IA159 Formal Verification Methods Abstraction

Jan Strejček

Department of Computer Science Faculty of Informatics Masaryk University

Focus and sources

Focus

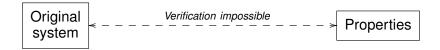
- principle of abstraction
- exact abstractions and non-exact abstractions
- predicate abstraction
- CEGAR: counterexample-guided abstraction refinement

Sources

- Chapter 13 of E. M. Clarke, O. Grumberg, and D. A. Peled: Model Checking, MIT, 1999.
- R. Pelánek: Reduction and Abstraction Techniques for Model Checking, PhD thesis, FI MU, 2002.
- E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith: Counterexample-guided Abstraction Refinement, CAV 2000, LNCS 1855, Springer, 2000.

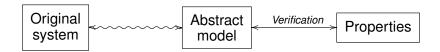
Abstraction is probably the most important technique for reducing the state explosion problem.

[CGP99]



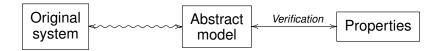
Abstraction is probably the most important technique for reducing the state explosion problem.

[CGP99]

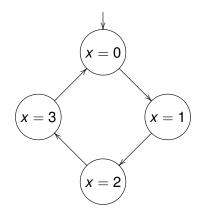


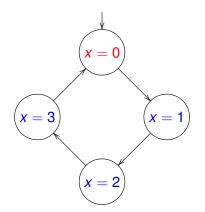
Abstraction is probably the most important technique for reducing the state explosion problem.

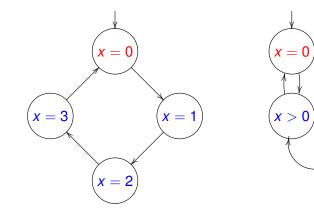
[CGP99]

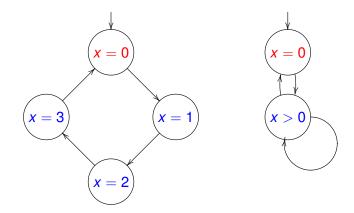


- large finite systems → smaller finite systems
- infinite-state systems \longrightarrow finite systems









equivalent with respect to F(x > 0)
 nonequivalent with respect to GF(x = 0)

Simulation

Given two Kripke structures $M = (S, \rightarrow, S_0, L)$ and $M' = (S', \rightarrow', S'_0, L')$, we say that M' simulates M, written $M \leq M'$, if there exists a relation $R \subseteq S \times S'$ such that:

$$\begin{array}{l} \blacksquare \ \forall s_0 \in S_0 \, . \, \exists s'_0 \in S'_0 \, : \, (s_0, s'_0) \in R \\ \blacksquare \ (s, s') \in R \implies L(s) = L'(s') \\ \blacksquare \ (s, s') \in R \, \land \, s \rightarrow p \implies \exists p' \in S' \, : \, s' \rightarrow' p' \, \land \, (p, p') \in R \end{array}$$

Simulation

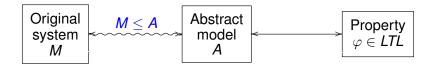
Given two Kripke structures $M = (S, \rightarrow, S_0, L)$ and $M' = (S', \rightarrow', S'_0, L')$, we say that M' simulates M, written $M \leq M'$, if there exists a relation $R \subseteq S \times S'$ such that:

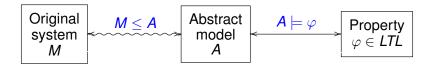
$$\begin{array}{l} \blacksquare \ \forall s_0 \in S_0 \, . \, \exists s'_0 \in S'_0 \, : \, (s_0, s'_0) \in R \\ \blacksquare \ (s, s') \in R \implies L(s) = L'(s') \\ \blacksquare \ (s, s') \in R \land s \rightarrow p \implies \exists p' \in S' \, : \, s' \rightarrow' p' \land (p, p') \in R \end{array}$$

