal Verification Methods: Abstraction 60/76

Example

b′j =

1 if is_valid([~b,Φ] =⇒ pre(ai , φj))

0 if is_valid([~b,Φ] =⇒ pre(ai ,¬φj))
∗ otherwise

(a, >, x := x + 1)

using the predicates φ1 = (x > 0), φ2 = (x > 2), we compute
the transition

(1,0)
a→may ′ (1, ∗)

(x > 0) ∧ (x ≤ 2) =⇒ (> =⇒ (x + 1 > 0)) is true
(x > 0) ∧ (x ≤ 2) =⇒ (> =⇒ (x + 1 > 2)) is not true
(x > 0) ∧ (x ≤ 2) =⇒ (> =⇒ (x + 1 ≤ 2)) is not true

IA159 Formal Verification Methods: Abstraction 61/76

Abstraction in practice

for every transition, we compute successors of all abstract
states
based on the successors, we transform the original implicit
representation of a system into a boolean program
boolean program is an implicit representation of an
over-approximation of Mmay

it uses only boolean variables ~b representing the validity of
abstraction predicates Φ

boolean program can be used as an input for a suitable
model checker (of finite-state systems)

IA159 Formal Verification Methods: Abstraction 62/76

Example

V = {x}
(a, >, x := x + 1)
(b, ¬(x > 0), x := 0)
(c, (x > 0) ∧ (x ≤ 2), x := 0)
(d , (x > 2), x := 0)

using the predicates φ1 = (x > 0), φ2 = (x > 2), we get the
boolean program (defining an over-approximation) of Mmay

V = {b1,b2}, where b1,b2 represents validity of φ1, φ2
(a, >, b1 := if b1 then 1 else ∗

b2 := if b2 then 1 else if b1 then ∗ else 0)
(b, ¬b1, b1 := 0, b2 := 0)
(c, b1 ∧ ¬b2, b1 := 0, b2 := 0)
(d , b2, b1 := 0, b2 := 0)

IA159 Formal Verification Methods: Abstraction 63/76

Example of a real NQC code and its absraction

task light_sensor_control() { task A_light_sensor_control() {
int x = 0; bool b = false;
while (true) { while (true) {
if (LIGHT > LIGHT_THRESHOLD) { if (*) {

PlaySound(SOUND_CLICK);
Wait(30);
x = x + 1; b = b ? true : * ;

} else { } else {
if (x > 2) { if (b) {
PlaySound(SOUND_UP);
ClearTimer(0);
brick = LONG; brick = LONG;

} else if (x > 0) { } else if (b ? true : *) {
PlaySound(SOUND_DOUBLE_BEEP);
ClearTimer(0);
brick = SHORT; brick = SHORT;

} }
x = 0; b = false;

} }
} }

} }

IA159 Formal Verification Methods: Abstraction 64/76

Abstraction

CEGAR: counterexample-guided abstraction refinement

IA159 Formal Verification Methods: Abstraction 65/76

Motivation

it is hard to find a small and valuable abstraction
abstraction predicates are usually provided by a user
CEGAR tries to find a suitable abstraction automatically
implemented in SLAM, BLAST, and Static Driver Verifier
(SDV)
incomplete method, but very successfull in practice

IA159 Formal Verification Methods: Abstraction 66/76

Principle

system M
((

specification ϕ

AP(ϕ)vv

��

build a new
abstract model
M ′ (M ≤ M ′)

��
add new

abstraction
predicates

22

model check
M ′ |= ϕ?

NO

ss YES

��

analyze
counterexamplespurious

VV

real
��

BUG!
M 6|= ϕ

NO BUG!
M |= ϕ

IA159 Formal Verification Methods: Abstraction 67/76

Principle

system M
((

specification ϕ

AP(ϕ)vv

��

build a new
abstract model
M ′ (M ≤ M ′)

��
add new

abstraction
predicates

22

model check
M ′ |= ϕ?

NO

ss YES

��

analyze
counterexamplespurious

VV

real
��

BUG!
M 6|= ϕ

NO BUG!
M |= ϕ

IA159 Formal Verification Methods: Abstraction 68/76

Principle

system M
((

specification ϕ

AP(ϕ)vv

��

build a new
abstract model
M ′ (M ≤ M ′)

��
add new

abstraction
predicates

22

model check
M ′ |= ϕ?

NO

ss YES

��

analyze
counterexamplespurious

VV

real
��

BUG!
M 6|= ϕ

NO BUG!
M |= ϕ

IA159 Formal Verification Methods: Abstraction 69/76

Principle

system M
((

specification ϕ

AP(ϕ)vv

��

build a new
abstract model
M ′ (M ≤ M ′)

��
add new

abstraction
predicates

22

model check
M ′ |= ϕ?

NO

ss YES

��

analyze
counterexamplespurious

VV

real
��

BUG!
M 6|= ϕ

NO BUG!
M |= ϕ

IA159 Formal Verification Methods: Abstraction 70/76

Principle

system M
((

specification ϕ

AP(ϕ)vv

��

build a new
abstract model
M ′ (M ≤ M ′)

��
add new

abstraction
predicates

22

model check
M ′ |= ϕ?

NO

ss YES

��

analyze
counterexamplespurious

VV

real
��

BUG!
M 6|= ϕ

NO BUG!
M |= ϕ

IA159 Formal Verification Methods: Abstraction 71/76

Principle

system M
((

specification ϕ

AP(ϕ)vv

��

build a new
abstract model
M ′ (M ≤ M ′)

��
add new

abstraction
predicates

22

model check
M ′ |= ϕ?

NO

ss YES

��

analyze
counterexamplespurious

VV

real
��

BUG!
M 6|= ϕ

NO BUG!
M |= ϕ

IA159 Formal Verification Methods: Abstraction 72/76

Principle

system M
((

specification ϕ

AP(ϕ)vv

��

build a new
abstract model
M ′ (M ≤ M ′)

��
add new

abstraction
predicates

22

model check
M ′ |= ϕ?

NO

ss YES

��

analyze
counterexamplespurious

VV

real
��

BUG!
M 6|= ϕ

NO BUG!
M |= ϕ

IA159 Formal Verification Methods: Abstraction 73/76

Principle

system M
((

specification ϕ

AP(ϕ)vv

��

build a new
abstract model
M ′ (M ≤ M ′)

��
add new

abstraction
predicates

22

model check
M ′ |= ϕ?

NO

ss YES

��

analyze
counterexamplespurious

VV

real
��

BUG!
M 6|= ϕ

NO BUG!
M |= ϕ

IA159 Formal Verification Methods: Abstraction 74/76

Notes

added abstraction predicates ensure that the new abstract
model M ′ does not have the behaviour corresponding to
the spurious counterexample of the previous M ′

the analysis of an abstract counterexample and finding
new abstract predicates are nontrivial tasks
the method is sound but incomplete
(the algorithm can run in the cycle forever)

IA159 Formal Verification Methods: Abstraction 75/76

Coming next week

Symbolic execution

Can we perform more executions simultaneously?
Can we perform all possible executions?
Are there any modern applications of symbolic execution?

IA159 Formal Verification Methods: Abstraction 76/76

