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Instance-Based LearningInstance-Based Learning

• Unlike other learning algorithms, does not involve • Unlike other learning algorithms, does not involve 
construction of an explicit abstract generalization but 
classifies new instances based on direct comparison and 
similarity to known training instances.
classifies new instances based on direct comparison and 
similarity to known training instances.

• Training can be very easy, just memorizing training 
instances.instances.

• Testing can be very expensive, requiring detailed 
comparison to all past training instances.comparison to all past training instances.

• Also known as:
– Case-based – Case-based 

– Exemplar-based

– Nearest Neighbor

– Memory-based– Memory-based

– Lazy Learning
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Similarity/Distance MetricsSimilarity/Distance Metrics

• Instance-based methods assume a function for determining • Instance-based methods assume a function for determining 

the similarity or distance between any two instances.

• For continuous feature vectors, Euclidian distance is the • For continuous feature vectors, Euclidian distance is the 

generic choice:
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Where a (x) is the value of the p th feature of instance x.Where ap(x) is the value of the p th feature of instance x.

• For discrete features, assume distance between two values • For discrete features, assume distance between two values 

is 0 if they are the same and 1 if they are different (e.g. 

Hamming distance for bit vectors).

• To compensate for difference in units across features, scale 

all continuous values to the interval [0,1].
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Other Distance MetricsOther Distance Metrics

• Mahalanobis distance (�)• Mahalanobis distance (�)

– Scale-invariant metric that normalizes for variance.

• Cosine Similarity

– Cosine of the angle between the two vectors.– Cosine of the angle between the two vectors.

– Used in text and other high-dimensional data.

• Pearson correlation (�)• Pearson correlation (�)

– Standard statistical correlation coefficient.– Standard statistical correlation coefficient.

• Edit distance

– Used to measure distance between unbounded length – Used to measure distance between unbounded length 

strings.
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K-Nearest NeighborK-Nearest Neighbor

• Calculate the distance between a test point • Calculate the distance between a test point 

and every training instance.and every training instance.

• Pick the k closest training examples and 

assign the test instance to the most common assign the test instance to the most common 

category amongst these nearest neighbors.category amongst these nearest neighbors.

• Voting multiple neighbors helps decrease 

susceptibility to noise. susceptibility to noise. 

• Usually use odd value for k to avoid ties.• Usually use odd value for k to avoid ties.
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Implicit Classification FunctionImplicit Classification Function

• Although it is not necessary to explicitly calculate • Although it is not necessary to explicitly calculate 
it, the learned classification rule is based on 
regions of the feature space closest to each regions of the feature space closest to each 
training example.

• For 1-nearest neighbor with Euclidian distance, • For 1-nearest neighbor with Euclidian distance, 
the Voronoi diagram gives the complex 
polyhedra segmenting the space into the regions polyhedra segmenting the space into the regions 
closest to each point.
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Efficient IndexingEfficient Indexing

• Linear search to find the nearest neighbors is not • Linear search to find the nearest neighbors is not 
efficient for large training sets.

• Indexing structures can be built to speed testing.• Indexing structures can be built to speed testing.

• For Euclidian distance, a kd-tree can be built that 
reduces the expected time to find the nearest reduces the expected time to find the nearest 
neighbor to O(log n) in the number of training 
examples.examples.
– Nodes branch on threshold tests on individual features 
and leaves terminate at nearest neighbors.and leaves terminate at nearest neighbors.

• Other indexing structures possible for other 
metrics or string data.metrics or string data.
– Inverted index for text retrieval.
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kd-treekd-tree

• The kd-tree is a binary tree in which every node is • The kd-tree is a binary tree in which every node is 
a k-dimensional point. 

• Every non-leaf node generates a splitting • Every non-leaf node generates a splitting 
hyperplane that divides the space into two 
subspaces. subspaces. 

• Points left to the hyperplane represent the left sub-
tree of that node and the points right to the tree of that node and the points right to the 
hyperplane by the right sub-tree. 

• The hyperplane direction is chosen in the • The hyperplane direction is chosen in the 
following way: every node split to sub-trees is 
associated with one of the k-dimensions, such that associated with one of the k-dimensions, such that 
the hyperplane is perpendicular to that dimension 
vector. 
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Nearest Neighbor VariationsNearest Neighbor Variations

• Can be used to estimate the value of a real-• Can be used to estimate the value of a real-

valued function – regression - by taking the valued function – regression - by taking the 

average function value of the k nearest 

neighbors to an input point.neighbors to an input point.

