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Decision Tree Learning 

Based on the ML lecture by Raymond J. Mooney 
University of Texas at Austin 
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Decision Trees 
•  Tree-based classifiers for instances represented as feature-vectors.  

Nodes test features, there is one branch for each value of the feature, 
and leaves specify the category. 

•  Can represent arbitrary conjunction and disjunction. Can represent any 
classification function over discrete feature vectors. 

•  Can be rewritten as a set of rules, i.e. disjunctive normal form (DNF). 
–  red ∧ circle → pos 
–  red ∧ circle → A 
     blue → B;  red ∧ square → B 
     green → C;   red ∧ triangle → C 

color 
red blue green 

shape 

circle square triangle 
neg pos 

pos neg neg 

color 
red blue green 

shape 

circle square triangle 
  B   C 

  A   B   C 
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Properties of Decision Tree Learning 

•  Continuous (real-valued) features can be handled by 
allowing nodes to split a real valued feature into two 
ranges based on a threshold (e.g. length < 3 and length ≥3) 

•  Classification trees have discrete class labels at the leaves, 
regression trees allow real-valued outputs at the leaves. 

•  Algorithms for finding consistent trees are efficient for 
processing large amounts of training data for data mining 
tasks. 

•  Methods developed for handling noisy training data (both 
class and feature noise). 

•  Methods developed for handling missing feature values. 
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Top-Down Decision Tree Induction 

•  Recursively build a tree top-down by divide and conquer. 
<big, red, circle>: +       <small, red, circle>: + 
<small, red, square>: -  <big, blue, circle>: - 

color 
red blue green 

<big, red, circle>: +        
<small, red, circle>: + 
<small, red, square>: -   
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shape 
circle square triangle 

Top-Down Decision Tree Induction 

•  Recursively build a tree top-down by divide and conquer. 
<big, red, circle>: +       <small, red, circle>: + 
<small, red, square>: -  <big, blue, circle>: - 

<big, red, circle>: +        
<small, red, circle>: + 
<small, red, square>: -   

color 
red blue green 

<big, red, circle>: +        
<small, red, circle>: + 

pos 
<small, red, square>: -   
neg pos 

<big, blue, circle>: - 
neg neg 
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Decision Tree Induction Pseudocode 

DTree(examples, features) returns a tree 
  If all examples are in one category, return a leaf node with that category label. 
  Else if the set of features is empty, return a leaf node with the category label that 
         is the most common in examples. 
  Else pick a feature F and create a node R for it 
        For each possible value vi of F: 
               Let examplesi be the subset of examples that have value vi for F 

 Add an out-going edge E to node R labeled with the value vi. 

                       If examplesi is empty 
                      then attach a leaf node to edge E labeled with the category that 
                               is the most common in examples. 
                      else call DTree(examplesi , features – {F}) and attach the resulting 
                              tree as the subtree under edge E. 
        Return the subtree rooted at R.        
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Picking a Good Split Feature 

•  Goal is to have the resulting tree be as small as possible, 
per Occam’s razor. 

•  Finding a minimal decision tree (nodes, leaves, or depth) is 
an NP-hard optimization problem. 

•  Top-down divide-and-conquer method does a greedy 
search for a simple tree but does not guarantee to find the 
smallest. 
–  General lesson in ML:  “Greed is good.” 

•  Want to pick a feature that creates subsets of examples that 
are relatively “pure” in a single class so they are “closer” 
to being leaf nodes. 

•  There are a variety of heuristics for picking a good test, a 
popular one is based on information gain that originated 
with the ID3 system of Quinlan (1979). 
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Entropy 

•  Entropy (disorder, impurity) of a set of examples, S, relative to a binary 
classification is: 

      where p1 is the fraction of positive examples in S and p0 is the fraction 
of negatives. 

