J003 - Fundamental Concepts of Computer Science Prof. Juraj Hromkovič

Exercise sheet 1

deadline: 17.4.2015

Common definitions

$$
\Sigma_{\text {bool }}=\{0,1\}
$$

Definition 2.64 [Theoretical Computer Science, p.44]
A word $x \in\left(\Sigma_{\text {bool }}\right)^{*}$ is said to be random, if

$$
K(x) \geq|x|
$$

A positive integer n is said to be random, if

$$
K(n)=K(\operatorname{Bin}(n)) \geq\left\lceil\log _{2}(n+1)\right\rceil-1
$$

Exercise 1.
Prove that, for every $i \in \mathbb{N}$, the interval $\left[2^{i}, 2^{i+1}-1\right]$ contains at least one random integer.

Exercise 2.

Let $w_{n}=0^{2^{n^{2}}}$ for all $n \in \mathbb{N}$. Give the best possible upper bound on the Kolmogorov complexity of w_{n}, measured in the length of w_{n}. (You do not have to prove the optimality of your bound.)

Exercise 3.
Let $L \subseteq\left(\Sigma_{\text {bool }}\right)^{*}$ be an infinite recursive language with the property that, for any length $k \in \mathbb{N}, L$ contains exactly one word w_{k}. How can the Kolmogorov complexity of w_{k} be bounded from above?

Exercise 4.

Define an infinite sequence of natural numbers $y_{1}, y_{2}, y_{3}, \ldots$ with $y_{i}<y_{i+1}$ such that there exists a constant c where, for all $i \geq 1$,

$$
K\left(y_{i}\right) \leq\left\lceil\log _{2} \log _{2} \log _{2} y_{i}\right\rceil+c
$$

Exercise 5.

Prove that, for every $n \in \mathbb{N}$ and every $i<n$, the interval $\left[2^{n}, 2^{n+1}-1\right]$ contains at least $2^{n}-2^{n-i}$ different numbers x such that $K(x) \geq n-i$.

Exercise 6.

Prove that the following languages are not regular, using the method of Kolmogorov complexity.
(a) $L_{1}=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$, where w^{R} denotes the reverse of w. (For $w=a_{1} a_{2} \ldots a_{n}$ the reverse of w is defined as $w^{R}=a_{n} a_{n-1} \ldots a_{1}$.)
(b) $L_{2}=\left\{0^{n^{3}} \mid n \in \mathbb{N}\right\}$.

* Exercise 7.

Prove that there are at most finitely many prime numbers that can be viewed as random numbers.

* Exercise 8.

We consider the language

$$
L_{k o l}=\left\{w \# x \mid K(w) \leq \operatorname{Number}(x) ; w, x \in \Sigma_{\text {bool }}^{*}\right\}
$$

(a) Prove that $L_{k o l}$ is undecidable.
(b) Is $L_{k o l}$ recursively enumerable?