• All training examples can be used to help • All training examples can be used to help 

classify a test instance by giving every 

training example a vote that is weighted by training example a vote that is weighted by 

the inverse square of its distance from the the inverse square of its distance from the 

test instance.
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Feature Relevance and WeightingFeature Relevance and Weighting

• Standard distance metrics weight each feature • Standard distance metrics weight each feature 

equally when determining similarity.

– Problematic if many features are irrelevant, since 

similarity along many irrelevant examples could similarity along many irrelevant examples could 

mislead the classification.

• Features can be weighted by some measure that • Features can be weighted by some measure that 

indicates their ability to discriminate the category 

of an example, such as information gain.of an example, such as information gain.

• Overall, instance-based methods favor global 

similarity over concept simplicity.
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Rules and Instances in

Human Learning BiasesHuman Learning Biases

• Psychological experiments • Psychological experiments 
show that people from 
different cultures exhibit different cultures exhibit 
distinct  categorization 
biases.biases.

• “Western” subjects favor 
simple rules (straight stem) simple rules (straight stem) 
and classify the target 
object in group 2.object in group 2.

• “Asian” subjects favor • “Asian” subjects favor 
global similarity and 
classify the target object in 

12

classify the target object in 
group 1. 



Other IssuesOther Issues

• Can reduce storage of training instances to a small set of • Can reduce storage of training instances to a small set of 
representative examples.

– Support vectors in an SVM are somewhat analogous.– Support vectors in an SVM are somewhat analogous.

• Can hybridize with rule-based methods or neural-net 
methods.methods.

– Radial basis functions in neural nets and Gaussian kernels in 
SVMs are similar.

• Can be used for more complex relational or graph data.

– Similarity computation is complex since it involves some sort of 
graph isomorphism.graph isomorphism.

• Can be used in problems other than classification.

– Case-based planning– Case-based planning

– Case-based reasoning in law and business.
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ConclusionsConclusions

• IBL methods classify test instances based • IBL methods classify test instances based 

on similarity to specific training instances on similarity to specific training instances 

rather than forming explicit generalizations.

• Typically trade decreased training time for • Typically trade decreased training time for 

increased testing time.increased testing time.
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Unsupervised learning. ClusteringUnsupervised learning. Clustering
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ClusteringClustering

• Partition unlabeled examples into disjoint • Partition unlabeled examples into disjoint 

subsets of clusters, such that:subsets of clusters, such that:

– Examples within a cluster are very similar

– Examples in different clusters are very different– Examples in different clusters are very different

• Discover new categories in an unsupervised• Discover new categories in an unsupervised

manner (no sample category labels provided).
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Clustering ExampleClustering Example

.
. . . .. . . .
..
.
.
.
. . ..

.
.
.
.
. . ..

.
.
. .

. .

.

.
..

.
. .

. .

.

.
..

.
. .
. ..
. .
. .
. ..
. .
.
. ...
. ..

1717



Hierarchical ClusteringHierarchical Clustering

• Build a tree-based hierarchical taxonomy • Build a tree-based hierarchical taxonomy 

(dendrogram) from a set of unlabeled examples.
animal

vertebrate invertebratevertebrate

fish reptile amphib. mammal      worm insect crustacean

invertebrate

• Recursive application of a standard clustering • Recursive application of a standard clustering 

algorithm can produce a hierarchical clustering.
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Aglommerative vs. Divisive ClusteringAglommerative vs. Divisive Clustering

• Aglommerative (bottom-up) methods start • Aglommerative (bottom-up) methods start 

with each example in its own cluster and with each example in its own cluster and 

iteratively combine them to form larger and 

larger clusters.larger clusters.

• Divisive (partitional, top-down) separate all • Divisive (partitional, top-down) separate all 

examples immediately into clusters.
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Direct Clustering MethodDirect Clustering Method

• Direct clustering methods require a • Direct clustering methods require a 
specification of the number of clusters, k, 
desired.
specification of the number of clusters, k, 
desired.

• A clustering evaluation function assigns a • A clustering evaluation function assigns a 
real-value quality measure to a clustering.

• The number of clusters can be determined • The number of clusters can be determined 
automatically by explicitly generating automatically by explicitly generating 
clusterings for multiple values of k and 
choosing the best result according to a choosing the best result according to a 
clustering evaluation function.
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Hierarchical Agglomerative Clustering 
(HAC)

• Assumes a similarity function for determining • Assumes a similarity function for determining 

the similarity of two instances.the similarity of two instances.

