
PA103 - Object-oriented Methods for Design of Information Systems

Introduction to
object-oriented design

© Radek Ošlejšek
Fakulta informatiky MU

oslejsek@fi.muni.cz

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 2Spring 2015

Lecture 1 / Part 1:
Course Organization

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 3Spring 2015

Course Organization

Prerequisites:

 Knowledge of object-oriented programming principles
 e.g. the basic Java, C++ or C# courses

 Core knowledge of software engineering and UML
 PB007 – Software Engineering I

Follow-Up Courses:
 PA104 – Team Project Leadership

 PV167 – Project in Object-oriented Design of Information Systems

 PA017 – Software Engineering II

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 4Spring 2015

Significant Changes in Courses

Before

2012/2013:

Since

2012/2013:

PB007
System Analyses Design

PA103
OO Methods for design of IS

PV167
Project in OOD of IS

PB007
Software Engineering I

PA103
OO Methods for design of IS

PV167
Project in OOD of IS

cc
a

1/
3

of
 p

re
vi

ou
s

co
nt

en
t

U
M

L
fu

nd
am

en
ta

ls

Practi
ca

l U
ML m

odelin
g

SE Fundamentals
OO principles,
SW patterns,

component systems, ...

Component modeling,
analysis and design

patterns,
extra-functional requirements

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 5Spring 2015

About the course

Lectures:

1. Course organization, OO design vs. structured design, OO fundamentals, OO modeling vs. ER modeling

2. Interface as contract, introduction to components, from classes to components

3. Object Constraint Language

4. Software re-use, software patterns at various stages of software life cycle (analysis, design, architecture,
coding).

5. Design patterns in detail.

6. Analysis patterns, Java patterns, anti-patterns.

7. Code refactoring („refactoring to patterns“).

8. Software architectures, architectural patterns.

9. Component systems. Qualitative attributes and their evaluation.

10. Object-oriented methods for software development, application of UML models in RUP.

11. Special methods and architectures: MDD, FDD, SOA, ...

12. Model-Driven Architecture (MDA), employing OCL in MDA.

Evaluation:

 Exam = multichoice test + practical question(s), 90 min.

 Grades: A: 100-90 B: 89-80 C: 79–70 D: 69-60 E: 59-50 F: 49-0

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 6Spring 2015

Lecture 1 / Part 2:
Structured vs. Object-oriented Paradigms

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 7Spring 2015

Why models?
 Information systems are always composed of data and operations, which are

responsible for data manipulation and presentation to users

 Many relationships => it's infeasible to treat a complex system as a whole

 Modeling = controlling the complexity by the “divide et impera” principle

Source: objekty.vse.cz

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 8Spring 2015

Structured Modelling

Consistency between models

Consistency within models

 Separate functional and data models

 Context diagram, data flow diagram, events, functional requirements, ...

 Entity-relationship diagram, data vocabulary, ...

 Continuous particularization of models

 Consistency checking

 Within models

 Between models

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 9Spring 2015

Structured Modelling (cont.)

 Functional hierarchies and data clustering help to organize functional and
data models.

 Still too complex relationships mainly between functional and data models.

Source: objekty.vse.cz

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 10Spring 2015

OO Modelling

 Division of system into objects handling data as well as operations => function-data
dependencies are internal, hidden inside objects.

 Object-to-object relationships are simplified.

 Hierarchical clustering of objects/classes into packages and components brings even
more “clarification” of the system. On the other hand, components bring much more
complicated communication dependencies then objects/classes.

 Network of objects and their relationships as opposed to layers in structured design

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 11Spring 2015

OO Modelling (cont.)

 More models than in the case of
structured modeling

 Not all models, e.g. UML models, are
always used. Some models are
relevant to only selected phases of
software life cycle and/or selected
parts of the system.

 Continuous particularization of models

 Consistency checking

 Inside models

 Between models

 Class diagram as the main model.
Other models just help to design
correct final class diagram.

 Incremental and iterative development

 complex life cycle management

Consistency checking and particularization of models

Use case diagram
State machine diag.

Interaction diag.

Class and object diag.