Lemma

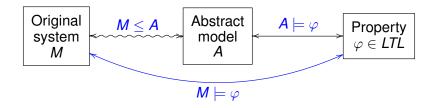
If $M \le M'$, then for every path $\sigma = s_1 s_2 \dots$ of M starting in an initial state there is a run $\sigma' = s'_1 s'_2 \dots$ of M' starting in an initial state and satisfying

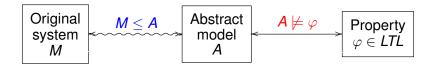
$$L(s_1)L(s_2)\ldots = L'(s'_1)L'(s'_2)\ldots$$

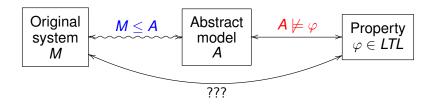




Relations between original and abstract systems

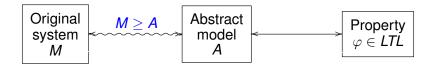


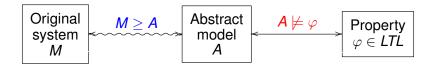




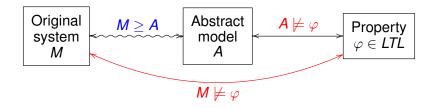
If *A* has a behaviour violating φ (i.e. $A \not\models \varphi$), then either

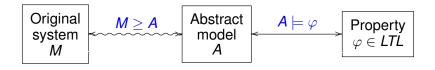
- **1** *M* has this behaviour as well (i.e. $M \not\models \varphi$), or
- M does not have this behaviour, which is then called false positive or spurious counterexample
 (M ⊨ φ or M ⊭ φ due to another behaviour violating φ).



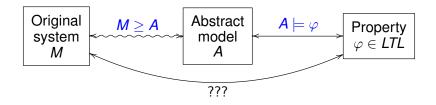


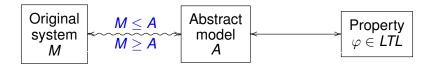
Relations between original and abstract systems





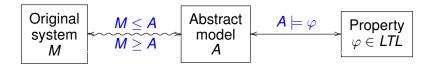
Relations between original and abstract systems





 $M \le A \le M \implies A$ and M have the same behaviours A is an exact abstraction of M

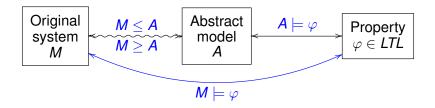
Note: A and M are bisimilar $\implies M \le A \le M$ \Leftarrow



 $M \le A \le M \implies A$ and M have the same behaviours A is an exact abstraction of M

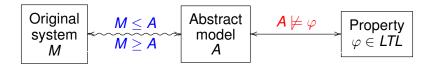
Note: A and M are bisimilar $\implies M \le A \le M$ \Leftarrow

Relations between original and abstract systems



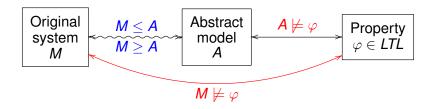
 $M \le A \le M \implies A$ and M have the same behaviours A is an exact abstraction of M

Note: A and M are bisimilar $\implies M \le A \le M$ \Leftarrow



 $M \le A \le M \implies A$ and M have the same behaviours A is an exact abstraction of M

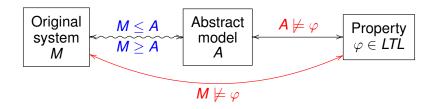
Note: A and M are bisimilar $\implies M \le A \le M$ \Leftarrow



 $M \le A \le M \implies A$ and M have the same behaviours A is an exact abstraction of M

Note: A and M are bisimilar $\implies M \le A \le M$ \Leftarrow

Relations between original and abstract systems



All these relations hold even for $\varphi \in CTL^*$.

Exact abstractions

Idea

We eliminate the variables that do not influence the variables in the specification.