• Starts with all instances in a separate cluster 

and then repeatedly joins the two clusters that and then repeatedly joins the two clusters that 

are most similar until there is only one cluster.are most similar until there is only one cluster.

• The history of merging forms a binary tree or 

hierarchy.hierarchy.
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HAC AlgorithmHAC Algorithm

Start with all instances in their own cluster.Start with all instances in their own cluster.

Until there is only one cluster:Until there is only one cluster:

Among the current clusters, determine the two 

clusters, ci and cj, that are most similar.clusters, ci and cj, that are most similar.

Replace ci and cj with a single cluster ci ∪ cj

2222



Cluster SimilarityCluster Similarity

• Assume a similarity function that determines the • Assume a similarity function that determines the 

similarity of two instances: sim(x,y).

– Euclidean /Mahalanobis, Hamming, Cosine similarity, 

Pearson r etc.Pearson r etc.

• How to compute similarity of two clusters each 

possibly containing multiple instances?possibly containing multiple instances?

– Single Link: Similarity of two most similar members.

– Complete Link: Similarity of two least similar members.– Complete Link: Similarity of two least similar members.

– Group Average: Average similarity between members.
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Single Link Agglomerative ClusteringSingle Link Agglomerative Clustering

• Use maximum similarity of pairs:• Use maximum similarity of pairs:
),(max),( yxsimccsim ji ∈∈

= ),(max),(
,

yxsimccsim
ji cycx

ji ∈∈
=

• Can result in “straggly” (long and thin) 

clusters due to chaining effect.clusters due to chaining effect.

– Appropriate in some domains, such as – Appropriate in some domains, such as 

clustering islands. 
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Single Link ExampleSingle Link Example
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Complete Link Agglomerative ClusteringComplete Link Agglomerative Clustering

• Use minimum similarity of pairs:• Use minimum similarity of pairs:

),(min),( yxsimccsim ji = ),(min),(
,

yxsimccsim
ji cycx

ji ∈∈
=

• Makes more “tight,” spherical clusters that 

are typically preferable.are typically preferable.
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Complete Link ExampleComplete Link Example
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Computational ComplexityComputational Complexity

• In the first iteration, all HAC methods need • In the first iteration, all HAC methods need 
to compute similarity of all pairs of n 
individual instances which is O(n2).
to compute similarity of all pairs of n 
individual instances which is O(n2).

• In each of the subsequent n−2 merging • In each of the subsequent n−2 merging 
iterations, it must compute the distance 
between the most recently created cluster between the most recently created cluster 
and all other existing clusters.and all other existing clusters.

• In order to maintain an overall O(n2) 
performance, computing similarity to each performance, computing similarity to each 
other cluster must be done in constant time.
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Computing Cluster SimilarityComputing Cluster Similarity

• After merging c and c , the similarity of the • After merging ci and cj, the similarity of the 

resulting cluster to any other cluster, ck, can resulting cluster to any other cluster, ck, can 

be computed by:

– Single Link:– Single Link:

)),(),,(max()),(( kjkikji ccsimccsimcccsim =∪
– Complete Link:

)),(),,(max()),(( kjkikji ccsimccsimcccsim =∪

)),(),,(min()),(( ccsimccsimcccsim =∪ )),(),,(min()),(( kjkikji ccsimccsimcccsim =∪
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Group Average Agglomerative ClusteringGroup Average Agglomerative Clustering

• Use average similarity across all pairs within the • Use average similarity across all pairs within the 

merged cluster to measure the similarity of two 

clusters.
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• Compromise between single and complete link.

• Averaged across all ordered pairs in the merged • Averaged across all ordered pairs in the merged 

cluster instead of unordered pairs between the two 

clusters to encourage tight clusters.clusters to encourage tight clusters.
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Computing Group Average SimilarityComputing Group Average Similarity

• Assume cosine similarity and normalized • Assume cosine similarity and normalized 

vectors with unit length.vectors with unit length.

• Always maintain sum of vectors in each 

cluster.cluster.
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Non-Hierarchical ClusteringNon-Hierarchical Clustering

• Typically must provide the number of desired • Typically must provide the number of desired 

clusters, k.

• Randomly choose k instances as seeds, one per 

cluster.  cluster.  

• Form initial clusters based on these seeds.

• Iterate, repeatedly reallocating instances to 

different clusters to improve the overall clustering.different clusters to improve the overall clustering.

• Stop when clustering converges or after a fixed 

number of iterations. number of iterations. 
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K-MeansK-Means

• Assumes instances are real-valued vectors.• Assumes instances are real-valued vectors.

