J003 - Fundamental Concepts of Computer Science Prof. Juraj Hromkovič

Exercise sheet 1 deadline: 17.4.2015

Common definitions

$$\Sigma_{bool} = \{0, 1\}$$

Definition 2.64 [Theoretical Computer Science, p.44] A word $x \in (\Sigma_{bool})^*$ is said to be random, if

 $K(x) \ge |x|$

A positive integer n is said to be random, if

 $K(n) = K(Bin(n)) \ge \left\lceil \log_2(n+1) \right\rceil - 1$

Exercise 1.

Prove that, for every $i \in \mathbb{N}$, the interval $[2^i, 2^{i+1} - 1]$ contains at least one random integer.

Exercise 2.

Let $w_n = 0^{2^{n^2}}$ for all $n \in \mathbb{N}$. Give the best possible upper bound on the Kolmogorov complexity of w_n , measured in the length of w_n . (You do not have to prove the optimality of your bound.)

Exercise 3.

Let $L \subseteq (\Sigma_{bool})^*$ be an infinite recursive language with the property that, for any length $k \in \mathbb{N}$, L contains exactly one word w_k . How can the Kolmogorov complexity of w_k be bounded from above?

Exercise 4.

Define an infinite sequence of natural numbers y_1, y_2, y_3, \ldots with $y_i < y_{i+1}$ such that there exists a constant c where, for all $i \ge 1$,

$$K(y_i) \le \lceil \log_2 \log_2 \log_2 y_i \rceil + c$$

Exercise 5.

Prove that, for every $n \in \mathbb{N}$ and every i < n, the interval $[2^n, 2^{n+1} - 1]$ contains at least $2^n - 2^{n-i}$ different numbers x such that $K(x) \ge n - i$.

Exercise 6.

Prove that the following languages are not regular, using the method of Kolmogorov complexity.

(a) $L_1 = \{ww^R \mid w \in \{0,1\}^*\}$, where w^R denotes the reverse of w. (For $w = a_1a_2...a_n$ the reverse of w is defined as $w^R = a_na_{n-1}...a_1$.)

(b)
$$L_2 = \{0^{n^3} \mid n \in \mathbb{N}\}.$$

* Exercise 7.

Prove that there are at most finitely many prime numbers that can be viewed as random numbers.

* Exercise 8.

We consider the language

$$L_{kol} = \{ w \# x \mid K(w) \le Number(x); w, x \in \Sigma_{bool}^* \}$$

- (a) Prove that L_{kol} is undecidable.
- (b) Is L_{kol} recursively enumerable?