- let V be the set of variables appearing in specification
 cone of influence C of V is the minimal set of variables such that
 - $V \subseteq C$
 - if v occurs in a test affecting the control flow, then $v \in C$
 - if there is an assignment v := e for some v ∈ C, then all variables occurring in the expression e are also in C
- C can be computed by the source code analysis
- variables that are not in C can be eliminated from the code together with all commands they participate in

S:
$$v := getinput();$$

 $x := getinput();$
 $y := 1;$
 $z := 1;$
while $v > 0$ do
 $z := z * x;$
 $x := x - 1;$
 $y := y * v;$
 $v := v - 1;$
 $z := z * y;$
E:

Specification: F(pc = E)

S:
$$v := getinput();$$

 $x := getinput();$
 $y := 1;$
 $z := 1;$
while $v > 0$ do
 $z := z * x;$
 $x := x - 1;$
 $y := y * v;$
 $v := v - 1;$
 $z := z * y;$
E:

Specification: F(pc = E) $V = \emptyset$, $C = \{v\}$

Cone of influence: example

S:
$$v := getinput();$$

 $x := getinput();$
 $y := 1;$
 $z := 1;$
while $v > 0$ do
 $z := z * x;$
 $x := x - 1;$
 $y := y * v;$
 $v := v - 1;$
 $z := z * y;$
E:

Specification: F(pc = E) $V = \emptyset$, $C = \{v\}$

Symmetry reduction

 in systems with more identical parallel components, their order is not important

Equivalent values

- if the set of behaviours starting in a state s is the same for values a, b of a variable v, then the two values can be replaced by one
- applicable to larger sets of values as well
- used in timed automata for timer values

Non-exact abstractions

We face two problems

- 1 to find a suitable abstract domain (i.e. a set of abstract states) and a mapping between the original states and the abstract ones
- 2 to compute a transition relation on abstract states

Abstract states are usually defined in one of the following ways:

1 for each variable *x*, we replace the original variable domain D_x by an abstract domain A_x and we define a total function $h_x : D_x \to A_x$

a state $s = (v_1, ..., v_m) \in D_{x_1} \times ... \times D_{x_m}$ given by values of all variables corresponds to an abstract state

$$h(s) = (h_{x_1}(v_1), \ldots, h_{x_m}(v_m)) \in A_{x_1} \times \ldots \times A_{x_m}$$

2 predicate abstraction - we choose a finite set $\Phi = \{\phi_1, \dots, \phi_n\}$ of predicates over the set of variables; we have several choices of abstract domains

The first approach can be seen as a special case the latter one.

Sign abstraction

$$A_{x} = \{a_{+}, a_{-}, a_{0}\}$$

$$h_{x}(v) = \begin{cases} a_{-} & \text{if } v < 0 \\ a_{0} & \text{if } v = 0 \\ a_{+} & \text{if } v > 0 \end{cases}$$

Parity abstraction

$$A_x = \{a_e, a_o\}$$

$$h_x(v) = \begin{cases} a_e & \text{if } v \text{ is even} \\ a_o & \text{if } v \text{ is odd} \end{cases}$$

 good for verification of properties related to the last bit of binary representation

Congruence modulo an integer

•
$$h_x(v) = v \pmod{m}$$
 for some m

nice properties:

$$\begin{array}{rcl} ((x \mod m) + (y \mod m)) \mod m &=& x + y \pmod{m} \\ ((x \mod m) - (y \mod m)) \mod m &=& x - y \pmod{m} \\ ((x \mod m) \cdot (y \mod m)) \mod m &=& x \cdot y \pmod{m} \end{array}$$

Representation by logarithm

$$h_x(v) = \lceil \log_2(v+1) \rceil$$

- the number of bits needed for representation of v
- good for verification of properties related to overflow problems

Single bit abstraction

Single value abstraction

$$A_x = \{0, 1\}$$

$$h_x(v) = \begin{cases} 1 & \text{if } v = c \\ 0 & \text{otherwise} \end{cases}$$

...and others

Let $\Phi = \{\phi_1, \dots, \phi_n\}$ be a set of predicates over the set of variables.

