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Focus and sources

Focus
principle of abstraction
exact abstractions and non-exact abstractions
predicate abstraction
CEGAR: counterexample-guided abstraction refinement

Sources
Chapter 13 of E. M. Clarke, O. Grumberg, and D. A. Peled:
Model Checking, MIT, 1999.
R. Pelánek: Reduction and Abstraction Techniques for
Model Checking, PhD thesis, FI MU, 2002.
E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith:
Counterexample-guided Abstraction Refinement, CAV
2000, LNCS 1855, Springer, 2000.
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Motivation

Abstraction is probably the most important technique
for reducing the state explosion problem.

[CGP99]

Original
system

oo Verification impossible // Properties

large finite systems −→ smaller finite systems
infinite-state systems −→ finite systems
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Simulation

Given two Kripke structures M = (S,→,S0,L) and
M ′ = (S′,→′,S′0,L′), we say that M ′ simulates M, written
M ≤ M ′, if there exists a relation R ⊆ S × S′ such that:

∀s0 ∈ S0 . ∃s′0 ∈ S′0 : (s0, s′0) ∈ R
(s, s′) ∈ R =⇒ L(s) = L′(s′)
(s, s′) ∈ R ∧ s → p =⇒ ∃p′ ∈ S′ : s′ →′ p′ ∧ (p,p′) ∈ R

Lemma

If M ≤ M ′, then for every path σ = s1s2 . . . of M starting in an
initial state there is a run σ′ = s′1s′2 . . . of M ′ starting in an initial
state and satisfying

L(s1)L(s2) . . . = L′(s′1)L′(s′2) . . . .
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Relations between original and abstract systems

Original
system

M
oo M ≤ A //

Abstract
model

A
oo

A |= ϕ
// Property
ϕ ∈ LTL66

M |= ϕ

hh

M ≤ A =⇒ all behaviours of M are also in A
(but not vice versa)
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Relations between original and abstract systems

Original
system

M
oo M ≤ A //

Abstract
model

A
oo

A 6|= ϕ
// Property
ϕ ∈ LTL66

???

hh

If A has a behaviour violating ϕ (i.e. A 6|= ϕ), then either
1 M has this behaviour as well (i.e. M 6|= ϕ), or
2 M does not have this behaviour, which is then called

false positive or spurious counterexample
(M |= ϕ or M 6|= ϕ due to another behaviour violating ϕ).
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Relations between original and abstract systems

Original
system

M
oo M ≤ A

M ≥ A
//
Abstract
model

A
oo

A |= ϕ
// Property
ϕ ∈ LTL66

M |= ϕ

hh

M ≤ A ≤ M =⇒ A and M have tha same behaviours
A is an exact abstraction of M

Note: A and M are bisimilar =⇒ M ≤ A ≤ M
⇐=6
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Relations between original and abstract systems

Original
system

M
oo M ≤ A

M ≥ A
//
Abstract
model

A
oo

A 6|= ϕ
// Property
ϕ ∈ LTL66

M 6|= ϕ

hh

All these relations hold even for ϕ ∈ CTL∗.
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Abstraction

Exact abstractions
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Cone of influence (aka dead variables)

Idea

We eliminate the variables that do not influence the variables in
the specification.
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Cone of influence (aka dead variables)

let V be the set of variables appearing in specification
cone of influence C of V is the minimal set of variables
such that

V ⊆ C
if v occurs in a test affecting the control flow, then v ∈ C
if there is an assignment v := e for some v ∈ C, then all
variables occurring in the expression e are also in C

C can be computed by the source code analysis
variables that are not in C can be eliminated from the code
together with all commands they participate in
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Cone of influence: example

S: v := getinput();
x := getinput();
y := 1;
z := 1;
while v > 0 do

z := z ∗ x ;
x := x − 1;
y := y ∗ v ;
v := v − 1;

z := z ∗ y ;
E:

Specification: F(pc = E)

V = ∅, C = {v}
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Cone of influence: example

S: v := getinput(); S: v := getinput();
x := getinput(); skip;
y := 1; skip;
z := 1; skip;
while v > 0 do while v > 0 do

z := z ∗ x ; skip;
x := x − 1; skip;
y := y ∗ v ; skip;
v := v − 1; v := v − 1;

z := z ∗ y ; skip;
E: E:

Specification: F(pc = E)
V = ∅, C = {v}
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Other exact abstractions

Symmetry reduction
in systems with more identical parallel components, their
order is not important

Equivalent values
if the set of behaviours starting in a state s is the same for
values a,b of a variable v , then the two values can be
replaced by one
applicable to larger sets of values as well
used in timed automata for timer values
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Abstraction

Non-exact abstractions
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Concept

We face two problems
1 to find a suitable abstract domain (i.e. a set of abstract

states) and a mapping between the original states and the
abstract ones

2 to compute a transition relation on abstract states
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Finding abstract states

Abstract states are usually defined in one of the following ways:

1 for each variable x , we replace the original variable domain
Dx by an abstract domain Ax and we define a total function
hx : Dx → Ax

a state s = (v1, . . . , vm) ∈ Dx1 × . . .× Dxm given by values
of all variables corresponds to an abstract state

h(s) = (hx1(v1), . . . ,hxm (vm)) ∈ Ax1 × . . .× Axm

2 predicate abstraction - we choose a finite set
Φ = {φ1, . . . , φn} of predicates over the set of variables;
we have several choices of abstract domains

The first approach can be seen as a special case the latter one.
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Popular abstract domains for integers

Sign abstraction
Ax = {a+,a−,a0}

hx (v) =


a− if v < 0
a0 if v = 0
a+ if v > 0

Parity abstraction
Ax = {ae,ao}

hx (v) =

{
ae if v is even
ao if v is odd

good for verification of properties related to the last bit of
binary representation
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Popular abstract domains for integers

Congruence modulo an integer
hx (v) = v (mod m) for some m
nice properties:

((x mod m) + (y mod m)) mod m = x + y (mod m)
((x mod m)− (y mod m)) mod m = x − y (mod m)

((x mod m) · (y mod m)) mod m = x · y (mod m)

Representation by logarithm
hx (v) = dlog2(v + 1)e
the number of bits needed for representation of v
good for verification of properties related to overflow
problems
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Popular abstract domains for integers

Single bit abstraction
Ax = {0,1}
hx (v) =the i-th bit of v for a fixed i

Single value abstraction
Ax = {0,1}

hx (v) =

{
1 if v = c
0 otherwise

...and others
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Predicate abstraction

Let Φ = {φ1, . . . , φn} be a set of predicates over the set of
variables.

Abstract domain {0,1}n

a state s = (v1, . . . , vm) corresponds to an abstract state
given by a vector of truth values of {φ1, . . . , φn}, i.e.

h(s) = (φ1(v1, . . . , vm), . . . , φn(v1, . . . , vm)) ∈ {0,1}n

example: φ1 = (x1 > 3) φ2 = (x1 < x2) φ3 = (x2 > 10)

s = (5,7)
h(s) = (1,1,0)
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Abstract structures

Assume that
we have a Kripke structure M = (S,→,S0,L)

we have an abstract domain A and a mapping h : S → A

To define abstract model (A,→′,A0,LA), we set
A0 = {h(s0) | s0 ∈ S0}
LA : A→ 2AP has be correctly defined, i.e.

for abstraction based on variable domains, validity of atomic
propositions is determined by abstract states in Ax1×...×Axm

for predicate abstraction, validity of atomic propositions is
determined by abstraction predicates {φ1, . . . , φn} (AP is
typically a subset of it)

and it LA has to agree with L, i.e. L(s) = LA(h(s))
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Abstract structures

Assume that
we have a Kripke structure M = (S,→,S0,L)

we have an abstract domain A and a mapping h : S → A

We define two abstract models:

Mmay = (A,→may ,A0,LA), where
a1 →may a2 iff there exist s1, s2 ∈ S such that

h(s1) = a1, h(s2) = a2, and s1 → s2
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Example Mmay

x=0EE // x=1 //
aa x=2 //
aa x=3 //
xx

x=4 //
xx

x=5 //

· · ·

xx
. . .

Mmay with abstract domain {0,1}2 generated by predicate
abstraction with predicates φ1 = (x > 0) and φ2 = (x > 2).

