Model evaluation

» qualitative — following the definition of data mining
(Piatetski-Shapiro, Fayaad, 90th):

how new, interesting, useful and understandable the model is

(not) corresponding to expectations (common sense), to
knowledge of an expert

> quantitative
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Evaluation for different machne learning task

» clustering — is the number of clusters and the structure
appropriate

> associations — which rule is interesting

» outlier detection — top N outliers

» classification and regression
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Classification

Training set

Learning algorithm

input atributes of a test instance
— — —> Model/Hypothesis/Classifier - — —>
predicted class label

» accuracy [celkova spravnost] — how often returns the correct
class label

> speed — learning, testing

> robustness — to make correct predictions given noisy data or
data with missing values

» scalability — efficient for large amounts of data
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main criterion — how succesful Model is on data

a principal decision — what data to use for the most accurate
prediction of model accuracy
Most common (but correct?)

> learning data

> test set

cross-validation

v

» leave-one-out

Is there any other possibility, maybe better? bootstraping, splitting
data into disjunctive parts, ...
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Confusion matrix

Predicted class

yes | no | Total
Actual class | yes IP | EN | P

no FP | IN | N
Total | PP | N | P+N

TP, TN, FP,FN ... the number of true positive, true negative, false
positive, false negative
P, N ... cardinality of positive and negative samples



Evaluation measures

(overall) accuracy [celkova spravnost|

_ __TP+TN
ACC = TpITRTFPTEN

error rate, (misclassification rate) [chyba]

_ _ _ WFP*FP+WFN*FN
Err=1—Acc = 5 7mrrprFn

wep, Wgy ... weight of FP and FN errors
default Wep, Wey = 1

precision
I
TPL+FP
sensitivity, true positive rate, recall

_TP
TP+FN

specificity, true negative rate

_IN
TN+FP
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Evaluation measures

Accuracy for a class P, N

F-measures combines precision and recall

F, F1, F-score = hramonic mean of precision and recall

Fi — 2xprecisionxrecall
1= precision+recall

E. — (1+8?)precisionxrecall
B = " B2xprecisiontrecall
B ... a non-negative real number
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Evaluation measures for comparing classifiers

Learning curve
Accuracy as a function of number of iterations

ROC curve — relation between TP and FP
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Sampling

» holdout — split data randomly to learning and test data, e.g.
2/3vs. 1/3
stratified sampling — preserve relative frequency of classes in
samples

» Random (sub)sampling — holdout method is repeated k times
The overall accuracy estimate is taken as the average of the
accuracies obtained from each iteration.

» bootstraping

» undersampling/oversampling of a class — for processing
imbalanced data
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