Abstract domain $\{0, 1\}^n$

■ a state s = (v₁,..., v_m) corresponds to an abstract state given by a vector of truth values of {φ₁,..., φ_n}, i.e.

$$h(\boldsymbol{s}) = (\phi_1(\boldsymbol{v}_1, \ldots, \boldsymbol{v}_m), \ldots, \phi_n(\boldsymbol{v}_1, \ldots, \boldsymbol{v}_m)) \in \{0, 1\}^n$$

• example:
$$\phi_1 = (x_1 > 3)$$
 $\phi_2 = (x_1 < x_2)$ $\phi_3 = (x_2 > 10)$
 $s = (5,7)$
 $h(s) = (1,1,0)$

Assume that

• we have a Kripke structure $M = (S, \rightarrow, S_0, L)$

• we have an abstract domain A and a mapping $h: S \rightarrow A$

To define abstract model $(A, \rightarrow', A_0, L_A)$, we set

$$A_0 = \{h(s_0) \mid s_0 \in S_0\}$$

• $L_A: A \to 2^{AP}$ has be correctly defined, i.e.

- for abstraction based on variable domains, validity of atomic propositions is determined by abstract states in A_{x1}×...×A_{xm}
- for predicate abstraction, validity of atomic propositions is determined by abstraction predicates {φ₁,...,φ_n} (AP is typically a subset of it)

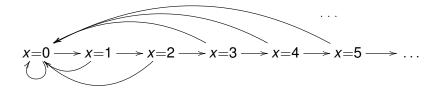
and it L_A has to agree with L, i.e. $L(s) = L_A(h(s))$

Assume that

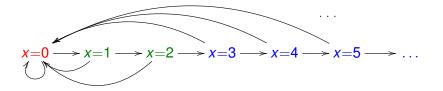
- we have a Kripke structure $M = (S, \rightarrow, S_0, L)$
- we have an abstract domain A and a mapping $h: S \rightarrow A$

We define two abstract models:

 $M_{may} = (A, \rightarrow_{may}, A_0, L_A)$, where $a_1 \rightarrow_{may} a_2$ iff there exist $s_1, s_2 \in S$ such that $h(s_1) = a_1, h(s_2) = a_2$, and $s_1 \rightarrow s_2$



 M_{may} with abstract domain $\{0, 1\}^2$ generated by predicate abstraction with predicates $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$.



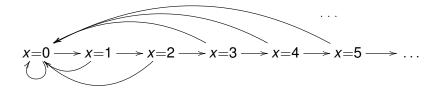
 M_{may} with abstract domain $\{0, 1\}^2$ generated by predicate abstraction with predicates $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$.

Assume that

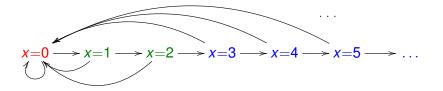
- we have a Kripke structure $M = (S, \rightarrow, S_0, L)$
- we have an abstract domain A and a mapping $h: S \rightarrow A$

We define two abstract models:

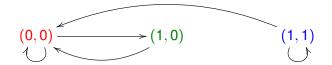
 $M_{must} = (A, \rightarrow_{must}, A_0, L_A)$, where $a_1 \rightarrow_{must} a_2$ iff for each $s_1 \in S$ satisfying $h(s_1) = a_1$ there exists $s_2 \in S$ such that $h(s_2) = a_2$ and $s_1 \rightarrow s_2$



M_{must} with abstract domain $\{0, 1\}^2$ generated by predicate abstraction with predicates $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$.



M_{must} with abstract domain $\{0, 1\}^2$ generated by predicate abstraction with predicates $\phi_1 = (x > 0)$ and $\phi_2 = (x > 2)$.



Relations between M, M_{must} , and M_{may}

Lemma

For every Kripke structure M, abstract domain A with a mapping function h it holds:

$$M_{must} \leq M \leq M_{may}$$

Relations between M, M_{must} , and M_{may}

Lemma

For every Kripke structure M, abstract domain A with a mapping function h it holds:

$$M_{must} \leq M \leq M_{may}$$

- computing *M_{must}* and *M_{may}* requires constructing *M* first (recall that *M* can be very large or even infinite)
- we compute an under-approximation M'_{must} of M_{must} and
- an over-approximation M'_{may} of M_{may} directly from an implicit representation of M
- it holds that $M'_{must} \leq M_{must} \leq M \leq M_{may} \leq M'_{may}$

Abstraction in practice

Predicate abstraction: abstracting sets of states

Abstract domain $\{0, 1\}^n$ is not used in practice (too many transitions) \implies it is better to assign a single abstract state to a set of original states.

