Numerical features

» Throughout this lecture we assume that all features are
numerical, i.e. feature vectors belong to R".

» Most non-numerical features can be conveniently transformed
to numerical ones.

For example:
» Colors {blue, red, yellow} can be represented by {0, 1,2} (or
{-1,0,1}, ..)
» A black-and-white picture of x x y pixels can be encoded as

a vector of xy numbers that capture the shades of gray of
the pixels.



Basic Problems

We consider two basic problems:

» (Binary) classification

Our goal: Classify inputs into
two categories.

» Function approximation g
(regression) o

Our goal: Find a (hypothesized)
functional dependency in data. -




Binary classification in R”

> Assume
» a set of instances X C R”",
» an unknown categorization function ¢ : X — {0,1}.
» Our goal:
» Given a set D of training examples of the form (X, c(X)) where
xeX,
» construct a hypothesized categorization function h € H that is
consistent with ¢ on the training examples, i.e.,
h(X) = ¢(X) for all training examples (X, ¢(X)) € D
Comments:
> In practice, we often do not strictly demand h(x) = c(X) for all training
examples (X, ¢(X)) € D (often it is impossible)
» We are more interested in good generalization, that is how well h

classifies new instances that do not belong to D.

> Recall that we usually evaluate accuracy of the resulting
hypothesized function h on a test set.



Hypothesis Spaces

We consider two kinds of hypothesis spaces:

» Linear (affine) classifiers (this lecture)

» Classifiers based on combinations of linear and sigmoidal
functions (classical neural networks) (next lecture)
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Length and Scalar Product of Vectors

» We consider vectors X = (x1,...,xm) € R™.

» Typically, we use Euclidean metric on vectors: |X] = /> /"1 x?
The distance between two vectors (points) X, y is [X — y].

» We use the scalar product X - y of vectors X = (x1,...,Xm)
and y = (y1,...,Ym) defined by

m
Xy = E XiYi
i=1

» Recall that X - ¥ = |X||y| cos 6 where @ is the angle between X
and y. That is X - ¥ is the length of the projection of ¥ on X
multiplied by |X].

» Note that X+ X = |X]|?



Linear classifier - example

0 1 » classification in plane using
.O a linear classifier
° » if a point is incorrectly classified,

the learning algorithm turns the
line (hyperplane) to improve the
classification.




Linear Classifier
A linear classifier h[w] is determined by a vector of weights
w = (wp, wi, ..., w,) € R™1 as follows:
Given X = (x1,...,xp) € X CR",

I wo+3 7 wi-x>0
0 W0+Z§7:1W,"X,'<0

h[W](R) = {

More succinctly:

- 1 y>
h(X) = sgn (WO + Z w; - Xi> where  sgn(y) = { y=0

i=1 0 y<0



Linear Classifier — Notation

Given X = (x1,...,x,) € R" we define an augmented feature vector
bl b g

X = (x0,X1,...,Xn) Where xop =1

This makes the notation for the linear classifier more succinct:

Hw](%) = sgn(w - %)



Perceptron Learning

> Given a training set
D ={(x,c(x)), (2, c(3%2)) -+ (Kps (%))}
Here Xx = (Xk1 ..., Xkn) € X CR" and ¢(xk) € {0, 1}.

We write ¢, instead of c(Xk).
Note that X, = (Xko, XK1 - - - ,Xk,,) where Xko = 1.

» A weight vector w € R™1 is consistent with D if

hw](Xk) = sgn(w -Xx) = ¢, forall k=1,...,p

D is linearly separable if there is a vector w € R"*1 which is
consistent with D.

» Our goal is to find a consistent w assuming that D is linearly
separable.



Perceptron — Learning Algorithm

Online learning algorithm:

Idea: Cyclically go through the training examples in D and adapt weights.
Whenever an example is incorrectly classified, turn the hyperplane so that

the example is closer to it's correct half-space.
Compute a sequence of weight vectors w(© ) w®) W( )

» w(® is randomly initialized close to 0 = (0, ... ,0)
» In (t + 1)-th step, w(t+1) is computed as follows:

wt) = e 5-(h[w(t)](>?k)—ck)->”<k
= w — ¢. (sgn< (1) . xk) —ck) - Xk

Here k = (t mod p) + 1, i.e. the examples are considered
cyclically, and 0 < & < 1 is a learning speed.

Véta (Rosenblatt)

If D is linearly separable, then there is t* such that w(t") is
consistent with D.
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Example

Training set:

D ={((2,-1),1),((2,1),1),((1,3),0)}

That is
X = (2,-1) % o= (1,2,-1)
X = (2,1) X = (1,2,1)
X3 = (1,3) X3 = (1,1,3)
i = 1
C =
G = 0

Assume that the initial vector w(®) is w(®) = (0, -1, 1).
Consider € = 1.



