
1

Decision Tree Learning

Based on the ML lecture by Raymond J. Mooney
University of Texas at Austin

2

Decision Trees
•  Tree-based classifiers for instances represented as feature-vectors.

Nodes test features, there is one branch for each value of the feature,
and leaves specify the category.

•  Can represent arbitrary conjunction and disjunction. Can represent any
classification function over discrete feature vectors.

•  Can be rewritten as a set of rules, i.e. disjunctive normal form (DNF).
–  red ∧ circle → pos
–  red ∧ circle → A
 blue → B; red ∧ square → B
 green → C; red ∧ triangle → C

color
red blue green

shape

circle square triangle
neg pos

pos neg neg

color
red blue green

shape

circle square triangle
 B C

 A B C

3

Properties of Decision Tree Learning

•  Continuous (real-valued) features can be handled by
allowing nodes to split a real valued feature into two
ranges based on a threshold (e.g. length < 3 and length ≥3)

•  Classification trees have discrete class labels at the leaves,
regression trees allow real-valued outputs at the leaves.

•  Algorithms for finding consistent trees are efficient for
processing large amounts of training data for data mining
tasks.

•  Methods developed for handling noisy training data (both
class and feature noise).

•  Methods developed for handling missing feature values.

4

Top-Down Decision Tree Induction

•  Recursively build a tree top-down by divide and conquer.
<big, red, circle>: + <small, red, circle>: +
<small, red, square>: - <big, blue, circle>: -

color
red blue green

<big, red, circle>: +
<small, red, circle>: +
<small, red, square>: -

5

shape
circle square triangle

Top-Down Decision Tree Induction

•  Recursively build a tree top-down by divide and conquer.
<big, red, circle>: + <small, red, circle>: +
<small, red, square>: - <big, blue, circle>: -

<big, red, circle>: +
<small, red, circle>: +
<small, red, square>: -

color
red blue green

<big, red, circle>: +
<small, red, circle>: +

pos
<small, red, square>: -
neg pos

<big, blue, circle>: -
neg neg

6

Decision Tree Induction Pseudocode

DTree(examples, features) returns a tree
 If all examples are in one category, return a leaf node with that category label.
 Else if the set of features is empty, return a leaf node with the category label that
 is the most common in examples.
 Else pick a feature F and create a node R for it
 For each possible value vi of F:
 Let examplesi be the subset of examples that have value vi for F

 Add an out-going edge E to node R labeled with the value vi.

 If examplesi is empty
 then attach a leaf node to edge E labeled with the category that
 is the most common in examples.
 else call DTree(examplesi , features – {F}) and attach the resulting
 tree as the subtree under edge E.
 Return the subtree rooted at R.

7

Picking a Good Split Feature

•  Goal is to have the resulting tree be as small as possible,
per Occam’s razor.

•  Finding a minimal decision tree (nodes, leaves, or depth) is
an NP-hard optimization problem.

•  Top-down divide-and-conquer method does a greedy
search for a simple tree but does not guarantee to find the
smallest.
–  General lesson in ML: “Greed is good.”

•  Want to pick a feature that creates subsets of examples that
are relatively “pure” in a single class so they are “closer”
to being leaf nodes.

•  There are a variety of heuristics for picking a good test, a
popular one is based on information gain that originated
with the ID3 system of Quinlan (1979).

8

Entropy

•  Entropy (disorder, impurity) of a set of examples, S, relative to a binary
classification is:

 where p1 is the fraction of positive examples in S and p0 is the fraction
of negatives.

•  If all examples are in one category, entropy is zero (we define
0⋅log(0)=0)

•  If examples are equally mixed (p1=p0=0.5), entropy is a maximum of 1.
•  Entropy can be viewed as the number of bits required on average to

encode the class of an example in S where data compression (e.g.
Huffman coding) is used to give shorter codes to more likely cases.