Abstract domain $2^{\{0,1\}^n}$

let
$$\vec{b} = \langle b_1, \dots, b_n \rangle$$
 be a vector of $b_i \in \{0, 1\}$

• we set
$$[\vec{b}, \Phi] = b_1 \cdot \phi_1 \wedge \ldots \wedge b_n \cdot \phi_n$$
,
where $0 \cdot \phi_i = \neg \phi_i$ and $1 \cdot \phi_i = \phi_i$

let X denotes the set of original states

$$h(X) = \{ \vec{b} \in \{0,1\}^n \mid \exists s \in X : s \models [\vec{b}, \Phi] \}$$

example:
$$\phi_1 = (x_1 > 3)$$
 $\phi_2 = (x_1 < x_2)$ $\phi_3 = (x_2 > 10)$
 $X = \{(5,7), (4,5), (2,9)\}$
 $h(X) = \{(1,1,0), (0,1,0)\}$

- nice theoretical properties
- not used in practice (this abstract domain grows too fast)

Abstract domain $\{0, 1, *\}^n$ (predicate-cartesian abstraction)

■ let
$$\vec{b} = \langle b_1, \dots, b_n \rangle$$
 be a vector of $b_i \in \{0, 1, *\}$
■ we set $[\vec{b}, \Phi] = b_1 \cdot \phi_1 \wedge \dots \wedge b_n \cdot \phi_n$,
where $0 \cdot \phi_i = \neg \phi_i$, $1 \cdot \phi_i = \phi_i$, and $* \cdot \phi_i = \phi_i$

■
$$h(X) = \min\{\vec{b} \in \{0, 1, *\}^n \mid \forall s \in X : s \models [\vec{b}, \Phi]\},\$$
where min means "the most specific"

• example:
$$\phi_1 = (x_1 > 3)$$
 $\phi_2 = (x_1 < x_2)$ $\phi_3 = (x_2 > 10)$
 $X = \{(5,7), (4,5), (2,9)\}$
 $h(X) = (*,1,0)$

this one is used in practice

Guarded command language

Syntax

- let V be a finite set of integer variable
- expressions over V use standard boolean (=, <, >) and binary (+, -, ·, ...) operations
- Act is a set of action names
- model is a pair M = (V, E), where $E = \{t_1, ..., t_m\}$ is a finite set of transitions of the form $t_i = (a_i, g_i, u_i)$, where
 - $a_i \in Act$
 - *g_i* is a boolean expression over *V*
 - *u_i* is a sequence of assignments over *V*

Guarded command language

Syntax

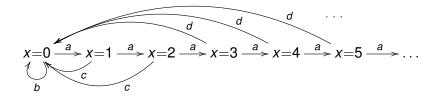
- let *V* be a finite set of integer variable
- expressions over V use standard boolean (=, <, >) and binary (+, -, ·, ...) operations
- Act is a set of action names
- model is a pair M = (V, E), where $E = \{t_1, ..., t_m\}$ is a finite set of transitions of the form $t_i = (a_i, g_i, u_i)$, where
 - $a_i \in Act$
 - *g_i* is a boolean expression over *V*
 - *u_i* is a sequence of assignments over *V*

Semantics

- M defines a labelled transition system where
 - states are valuations of variables $S = 2^{V \to \mathbb{Z}}$
 - initial state is the zero valuation $s_0(v) = 0$ for all $v \in V$

•
$$s \stackrel{a_i}{\to} s'$$
 whenever $s \models g_i$ and $s' = u_i(s)$

IA159 Formal Verification Methods: Abstraction



implicit description in guarded command language:

$$\begin{array}{ll} V = \{x\} \\ (a, \ \top, & x := x+1) \\ (b, \ \neg(x > 0), & x := 0) \\ (c, \ (x > 0) \land (x \le 2), & x := 0) \\ (d, \ (x > 2), & x := 0) \end{array}$$

we use predicate abstraction with domain {0, 1, *}ⁿ
 given a formula φ with free variables from V, we set

 $pre(a_i, \varphi) = (g_i \implies \varphi[\vec{x}/u_i(\vec{x})])$

■ we use a sound decision procedure *is_valid*, i.e.