•  If all examples are in one category, entropy is zero (we define 
0⋅log(0)=0) 

•  If examples are equally mixed (p1=p0=0.5), entropy is a maximum of 1. 
•  Entropy can be viewed as the number of bits required on average to 

encode the class of an example in S where data compression (e.g. 
Huffman coding) is used to give shorter codes to more likely cases. 

•  For multi-class problems with c categories, entropy generalizes to: 
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Entropy Plot for Binary Classification 
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Information Gain 
•  The information gain of a feature F is the expected reduction in 

entropy resulting from splitting on this feature. 

     where Sv is the subset of S having value v for feature F. 
•  Entropy of each resulting subset weighted by its relative size. 
•  Example: 

–  <big, red, circle>: +          <small, red, circle>: + 
–  <small, red, square>: -     <big, blue, circle>: - 
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2+, 2 -: E=1 
     size 

big          small 
1+,1-     1+,1- 
E=1        E=1 

Gain=1-(0.5⋅1 + 0.5⋅1) = 0 

2+, 2 - : E=1 
     color 

red          blue 
2+,1-     0+,1- 
E=0.918   E=0 

Gain=1-(0.75⋅0.918 + 
               0.25⋅0) = 0.311 

2+, 2 - : E=1 
     shape 

circle      square 
2+,1-     0+,1- 
E=0.918   E=0 

Gain=1-(0.75⋅0.918 + 
               0.25⋅0) = 0.311 
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Hypothesis Space Search 

•  Performs batch learning that processes all training 
instances at once rather than incremental learning 
that updates a hypothesis after each example. 

•  Performs hill-climbing (greedy search) that may 
only find a locally-optimal solution. Guaranteed to 
find a tree consistent with any conflict-free 
training set (i.e. identical feature vectors always 
assigned the same class), but not necessarily the 
simplest tree. 

•  Finds a single discrete hypothesis, so there is no 
way to provide confidences or create useful 
queries. 
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Bias in Decision-Tree Induction 

•  Information-gain gives a bias for trees with 
minimal depth. 

•  Implements a search (preference) bias 
instead of a language (restriction) bias. 
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History of Decision-Tree Research 

•  Hunt and colleagues use exhaustive search decision-tree 
methods (CLS) to model human concept learning in the 
1960’s. 

•  In the late 70’s, Quinlan developed ID3 with the 
information gain heuristic to learn expert systems from 
examples. 

•  Simulataneously, Breiman and Friedman and colleagues 
develop CART (Classification and Regression Trees), 
similar to ID3. 

•  In the 1980’s a variety of improvements are introduced to 
handle noise, continuous features, missing features, and 
improved splitting criteria. Various expert-system 
development tools results. 

•  Quinlan’s updated decision-tree package (C4.5) released in 
1993. 

•  Weka includes Java version of C4.5 called J48. 
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Computational Complexity 

•  Worst case builds a complete tree where every path test 
every feature. Assume n examples and m features. 

•  At each level, i, in the tree, must examine the remaining m- 
i features for each instance at the level to calculate info 
gains. 

•  However, learned tree is rarely complete (number of leaves 
is ≤ n). In practice, complexity is linear in both number of 
features (m) and number of training examples (n). 
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Overfitting 

•  Learning a tree that classifies the training data perfectly may 
not lead to the tree with the best generalization to unseen data. 
–  There may be noise in the training data that the tree is erroneously 

fitting. 
–  The algorithm may be making poor decisions towards the leaves of the 

tree that are based on very little data and may not reflect reliable 
trends. 

•  A hypothesis, h, is said to overfit the training data is there 
exists another hypothesis which, h´, such that h has less error 
than h´ on the training data but greater error on independent 
test data. 

hypothesis complexity 
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 on training data 
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Overfitting Example 

voltage (V) 

cu
rr

en
t (

I)
 

Testing Ohms Law: V = IR   (I = (1/R)V) 

Ohm was wrong, we have found a more accurate function! 