• Clusters based on centroids, center of • Clusters based on centroids, center of 

gravity, or mean of points in a cluster, c:
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• Reassignment of instances to clusters is 

∑
∈cxc r||

• Reassignment of instances to clusters is 

based on distance to the current cluster 

centroids.centroids.
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Distance MetricsDistance Metrics

• Euclidian distance (L norm):• Euclidian distance (L2 norm):
2
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• L1 norm:

• Cosine Similarity (transform to a distance 
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• Cosine Similarity (transform to a distance 

by subtracting from 1):by subtracting from 1):
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K-Means AlgorithmK-Means Algorithm

Let d be the distance measure between instances.

Select k random instances {s , s ,… s } as seeds.Select k random instances {s1, s2,… sk} as seeds.

Until clustering converges or other stopping criterion:

For each instance x :For each instance xi:

Assign xi to the cluster cj such that d(xi, sj) is minimal.Assign xi to the cluster cj such that d(xi, sj) is minimal.

(Update the seeds to the centroid of each cluster)

For each cluster cjFor each cluster cj

sj = µ(cj) 
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K Means Example
(K=2)

Pick seeds

Reassign clustersReassign clusters

Compute centroids

Reasssign clusters

x

x

Reasssign clusters

x

x xx Compute centroids
xx

Reassign clusters

Converged!Converged!
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Time ComplexityTime Complexity

• Assume computing distance between two instances is • Assume computing distance between two instances is 
O(m) where m is the dimensionality of the vectors.

• Reassigning clusters: O(kn) distance computations, • Reassigning clusters: O(kn) distance computations, 
or O(knm).

• Computing centroids: Each instance vector gets 
added once to some centroid: O(nm).added once to some centroid: O(nm).

• Assume these two steps are each done once for I
iterations:  O(Iknm).iterations:  O(Iknm).

• Linear in all relevant factors, assuming a fixed 
number of iterations, more efficient than O(n2) HAC.number of iterations, more efficient than O(n2) HAC.
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K-Means ObjectiveK-Means Objective

• The objective of k-means is to minimize the • The objective of k-means is to minimize the 

total sum of the squared distance of every total sum of the squared distance of every 

point to its corresponding cluster centroid.
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• Finding the global optimum is NP-hard.• Finding the global optimum is NP-hard.

• The k-means algorithm is guaranteed to 

converge a local optimum.
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Seed ChoiceSeed Choice

• Results can vary based on random seed • Results can vary based on random seed 

selection.selection.

• Some seeds can result in poor convergence 

rate, or convergence to sub-optimal rate, or convergence to sub-optimal 

clusterings.clusterings.

• Select good seeds using a heuristic or the 

results of another method.results of another method.
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Buckshot AlgorithmBuckshot Algorithm

• Combines HAC and K-Means clustering.• Combines HAC and K-Means clustering.

• First randomly take a sample of instances of • First randomly take a sample of instances of 
size √n

• Run group-average HAC on this sample, • Run group-average HAC on this sample, 
which takes only O(n) time.

• Use the results of HAC as initial seeds for 
K-means.K-means.

• Overall algorithm is O(n) and avoids 
problems of bad seed selection.problems of bad seed selection.
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Text ClusteringText Clustering

• HAC and K-Means have been applied to text in a • HAC and K-Means have been applied to text in a 
straightforward way.

• Typically use normalized, TF/IDF-weighted vectors • Typically use normalized, TF/IDF-weighted vectors 
and cosine similarity.

• Optimize computations for sparse vectors.

• Applications:• Applications:

– During retrieval, add other documents in the same cluster 
as the initial retrieved documents to improve recall.as the initial retrieved documents to improve recall.

– Clustering of results of retrieval to present more organized 
results to the user à la Northernlight folders (�).results to the user à la Northernlight folders (�).

– Automated production of hierarchical taxonomies of 
documents for browsing purposes (à la Yahoo & DMOZ).
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Soft ClusteringSoft Clustering

• Clustering typically assumes that each instance is • Clustering typically assumes that each instance is 

given a “hard” assignment to exactly one cluster.

• Does not allow uncertainty in class membership or 

for an instance to belong to more than one cluster.for an instance to belong to more than one cluster.

• Soft clustering gives probabilities that an instance 

belongs to each of a set of clusters.belongs to each of a set of clusters.

• Each instance is assigned a probability distribution • Each instance is assigned a probability distribution 

across a set of discovered categories (probabilities 

of all categories must sum to 1).of all categories must sum to 1).
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Expectation Maximumization (EM)Expectation Maximumization (EM)

• Probabilistic method for soft clustering.• Probabilistic method for soft clustering.