 $is_valid(\varphi) = \top \implies \varphi$ is a tautology

(the procedure *is_valid* does not have to be complete)

for every abstract state $\vec{b} \in \{0, 1, *\}^n$ and for every transition $t_i = (a_i, g_i, u_i)$, we compute an over-approximation of a *may*-successor of \vec{b} under t_i as

■ if *is_valid*($[\vec{b}, \Phi] \implies \neg g_i$) then there is no successor ■ otherwise, the successor $\vec{b'}$ is given by

$$b'_{j} = \begin{cases} 1 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_{i}, \phi_{j})) \\ 0 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_{i}, \neg \phi_{j})) \\ * & \text{otherwise} \end{cases}$$

$$b'_{j} = \begin{cases} 1 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_{i}, \phi_{j})) \\ 0 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_{i}, \neg\phi_{j})) \\ * & \text{otherwise} \end{cases}$$

$$(a, \top, x := x + 1)$$

using the predicates $\phi_1 = (x > 0)$, $\phi_2 = (x > 2)$, we compute the transition

$$(1,0) \stackrel{a}{\rightarrow}_{may'} (\ ,\)$$

$$b'_{j} = \begin{cases} 1 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_{i}, \phi_{j})) \\ 0 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_{i}, \neg\phi_{j})) \\ * & \text{otherwise} \end{cases}$$

$$(a, \top, x := x + 1)$$

using the predicates $\phi_1 = (x > 0)$, $\phi_2 = (x > 2)$, we compute the transition

$$(1,0) \stackrel{a}{\rightarrow}_{may'} (1,)$$

(
$$x > 0$$
) \land ($x \le 2$) \implies (\top \implies ($x + 1 > 0$)) is true

$$b'_{j} = \begin{cases} 1 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_{i}, \phi_{j})) \\ 0 & \text{if } is_valid([\vec{b}, \Phi] \implies pre(a_{i}, \neg\phi_{j})) \\ * & \text{otherwise} \end{cases}$$

$$(a, \top, x := x + 1)$$

using the predicates $\phi_1 = (x > 0)$, $\phi_2 = (x > 2)$, we compute the transition

$$(1,0) \stackrel{a}{\rightarrow}_{may'} (1,*)$$

•
$$(x > 0) \land (x \le 2) \implies (\top \implies (x + 1 > 0))$$
 is true
• $(x > 0) \land (x \le 2) \implies (\top \implies (x + 1 > 2))$ is not true
• $(x > 0) \land (x \le 2) \implies (\top \implies (x + 1 \le 2))$ is not true

- for every transition, we compute successors of all abstract states
- based on the successors, we transform the original implicit representation of a system into a boolean program
- boolean program is an implicit representation of an over-approximation of *M_{may}*
- it uses only boolean variables *b* representing the validity of abstraction predicates Φ
- boolean program can be used as an input for a suitable model checker (of finite-state systems)

$$\begin{array}{ll} V = \{x\} \\ (a, \ \top, & x := x+1) \\ (b, \ \neg(x > 0), & x := 0) \\ (c, \ (x > 0) \land (x \le 2), \ x := 0) \\ (d, \ (x > 2), & x := 0) \end{array}$$

using the predicates $\phi_1 = (x > 0)$, $\phi_2 = (x > 2)$, we get the boolean program (defining an over-approximation) of M_{mav}

$$V = \{b_1, b_2\}, \text{ where } b_1, b_2 \text{ represents validity of } \phi_1, \phi_2$$

(a, \top , $b_1 := if \ b_1 \ then \ 1 \ else \ * \\ b_2 := if \ b_2 \ then \ 1 \ else \ if \ b_1 \ then \ * \ else \ 0)$
(b, $\neg b_1$, $b_1 := 0, \ b_2 := 0$)
(c, $b_1 \land \neg b_2, \ b_1 := 0, \ b_2 := 0$)
(d, b_2 , $b_1 := 0, \ b_2 := 0$)