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 12Spring 2015

Lecture 1 / Part 3:
OO Fundamentals

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 13Spring 2015

Objects

 Object is the smallest unit combining (encapsulating) data and
functions and instantiating classes.

 Classes represent static view (design-time entities), while objects
represent dynamic view (run-time entities)

 Objects store data in field behind the “layer” of functions (operations).

 Concrete data (values of fields) define object state.

 Methods define behavior.

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 14Spring 2015

Objects cooperation

Structured program:

 Code of procedures is allocated in memory before the program is executed. Procedures
then read/write data and calls other procedures.

OO program:

 Objects are instantiated and removed
dynamically. Initial object which is
instantiated by OS or interpreter is
responsible for the instantiation of other
objects.

 Nodes of invocation tree are
dynamically allocated and removed.

 Objects cooperate in order to successfully
respond to method invocation.

 Methods/objects can instantiate other
objects.

 Methods typically send messages to
other objects by calling their methods
and waiting for response.

 Data and responsibilities are distributed
among objects.

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 15Spring 2015

Abstraction

Proposal of suitable classification scheme is the key task for object-oriented analysis and design

Abstraction = Classification of objects and classes

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 16Spring 2015

Abstraction (cont.)

 Proposal of suitable classification scheme is the key task for object-oriented
analysis and design.

 How many classes is in the picture?

 Trees, leaves, ...

 Electronic devices vs mobile devices

 Cats vs fast moving objects – how to classify the lion?

 ...

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 17Spring 2015

Inheritance vs association

Engineer

CivilEngineer SoftwareEngineer

B. Every software engineer has engineering skills

A

1..n1..n

B

SoftwareEngineer

Poet

1..n

Engineer Workman

A. Every software engineer is engineer

 Inheritance can be always replaced by association.

 New trend in higher (component) level is dependency injection

 Association is more flexible because links are created at run-time.

 Never use inheritance if object's role can vary in time, e.g. one day the SW
engineering is rather poet while another day he/she is rather Workman

 Objects can never change affiliated class (i.e. the type) during their life time!

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 18Spring 2015

Object role

Every object instantiating sub-class must be always usable
in the context of its super-class(es)

Q: Is CarOwner always Person?
Q: Is CarOwner always Car?

Person

CarOwner

Car Person

CarOwner Car
1 n

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 19Spring 2015

Types of object connections

Object Connection - physical or conceptual link between objects. Denotes the possibility
of (client) object to use services of another (server, supplying) object or to navigate the object.

When the connection is established:
• At design time – „really“ static connection

– Embedded classes, inheritance,

• At compile time – static connection

– Association, aggregation, composition

• At runtime – dynamic connection

– Dependency

– Methods call

ClassA

ClassB attribute

print () {
 ...
 attribute.foo();
 ...
}

ClassB

foo () {
 ...
}

Static connection

Dynamic connection

Runtime call

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 20Spring 2015

Polymorphism

 Concept from the theory of types
 „+“ means the same for real as well as for integer
 „+“ is has different implementation (behavior) for real and integer

 Polymorphism is a product of inheritance and dynamic connection
 Sub-class inherits name of the method
 Biding the method name with its implementation is accomplished at runtime.

ClassA

print () { echo „A“ }

ClassB

print () { echo „B“ }

ClassA object;
object = new ClassB();
object.print();

Q: What is the output of the following code?

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 21Spring 2015

Lecture 1 / Part 4:
Software Architectures – Key Concepts

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 22Spring 2015

Multi-layered Architecture (I)

 Based on structured models

 Suitable for client-server applications

 Multi-layered vs multi-tier Architecture: The concepts of layers and tiers are often
used interchangeably. However, one fairly common point of view is that there is indeed
a difference, and that a layer is a logical structuring mechanism for the elements that
make up your software solution, while a tier is a physical structuring mechanism for the
system infrastructure

Application/logic layer

Presentation layer

Data layer

cl
ie

n
t

se
rv

e
r

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 23Spring 2015

Multi-layered Architecture (II)

 Typical features:
 Strong dependences in DB
 Communication through DB
 Autonomous clients
 Complex SQL queries

 Realization:
 Forms (HTML, XML, CSS, ...)
 Scripting (PHP, ASP, ...)
 Relational databases