•  For multi-class problems with c categories, entropy generalizes to:

)(log)(log)(020121 ppppSEntropy −−=

∑
=

−=
c

i
ii ppSEntropy

1
2)(log)(

9

Entropy Plot for Binary Classification

10

Information Gain
•  The information gain of a feature F is the expected reduction in

entropy resulting from splitting on this feature.

 where Sv is the subset of S having value v for feature F.
•  Entropy of each resulting subset weighted by its relative size.
•  Example:

–  <big, red, circle>: + <small, red, circle>: +
–  <small, red, square>: - <big, blue, circle>: -

)()(),(
)(

v
FValuesv

v SEntropy
S
S

SEntropyFSGain ∑
∈

−=

2+, 2 -: E=1
 size

big small
1+,1- 1+,1-
E=1 E=1

Gain=1-(0.5⋅1 + 0.5⋅1) = 0

2+, 2 - : E=1
 color

red blue
2+,1- 0+,1-
E=0.918 E=0

Gain=1-(0.75⋅0.918 +
 0.25⋅0) = 0.311

2+, 2 - : E=1
 shape

circle square
2+,1- 0+,1-
E=0.918 E=0

Gain=1-(0.75⋅0.918 +
 0.25⋅0) = 0.311

11

Hypothesis Space Search

•  Performs batch learning that processes all training
instances at once rather than incremental learning
that updates a hypothesis after each example.

•  Performs hill-climbing (greedy search) that may
only find a locally-optimal solution. Guaranteed to
find a tree consistent with any conflict-free
training set (i.e. identical feature vectors always
assigned the same class), but not necessarily the
simplest tree.

•  Finds a single discrete hypothesis, so there is no
way to provide confidences or create useful
queries.

12

Bias in Decision-Tree Induction

•  Information-gain gives a bias for trees with
minimal depth.

•  Implements a search (preference) bias
instead of a language (restriction) bias.

13

History of Decision-Tree Research

•  Hunt and colleagues use exhaustive search decision-tree
methods (CLS) to model human concept learning in the
1960’s.

•  In the late 70’s, Quinlan developed ID3 with the
information gain heuristic to learn expert systems from
examples.

•  Simulataneously, Breiman and Friedman and colleagues
develop CART (Classification and Regression Trees),
similar to ID3.

•  In the 1980’s a variety of improvements are introduced to
handle noise, continuous features, missing features, and
improved splitting criteria. Various expert-system
development tools results.

•  Quinlan’s updated decision-tree package (C4.5) released in
1993.

•  Weka includes Java version of C4.5 called J48.

14

Computational Complexity

•  Worst case builds a complete tree where every path test
every feature. Assume n examples and m features.

•  At each level, i, in the tree, must examine the remaining m-
i features for each instance at the level to calculate info
gains.

•  However, learned tree is rarely complete (number of leaves
is ≤ n). In practice, complexity is linear in both number of
features (m) and number of training examples (n).

F1

Fm

⋅ ⋅ ⋅ ⋅ ⋅ Maximum of n examples spread across
all nodes at each of the m levels

)(
1

2∑
=

=⋅
m

i
nmOni

15

Overfitting

•  Learning a tree that classifies the training data perfectly may
not lead to the tree with the best generalization to unseen data.
–  There may be noise in the training data that the tree is erroneously

fitting.
–  The algorithm may be making poor decisions towards the leaves of the

tree that are based on very little data and may not reflect reliable
trends.

•  A hypothesis, h, is said to overfit the training data is there
exists another hypothesis which, h´, such that h has less error
than h´ on the training data but greater error on independent
test data.

hypothesis complexity

ac
cu

ra
cy

 on training data

on test data

16

Overfitting Example

voltage (V)

cu
rr

en
t (

I)

Testing Ohms Law: V = IR (I = (1/R)V)

Ohm was wrong, we have found a more accurate function!

Perfect fit to training data with an 9th degree polynomial
(can fit n points exactly with an n-1 degree polynomial)

Experimentally
measure 10 points

Fit a curve to the
Resulting data.

17

Overfitting Example

voltage (V)

cu
rr

en
t (

I)

Testing Ohms Law: V = IR (I = (1/R)V)

Better generalization with a linear function
that fits training data less accurately.