IA159 Formal Verification Methods: Abstraction

Example of a real NQC code and its absraction

```
task light_sensor_control() { task A_light_sensor_control() {
  int x = 0;
                                      bool b = false;
  while (true) {
                                      while (true) {
    if (LIGHT > LIGHT THRESHOLD) { if (*) {
     PlaySound(SOUND CLICK);
     Wait(30);
     x = x + 1;
                                          b = b ? true : * ;
    } else {
                                         } else {
     if (x > 2) {
                                           if (b) {
       PlaySound(SOUND_UP);
       ClearTimer(0);
       brick = LONG;
                                            brick = LONG;
      } else if (x > 0) {
                                           } else if (b ? true : *) {
       PlaySound(SOUND_DOUBLE_BEEP);
       ClearTimer(0);
       brick = SHORT;
                                            brick = SHORT;
     x = 0;
                                           b = false;
```

CEGAR: counterexample-guided abstraction refinement

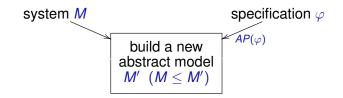
- it is hard to find a small and valuable abstraction
- abstraction predicates are usually provided by a user
- CEGAR tries to find a suitable abstraction automatically
- implemented in SLAM, BLAST, and Static Driver Verifier (SDV)
- incomplete method, but very successfull in practice

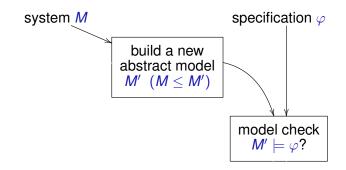
Principle

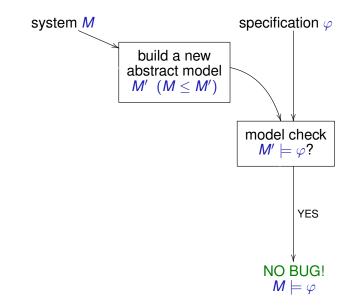
system M

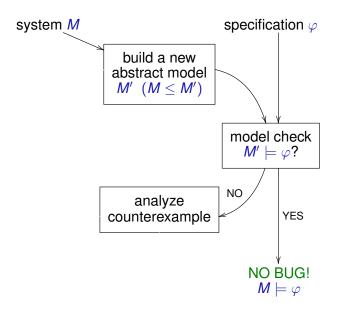
specification φ

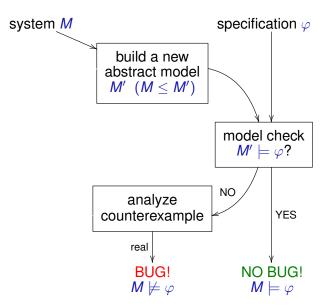
IA159 Formal Verification Methods: Abstraction

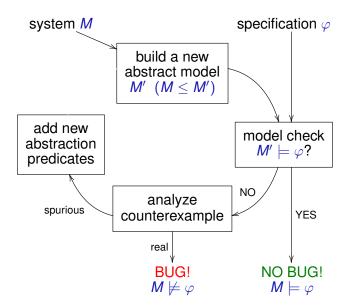




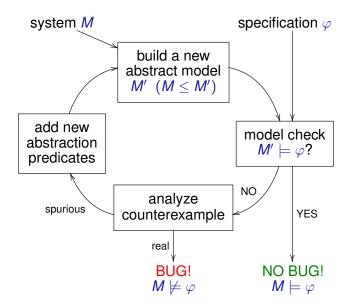








Principle



- added abstraction predicates ensure that the new abstract model M' does not have the behaviour corresponding to the spurious counterexample of the previous M'
- the analysis of an abstract counterexample and finding new abstract predicates are nontrivial tasks
- the method is sound but incomplete (the algorithm can run in the cycle forever)

Symbolic execution

- Can we perform more executions simultaneously?
- Can we perform all possible executions?
- Are there any modern applications of symbolic execution?