Perfect fit to training data with an 9th degree polynomial 
(can fit n points exactly with an n-1 degree polynomial) 

Experimentally 
measure 10 points 

Fit a curve to the 
Resulting data. 
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Overfitting Example 

voltage (V) 

cu
rr

en
t (

I)
 

Testing Ohms Law: V = IR   (I = (1/R)V) 

Better generalization with a linear function 
that fits training data less accurately. 
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Bias-variance tradeoff 

Another example 
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Bias-variance tradeoff 

Linear function works well but 
Cubic seems better 

Is there any general view to the problem,  
preferably with a theoretical background? 
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Bias-variance tradeoff 

y = f(x) + e,      E[e] = 0, Var[e] = s2 

f’() … estimate of f() learned by a classifier 

E[ (y-f’(x))2 ] = Bias[ f’(x) ]  +  Var[ f’(x) ] + s2 
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Bias-variance tradeoff 
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Bias-variance tradeoff 
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Bias-variance tradeoff 

y = f(x) + e,      E[e] = 0, Var[e] = s2 

f’() … estimate of f() learned by a classifier 
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Bias-variance tradeoff 

y = f(x) + e,      E[e] = 0, Var[e] = s2 

f’() … estimate of f() learned by a classifier 

E[ (y-f’(x))2 ] = Bias[ f’(x) ]  +  Var[ f’(x) ] + s2 
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Overfitting Noise in Decision Trees 

•  Category or feature noise can easily cause overfitting. 
–  Add noisy instance <medium, blue, circle>: pos (but really neg) 

shape 
circle square triangle 

color 
red blue green 

pos neg pos 

neg neg 
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Overfitting Noise in Decision Trees 

•  Category or feature noise can easily cause overfitting. 
–  Add noisy instance <medium, blue, circle>: pos (but really neg) 

shape 
circle square triangle 

color 
red blue green 

pos neg pos 

neg 
<big, blue, circle>: - 
<medium, blue, circle>: + 

small med big 

pos neg neg 

•  Noise can also cause different instances of the same feature 
vector to have different classes.  Impossible to fit this data 
and must label leaf with the majority class. 
–  <big, red, circle>: neg (but really pos) 

•  Conflicting examples can also arise if the features are 
incomplete and inadequate to determine the class or if the 
target concept is non-deterministic. 
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Overfitting Prevention (Pruning) Methods 

•  Two basic approaches for decision trees 
–  Prepruning: Stop growing tree as some point during top-down 

construction when there is no longer sufficient data to make 
reliable decisions. 

–  Postpruning: Grow the full tree, then remove subtrees that do not 
have sufficient evidence. 

•  Label leaf resulting from pruning with the majority class of 
the remaining data, or a class probability distribution.  

•  Method for determining which subtrees to prune: 
–  Cross-validation: Reserve some training data as a hold-out set 

(validation set, tuning set) to evaluate utility of subtrees. 
–  Statistical test: Use a statistical test on the training data to 

determine if any observed regularity can be dismisses as likely due 
to random chance. 

–  Minimum description length (MDL): Determine if the additional 
complexity of the hypothesis is less complex than just explicitly 
remembering any exceptions resulting from pruning. 
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Additional Decision Tree Issues 

•  Better splitting criteria 
–  Information gain prefers features with many values. 

•  Continuous features 
•  Predicting a real-valued function (regression trees) 
•  Missing feature values 
•  Features with costs 
•  Misclassification costs 
•  Incremental learning 
•  Mining large databases that do not fit in main memory 
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C4.5 

•  Based on ID3 algorithm, author Ross Quinlan 
•  In all (or most of) non-commercial and commercial data mining tools 
•  Weka: C4.5 ver.8 -> j48 

Scheme of C4.5 algorithm: 
 Run several time and choose the best tree 
 Inner:Take L% of learning data randomly 
   Call ID3 (pre-pruning, see –m parameter) 
   Prune the tree (post-pruning, -cf) 
  Take T% of unseen learning data for validation 
  If validation criterion holds, exit 
  Otherwise add Lcrement to L and go to Inner 