 Common use:
 PHP-based web pages
 Client-server applications

D
a

ta
 m

o
d

e
l

F
u

n
ctio

n
a

l m
o

d
e

l

Relational database
Relational database

Application
script

Application
script

Client
Client

A
p

p
lica

tio
n

la

ye
r

P
re

se
n

ta
tio

n
la

ye
r

D
a

ta
la

ye
r

Client
Client

Client
Client

Application
script

Application
script Application

script

Application
script

Interconnection through data layer:
+ rapid implementation
+ utilization of known development processes
+ proven technologies
- single table is handled by multiple scripts
- complex database scheme
- poor scalability

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 24Spring 2015

Multi-layered Architecture (III)

 Naive adoption of multi-layered architecture to OO
design

 Interaction
 Upper layers play the role of clients to their lower layers
 Lower layers play the role of severs to their upper layers
 Object should not depend on objects from upper

layers

Persistent objects
Persistent objects

Business objects
Business objects

Presentation objects
Presentation objects

A
p

p
lica

tio
n

la
ye

r
P

re
se

n
ta

tio
n

la
ye

r
D

a
ta

la
ye

r

 Q: Where to verify the input data?
1) In the presentation layer, application layer just handles the data by passing them to data layer.

 Data verification is not typical responsibility of presentation objects.
 Duplication of the verification code across many presentation objects.
 Application layer relay on valid data => is dependent on presentation layer

2) In the application layer, presentation layer just reads the input and show results.
 Intensive client-server communication, slow response

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 25Spring 2015

Multi-layered Architecture (IV)

 Presentation objects
 User input/output

 Business objects
 Forms conceptual structure of the system

 Independent from presentation
 Independent from data store

 Persistent objects
 Forms persistent layer of the system

 Data storage and their accessibility
 Locking
 Integrity checking

Persistent objects
Persistent objects

Business objects
Business objects

Presentation objects
Presentation objects

A
p

p
lica

tio
n

la
ye

r
P

re
se

n
ta

tio
n

la
ye

r
D

a
ta

la
ye

r

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 26Spring 2015

Multi-layered Architecture (V)

 Utilization of component technologies
 Interconnection through the application layer
 Handling complexity of connection via components

 Typical feature:
 Data separation
 Context management in the application layer

 Realization:
 CORBA, DCOM, SOAP/XML

Interconnection through application layer:
+ robustness and scalability
+ maintenance and extensions
+ parallel development
+ easy integration with other systems
- complex application layer
- require modern approaches for development and management
- it's not feasible to utilize advanced features of modern relational databases

Application
component

Application
component

Client
Client

A
p

p
lica

tio
n

la
ye

r
P

re
se

n
ta

tio
n

la
ye

r
D

a
ta

la
ye

r

Client
Client

Client
Client

Application
component

Application
component Application

component

Application
component

Data
Data

Data
Data

Data
Data

Relational database

Application
script

Client

A
pplication

layer
P

resentation
layer

D
ata

layer

Client Client

Application
script

Application
script

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 27Spring 2015

Multi-layered Architecture (VI)

ShoppingCart

displayContent () {
 SELECT * FROM ...
}

<<business>>
ShoppingCart

addGoods () { ... }
removeGoods () { ... }
getGoods () { ... }

<<data>>
Goods

getPrice () { ... }
getSize () { ... }

<<GUI>>
ShoppingCartGUI

ShippongCart cart;

displayContent () {
 for i in cart.getGoods() {
 ...
 }
}

Presentation, application and data logic in single class

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 28Spring 2015

ORM: Object-Relational Mapping

 In the real world, the OO software is often combined with relational
databases

 Relational databases present proven, tuned and highly optimized
technology (efficiency, scalability, data integrity, etc.)

 => It's necessary to map object model to entity-relational model

 => Object-Relational Mapping, ORM
 Java Persistence API, Hibernate, …

 Note1: Although object databases exists a long time, they still play a minority role.

 Note2: NoSQL databases represent a new trend in dynamic data storage, e.g. in
facebook and other social sites. They have no fixed relational scheme. Instead, they the
information scheme is based on ontologies (SQRL, OWL, ...). Query languages, e.g.
SparQL, SQWRL enables to query data and also support automatic inference.