18

Bias-variance tradeoff

Another example

19

Bias-variance tradeoff

Linear function works well but
Cubic seems better

Is there any general view to the problem,
preferably with a theoretical background?

20

Bias-variance tradeoff

y = f(x) + e, E[e] = 0, Var[e] = s2

f’() … estimate of f() learned by a classifier

E[(y-f’(x))2] = Bias[f’(x)] + Var[f’(x)] + s2

21

Bias-variance tradeoff

y = f(x) + e, E[e] = 0, Var[e] = s2

f’() … estimate of f() learned by a classifier

E[(y-f’(x))2] = Bias[f’(x)] + Var[f’(x)] + s2

22

Bias-variance tradeoff

y = f(x) + e, E[e] = 0, Var[e] = s2

f’() … estimate of f() learned by a classifier

E[(y-f’(x))2] = Bias[f’(x)] + Var[f’(x)] + s2

23

Bias-variance tradeoff

y = f(x) + e, E[e] = 0, Var[e] = s2

f’() … estimate of f() learned by a classifier

E[(y-f’(x))2] = Bias[f’(x)] + Var[f’(x)] + s2

24

Bias-variance tradeoff

y = f(x) + e, E[e] = 0, Var[e] = s2

f’() … estimate of f() learned by a classifier

E[(y-f’(x))2] = Bias[f’(x)] + Var[f’(x)] + s2

25

Bias-variance tradeoff

y = f(x) + e, E[e] = 0, Var[e] = s2

f’() … estimate of f() learned by a classifier

E[(y-f’(x))2] = Bias[f’(x)] + Var[f’(x)] + s2

26

Overfitting Noise in Decision Trees

•  Category or feature noise can easily cause overfitting.
–  Add noisy instance <medium, blue, circle>: pos (but really neg)

shape
circle square triangle

color
red blue green

pos neg pos

neg neg

27

Overfitting Noise in Decision Trees

•  Category or feature noise can easily cause overfitting.
–  Add noisy instance <medium, blue, circle>: pos (but really neg)

shape
circle square triangle

color
red blue green

pos neg pos

neg
<big, blue, circle>: -
<medium, blue, circle>: +

small med big

pos neg neg

•  Noise can also cause different instances of the same feature
vector to have different classes. Impossible to fit this data
and must label leaf with the majority class.
–  <big, red, circle>: neg (but really pos)

•  Conflicting examples can also arise if the features are
incomplete and inadequate to determine the class or if the
target concept is non-deterministic.

28

Overfitting Prevention (Pruning) Methods

•  Two basic approaches for decision trees
–  Prepruning: Stop growing tree as some point during top-down

construction when there is no longer sufficient data to make
reliable decisions.

–  Postpruning: Grow the full tree, then remove subtrees that do not
have sufficient evidence.

•  Label leaf resulting from pruning with the majority class of
the remaining data, or a class probability distribution.

•  Method for determining which subtrees to prune:
–  Cross-validation: Reserve some training data as a hold-out set

(validation set, tuning set) to evaluate utility of subtrees.
–  Statistical test: Use a statistical test on the training data to

determine if any observed regularity can be dismisses as likely due
to random chance.

–  Minimum description length (MDL): Determine if the additional
complexity of the hypothesis is less complex than just explicitly
remembering any exceptions resulting from pruning.

29

Additional Decision Tree Issues

•  Better splitting criteria
–  Information gain prefers features with many values.

•  Continuous features
•  Predicting a real-valued function (regression trees)
•  Missing feature values
•  Features with costs
•  Misclassification costs
•  Incremental learning
•  Mining large databases that do not fit in main memory

30

C4.5

•  Based on ID3 algorithm, author Ross Quinlan
•  In all (or most of) non-commercial and commercial data mining tools
•  Weka: C4.5 ver.8 -> j48

Scheme of C4.5 algorithm:
 Run several time and choose the best tree
 Inner:Take L% of learning data randomly
 Call ID3 (pre-pruning, see –m parameter)
 Prune the tree (post-pruning, -cf)
 Take T% of unseen learning data for validation
 If validation criterion holds, exit
 Otherwise add Lcrement to L and go to Inner