Example: Separating by w(%

Denoting w(® =

(W()v wi, W2) = (0) _17 1)

the blue separating line is given
by wop + wixy + waxo = 0.

The red vector normal to
the blue line is (wi, wy).

The points on the side of
(w1, wp) are assigned 1 by the
classifier, the others zero.
(In this case X3 is assigned one
and X, x3 are assigned zero, all
of this is inconsistent with

C1, €2, C3-)
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Example: w()
We have
w® % =(0,-1,1)-(1,2,-1)=0—-2—1= -3
thus
sgn (vT/’(O) -§1> =0
and thus
sgn (VT/’(O) -3('1) —aq=0-1=-1

(This means that xi is not well classified, and w(©® is not consistent with D.)
Hence,

v — @O _ (sg,, (W,(O) .;1) _ Cl) ‘%
= M_;(O)—i—il
= (07 _17 1) + (1a 27 _1)
= (1,1,0)

13



Example
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Example: Separating by w()
We have
w) . % =(1,1,0)-(1,2,1) =142=3
thus
sgn (W(l) -3(’2) =1
and thus
sgn(vT/'(l)"iz) —c=1-1=0
(This means that %> is currently well classified by w(*). However, as we will see,
%5 is not well classified.)

Hence,

w® =wl = (1,1,0)
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Example: w(®)
We have
w? % =(1,1,0)-(1,1,3) =1+1=2
thus
sgn (vT/’(Q) -ig) =1
and thus
sgn(vT/’(z) -3('3) —=1-0=1

(This means that x5 is not well classified, and w® is not consistent with D.)
Hence,

w3 = w<2)—(sgn(w(2)-i3)—c3)&3
= w® _%;
— (1,1,0)—(1,1,3)
= (0,0,-3)
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. — 3)
Example: Separating by w!
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Example: w(*
We have
w® % =(0,0,-3)-(1,2,-1) =3
thus
sgn (VT/’(3) -3('1) =1
and thus
sgn(vT/'(3)'§1) —caq=1-1=0
(This means that %1 is currently well classified by w®. However, as we will see,
X5 is not.)
Hence,

w® = w® = (0,0, -3)
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Example: w(®)
We have
w* . % = (0,0,-3) - (1,2,1) = -3
thus
sgn (vT/’(4) -§2> =0
and thus
sgn (VT/’(4) -3('2) —o=0-1=-1

(This means that % is not well classified, and w® is not consistent with D.)
Hence,

w0 — ™ (sg,, (Wu) .;2) _ C2> %
= M7(4) —+ §2
= (070> _3)+(1’27 1)
= (13 27 _2)
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. — 5)
Example: Separating by w!
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Example: The result

5)

The vector w(®) is consistent with D:

sgn (vT/’(5) -§1> =sgn((1,2,-2)-(1,2,-1))=sgn(7) =1=q¢

sgn (vT/’(‘r’) -3('2) =sgn((1,2,-2)-(1,2,1)) =sgn(3) = 1=

sgn (vT/’(5) -§3) =sgn((1,2,-2)-(1,1,3)) =sgn(—3) =0=c3
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Perceptron — Learning Algorithm

Batch learning algorithm:

Compute a sequence of weight vectors w@® W w@)

» w(9 is randomly initialized close to 0 = (0,...,0)

> In (t + 1)-th step, w(t*1) is computed as follows:

p
wtH) o w o Z (h[m-;(t)](ik) — Ck> - X
k=1

W — ¢ z": (sgn (M_)(t) -§k> — ck) - Xk
k=1

Here k = (t mod p) + 1, i.e. the examples are considered
cyclically, and 0 < &€ < 1 is a learning speed.
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Function Approximation — Oaks in Wisconsin

This example is from How to Lie with Statistics by Darrell Huff (1954)
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Function Approximation

> Assume
» aset X C R" of instances,
» an unknown function f : X — R.
» Our goal:
» Given a set D of training examples of the form (X, f(X)) where
xe X,
» construct a hypothesized function h € H such that
h(X) = f(X) for all training examples (X, f(X)) € D
Here = means that the values are somewhat close to each
other w.r.t. an appropriate error function E.