• Direct method that assumes k clusters:{c1, c2,… ck} • Direct method that assumes k clusters:{c1, c2,… ck} 

• Soft version of k-means.

• Assumes a probabilistic model of categories that • Assumes a probabilistic model of categories that 

allows computing P(ci | E) for each category, ci, for a i i

given example, E.

• For text, typically assume a naïve-Bayes category • For text, typically assume a naïve-Bayes category 

model.

– Parameters θ = {P(c ), P(w | c ): i∈{1,…k}, j ∈{1,…,|V|}}– Parameters θ = {P(ci), P(wj | ci): i∈{1,…k}, j ∈{1,…,|V|}}
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EM AlgorithmEM Algorithm

• Iterative method for learning probabilistic • Iterative method for learning probabilistic 
categorization model from unsupervised data.

• Initially assume random assignment of examples to • Initially assume random assignment of examples to 
categories.

• Learn an initial probabilistic model by estimating 
model parameters θ from this randomly labeled data.model parameters θ from this randomly labeled data.

• Iterate following two steps until convergence:

– Expectation (E-step): Compute P(c | E) for each example – Expectation (E-step): Compute P(ci | E) for each example 
given the current model, and probabilistically re-label the 
examples based on these posterior probability estimates.examples based on these posterior probability estimates.

– Maximization (M-step): Re-estimate the model 
parameters, θ, from the probabilistically re-labeled data.
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EMEM

Initialize:

Assign random probabilistic labels to unlabeled data

Initialize:

Unlabeled Examples

+ −−−−

+ −−−−

+ −−−−

+ −−−−

+ −−−−

−−−−+

+ −−−−
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EMEM

Initialize:

Give soft-labeled training data to a probabilistic learner

Initialize:

Prob. 
+ −−−−

+ −−−−

Prob. 

Learner

+ −−−−

+ −−−−

+ −−−−

−−−−+

+ −−−−

4646



EMEM

Initialize:

Produce a probabilistic classifier

Initialize:

Prob. Prob.
+ −−−−

+ −−−−

Prob. 

Learner

Prob.

Classifier

+ −−−−

+ −−−−

+ −−−−

−−−−+

+ −−−−
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EMEM

E Step:

Relabel unlabled data using the trained classifier

E Step:

Prob. Prob. −−−−

+ −−−−

Prob. 

Learner

Prob.

Classifier

+ −−−−

+ −−−−

+ −−−−

−−−−+

+ −−−−

4848



EMEM

M step:

Retrain classifier on relabeled data

M step:

Prob. −−−−

+ −−−−

Prob. 

Learner

+ −−−−

+ −−−−

+ −−−−

−−−−+

Prob.

Classifier

+ −−−−

Continue EM iterations until probabilistic labels 

on unlabeled data converge.
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Learning from Probabilistically Labeled Data Learning from Probabilistically Labeled Data 

• Instead of training data labeled with “hard” • Instead of training data labeled with “hard” 

category labels, training data is labeled with “soft” 

probabilistic category labels.

• When estimating model parameters θ from training • When estimating model parameters θ from training 
data, weight counts by the corresponding 

probability of the given category label.probability of the given category label.

• For example, if P(c1 | E) = 0.8 and P(c2 | E) = 0.2,        1 2

each word wj in E contributes only 0.8 towards the 

counts n1 and n1j, and 0.2 towards the counts n2 and counts n1 and n1j, and 0.2 towards the counts n2 and 

n2j .
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Naïve Bayes EMNaïve Bayes EM

Randomly assign examples probabilistic category labels.Randomly assign examples probabilistic category labels.

Use standard naïve-Bayes training to learn a probabilistic model 

with parameters θ from the labeled data.with parameters θ from the labeled data.
Until convergence or until maximum number of iterations reached:

E-Step: Use the naïve Bayes model θ to compute P(ci | E) forE-Step: Use the naïve Bayes model θ to compute P(ci | E) for
each category and example, and re-label each example 

using these probability values as soft category labels.using these probability values as soft category labels.

M-Step: Use standard naïve-Bayes training to re-estimate the 

parameters θ using these new probabilistic category labels.
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ConclusionsConclusions

• Unsupervised learning induces categories • Unsupervised learning induces categories 

from unlabeled data.from unlabeled data.

• Agglomerative vs. Divisive. Hard vs. soft

• There are a variety of approaches, including:

– HAC– HAC

– k-means– k-means

– EM
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