(0,0)
HH

// (1,0)
VV

//
ff

(1,1)
VV

vv
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Abstract structures

Assume that
we have a Kripke structure M = (S,→,S0,L)

we have an abstract domain A and a mapping h : S → A

We define two abstract models:

Mmust = (A,→must ,A0,LA), where
a1 →must a2 iff for each s1 ∈ S satisfying h(s1) = a1

there exists s2 ∈ S such that h(s2) = a2
and s1 → s2
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Relations between M, Mmust , and Mmay

Lemma

For every Kripke structure M, abstract domain A with a
mapping function h it holds:

Mmust ≤ M ≤ Mmay

computing Mmust and Mmay requires constructing M first
(recall that M can be very large or even infinite)
we compute an under-approximation M ′must of Mmust and
an over-approximation M ′may of Mmay directly from an
implicit representation of M
it holds that M ′must ≤ Mmust ≤ M ≤ Mmay ≤ M ′may
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Abstraction

Abstraction in practice
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Predicate abstraction: abstracting sets of states

Abstract domain {0,1}n is not used in practice (too many
transitions) =⇒ it is better to assign a single abstract state to a
set of original states.

Abstract domain 2{0,1}
n

let ~b = 〈b1, . . . ,bn〉 be a vector of bi ∈ {0,1}
we set [~b,Φ] = b1 · φ1 ∧ . . . ∧ bn · φn,
where 0 · φi = ¬φi and 1 · φi = φi

let X denotes the set of original states
h(X ) = {~b ∈ {0,1}n | ∃s ∈ X : s |= [~b,Φ]}
example: φ1 = (x1 > 3) φ2 = (x1 < x2) φ3 = (x2 > 10)

X = {(5,7), (4,5), (2,9)}
h(X ) = {(1,1,0), (0,1,0)}

nice theoretical properties
not used in practice (this abstract domain grows too fast)
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Predicate abstraction: abstracting sets of states

Abstract domain {0,1, ∗}n (predicate-cartesian abstraction)

let ~b = 〈b1, . . . ,bn〉 be a vector of bi ∈ {0,1, ∗}
we set [~b,Φ] = b1 · φ1 ∧ . . . ∧ bn · φn,
where 0 · φi = ¬φi , 1 · φi = φi , and ∗ · φi = φi

h(X ) = min{~b ∈ {0,1, ∗}n | ∀s ∈ X : s |= [~b,Φ]},
where min means “the most specific”
example: φ1 = (x1 > 3) φ2 = (x1 < x2) φ3 = (x2 > 10)

X = {(5,7), (4,5), (2,9)}
h(X ) = (∗,1,0)

this one is used in practice
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Guarded command language

Syntax
let V be a finite set of integer variable
expressions over V use standard boolean (=, <,>) and
binary (+,−, ·, . . .) operations
Act is a set of action names
model is a pair M = (V ,E), where E = {t1, . . . , tm} is a
finite set of transitions of the form ti = (ai ,gi ,ui), where

ai ∈ Act
gi is a boolean expression over V
ui is a sequence of assignments over V

Semantics
M defines a labelled transition system where

states are valuations of variables S = 2V→Z

initial state is the zero valuation s0(v) = 0 for all v ∈ V
s ai→ s′ whenever s |= gi and s′ = ui (s)
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Example

x=0

b

EE
a // x=1 a //

c

aa x=2 a //

c

aa x=3 a //

d
xx

x=4 a //

d

xx
x=5 a //

d · · ·

xx
. . .

implicit description in guarded command language:

V = {x}
(a, >, x := x + 1)
(b, ¬(x > 0), x := 0)
(c, (x > 0) ∧ (x ≤ 2), x := 0)
(d , (x > 2), x := 0)
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Abstraction in practice

we use predicate abstraction with domain {0,1, ∗}n

given a formula ϕ with free variables from V , we set

pre(ai , ϕ) = (gi =⇒ ϕ[~x/ui(~x)])

we use a sound decision procedure is_valid , i.e.

is_valid(ϕ) = > =⇒ ϕ is a tautology

(the procedure is_valid does not have to be complete)
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Abstraction in practice

for every abstract state ~b ∈ {0,1, ∗}n and for every transition
ti = (ai ,gi ,ui), we compute an over-approximation of a
may -successor of ~b under ti as

if is_valid([~b,Φ] =⇒ ¬gi) then there is no successor

otherwise, the successor ~b′ is given by

b′j =


1 if is_valid([~b,Φ] =⇒ pre(ai , φj))