» In what follows we use the least squares defined by
1

E=5 > (F()-hx)

(X, f(x))eD
Our goal is to minimize E.
The main reason is that this function has nice mathematical properties
(as opposed e.g. to > (5 cp [F(X) = h(X)] ).
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Least Squares — Oaks in Wisconsin

Age
(years)

DBH
(inch)

97|

12.5

93

12.5

88

8.0

81

9.5

75

16.5

57|

11.0

52

10.5

45

9.0

28

6.0

15

1.5

12

1.0

11

1.0

Oak Diameter vs. Age

15

DBH (inch)
—
=]

T T T T T T T T T

20 40 60 80 100
Age (years)

25



Linear Function Approximation

» Given a set D of training examples:

D= {()?17 f()?l)) ) (%27 f()?2)) D) (YP’ f(yp))}

Here X, = (Xk]_ ces 7Xk,,) € R" and fk()?) e R.
Recall that Xx = (xk0, Xk1 - - - y Xkn)-

Our goal: Find w so that h[w](X) = w - X approximates the
function f some of whose values are given by the training set.

» Least Squares Error Function:
1< , 1<
E(w) = EZ(W'Xk—fk) = 52
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Gradient of the Error Function
Consider the gradient of the error function:

4 OF | OE "
VE(w) = (8W0(W)’ ; > > (WK — fi) - K
k=1

n

What is the gradient VE(w) ? It is a vector in R™™ which points in the
direction of the steepest ascent of E (it's length corresponds to the steepness).

Note that here the vectors Xi are fixed parameters of E!

IfVE(W) =0=(0,...,0), then w is a global minimum of E.

This follows from the fact that E is a convex

paraboloid that has a unique extreme which is a
minimum.

e
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Gradient — illustration

3 x\\\\
NS ;&ll

e e e
e

1

s
ol

——

247

7




Function Approximation — Learning

Gradient Descent:
» Weights w(® are initialized randomly close to 0.
> In (t + 1)-th step, w(t*1) is computed as follows:
wttD) = ) o vEW()

— W‘(f) _g.i (M_}(t) "ik_ fk) 'ik
k=1

P
M (AR AR
k=1

Here k = (t mod p) 4+ 1 and 0 < & < 1 is the learning speed.

Note that the algorithm is almost similar to the batch perceptron algorithm!

Tvrzeni
For sufficiently small € > 0 the sequence w(®, w(1) w(2)
converges (component-wisely) to the global minimum of E.

29



Finding the Minimum in Dimension One
Assume n = 1. Then the error function E is

p

2

E(wo, wr) E wo + wixk — fx)
k:

Minimize E w.r.t. wp a wy:

EZO =1 WOZF—Wl)_( = F:W0+W1)_<
(5W0
where x = %Z’;Zl xx a f= % b1tk
E o o 52—y (fic = F)(xk — X)
_— = Wl —=
dwq %Zk 1(xk — %)2

i.e. wy = cov(f,x)/var(x)
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Finding the Minimum in Arbitrary Dimension

Let A be a matrix p X (n+ 1) (p rows, n+ 1 columns) whose k-th
row is the vector X.

Let £ = (f,..., f,) " be the column vector formed by values of f in
the training set.

Then
VE(W)=0 & w=(ATAATF

if (ATA)™! exists

(Then (ATA)"*AT is the so called Moore-Penrose pseudoinverse of A.)
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Normal Distribution — Reminder

Distribution of continuous random variables.

Density (one dimensional, that is over R):

202

) = — exp{—M} — N o))

oV 22

w is the expected value (the mean), o2 is the variance.

LE]

aof—+

az

ao
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Maximum Likelihood vs Least Squares

Fix a training set D = {(X1, 1), (%2, 1), ..., (X5, fp)}
Assume that each f; has been generated randomly by

fkl =W - Xk + €
Here
> wo, w; are unknown constants

» ¢, are normally distributed with mean 0 and an unknown variance o

Assume that €1, ..., €, have been generated independently.

Denote by p(f;,...,f, | wo, w1, 02) the probability density according to
which the values fi, ..., f, were generated assuming fixed

(For interested: The independence and normality imply

P
p(fl,.. fy | wo,wi,0%) = [ [ Nlwo + waxi, 0](£)

k=1
where N[wo + Wlxk,az](fk’) is a normal distribution with the mean wg + wiyxk

and the variance 02.)
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Maximum Likelihood vs Least Squares

Our goal is to find w that maximizes the likelihood that the
training set D with fixed values fi, ..., f, has been generated:

Veta
w maximizes L(w,o?) for arbitrary o iff w minimizes E(W).

Note that the maximizing/minimizing w does not depend on o

L 2 . 2 1 P = 2 )2
Maximizing o satisfies 0= = &3 4 (fix — w - X,)*.
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Comments on Linear Models

» Linear models are parametric, i.e. they have a fixed form with
a small number of parameters that need to be learned from
data (as opposed e.g. to decision trees where the structure is
not fixed in advance).

» Linear models are stable, i.e. small variations in in the training
data have only limited impact on the learned model. (tree
models typically vary more with the training data).

» Linear models are less likely to overfit (low variance) the
training data but sometimes tend to underfit (high bias).
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