0 if is_valid([~b,Φ] =⇒ pre(ai ,¬φj))
∗ otherwise
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Example

b′j =


1 if is_valid([~b,Φ] =⇒ pre(ai , φj))

0 if is_valid([~b,Φ] =⇒ pre(ai ,¬φj))
∗ otherwise

(a, >, x := x + 1)

using the predicates φ1 = (x > 0), φ2 = (x > 2), we compute
the transition

(1,0)
a→may ′ (1, ∗)

(x > 0) ∧ (x ≤ 2) =⇒ (> =⇒ (x + 1 > 0)) is true
(x > 0) ∧ (x ≤ 2) =⇒ (> =⇒ (x + 1 > 2)) is not true
(x > 0) ∧ (x ≤ 2) =⇒ (> =⇒ (x + 1 ≤ 2)) is not true
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(x > 0) ∧ (x ≤ 2) =⇒ (> =⇒ (x + 1 ≤ 2)) is not true

IA159 Formal Verification Methods: Abstraction 60/76



Example

b′j =


1 if is_valid([~b,Φ] =⇒ pre(ai , φj))

0 if is_valid([~b,Φ] =⇒ pre(ai ,¬φj))
∗ otherwise

(a, >, x := x + 1)

using the predicates φ1 = (x > 0), φ2 = (x > 2), we compute
the transition

(1,0)
a→may ′ (1, ∗)

(x > 0) ∧ (x ≤ 2) =⇒ (> =⇒ (x + 1 > 0)) is true
(x > 0) ∧ (x ≤ 2) =⇒ (> =⇒ (x + 1 > 2)) is not true
(x > 0) ∧ (x ≤ 2) =⇒ (> =⇒ (x + 1 ≤ 2)) is not true
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Abstraction in practice

for every transition, we compute successors of all abstract
states
based on the successors, we transform the original implicit
representation of a system into a boolean program
boolean program is an implicit representation of an
over-approximation of Mmay

it uses only boolean variables ~b representing the validity of
abstraction predicates Φ

boolean program can be used as an input for a suitable
model checker (of finite-state systems)
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Example

V = {x}
(a, >, x := x + 1)
(b, ¬(x > 0), x := 0)
(c, (x > 0) ∧ (x ≤ 2), x := 0)
(d , (x > 2), x := 0)

using the predicates φ1 = (x > 0), φ2 = (x > 2), we get the
boolean program (defining an over-approximation) of Mmay

V = {b1,b2}, where b1,b2 represents validity of φ1, φ2
(a, >, b1 := if b1 then 1 else ∗

b2 := if b2 then 1 else if b1 then ∗ else 0)
(b, ¬b1, b1 := 0, b2 := 0)
(c, b1 ∧ ¬b2, b1 := 0, b2 := 0)
(d , b2, b1 := 0, b2 := 0)
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Example of a real NQC code and its absraction

task light_sensor_control() { task A_light_sensor_control() {
int x = 0; bool b = false;
while (true) { while (true) {
if (LIGHT > LIGHT_THRESHOLD) { if (*) {

PlaySound(SOUND_CLICK);
Wait(30);
x = x + 1; b = b ? true : * ;

} else { } else {
if (x > 2) { if (b) {
PlaySound(SOUND_UP);
ClearTimer(0);
brick = LONG; brick = LONG;

} else if (x > 0) { } else if (b ? true : *) {
PlaySound(SOUND_DOUBLE_BEEP);
ClearTimer(0);
brick = SHORT; brick = SHORT;

} }
x = 0; b = false;

} }
} }

} }

IA159 Formal Verification Methods: Abstraction 64/76



Abstraction

CEGAR: counterexample-guided abstraction refinement
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Motivation

it is hard to find a small and valuable abstraction
abstraction predicates are usually provided by a user
CEGAR tries to find a suitable abstraction automatically
implemented in SLAM, BLAST, and Static Driver Verifier
(SDV)
incomplete method, but very successfull in practice
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Notes

added abstraction predicates ensure that the new abstract
model M ′ does not have the behaviour corresponding to
the spurious counterexample of the previous M ′

the analysis of an abstract counterexample and finding
new abstract predicates are nontrivial tasks
the method is sound but incomplete
(the algorithm can run in the cycle forever)
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Coming next week

Symbolic execution

Can we perform more executions simultaneously?
Can we perform all possible executions?
Are there any modern applications of symbolic execution?
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