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 29Spring 2015

ORM: Tables vs. objects (I)

 Relational Technology
 Data are stored in tables

 Rows represent records,
columns represent values of
concrete types

 Tables are connected by
relations

 Primary/foreign keys

 Cardinality of relations

 Relational algebra and SQL for
data retrieval

 OO technology
 Classes contain data as well as

operations

 Associations with cardinality

 Inheritance

 Associations and objects are in
memory => data manipulation is
based on object interaction.

 Ex.: get all students enrolled in
given course – difference
between SQL and object
interaction

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 30Spring 2015

ORM: The Basic Mapping Principles

 Persistence class = entity set (table)

 Object = entity (record, line in the table)

 Primitive class attribute = entity attribute (column in the table)

 Key is selected from primitive attributes or is created a new one

 Association/aggregation/composition defines relation
(interconnection of tables by means of foreign keys)

 M:N associations must be decomposed

 Mapping of class inheritance:
 1:1 mapping

 Combining to super-class

 Splitting to sub-classes

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 31Spring 2015

ORM: class diagram vs. ER diagram

Relational scheme

Persistent objects

DB managers
(handle SQL)

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 32Spring 2015

Inheritance mapping: 1:1

 Every class becomes a table

 All tables share the primary key

 Discriminator becomes an attribute

 Queries search in the table of the concrete sub-class and its super-class

 Data of single instance is stored in multiple tables

 Complex data retrieval

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 33Spring 2015

Inher. mapping: combining to super-class

 Attributes of all sub-classes are stored in single table

 Some attributes can by NULL

 4NF violation

 Suitable for class hierarchies with few sub-classes and few attributes

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 34Spring 2015

Inheritance mapping: splitting to sub-classes

 Attributes of super-class are duplicated in tables of all (non-abstract)
sub-classes.

 Suitable if:

 Super-class has few attributes

 There exist a lot of sub-classes (spreading class hierarchy)

 Sub-classes have a lot of specific attributes

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 35Spring 2015

Association vs. entity relation (I)

ico

name

Company

id

name

Person

ico

name

Company
id

name

Personjob_id

company_ico

person_id

salary

Job

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 36Spring 2015

Association vs. entity relation (II)

-name
Person

-ico
-name

Company 0..*

0..*

employs

0..*

0..*

ico

name

Company

id

name

Person

Note (often mistake): The Person class has no attribute id in the class model !!!

• Q: Is this model directly implementable?
• A: Yes. As opposed to ER model, M:N relationships pose no problem.
• For example, the Company class can include an array of Persons and vice versa.
 On the other hand, there are many ways to elaborate this initial decomposition.

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 37Spring 2015

Association vs. entity relation (III)

 Approach 1, model 1: We prefer one direction

 Company stores persons (employees) in array

 Person has no link to its companies

 Problem: There are many companies registered in the system. Where
they are stored? How we get link to concrete address if we have no
query mechanism?

-name

Person

-ico
-name

Company 0..*

0..*

employs

0..*

0..*

-ico
-name
-employees : Person[]

+getEmployees() : Person []

Company

-name

Personemployes

*

**

*

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 38Spring 2015

Association vs. entity relation (IV)

 Approach 1, model 2: Single JobsMngr stores all the companies and
mediates access to companies and their employees.

 Q: Is the getCompanies() method implementable? How effectively?

-name

Person

-ico
-name

Company 0..*

0..*

employs

0..*

0..*

-companies : Company[]

+getEmployees(c : Company) : Person []
+getCompanies(p : Person) : Company []

JobsMngr

-ico
-name
-employees : Person[]

+getEmployees() : Person []

Company
-name

Person*

*

*

employes

*

*

*

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 39Spring 2015

Association vs. entity relation (V)

 Approach 1, model 2: getCompanies() is less effective /O(n*n)/ than
getEmployess() /O(n)/. The reason is that each invocation of the
company.contains() searches in the list of employees.

-companies : Company[]

+getEmployees(c : Company) : Person []
+getCompanies(p : Person) : Company []

JobsMngr

-ico
-name
-employees : Person[]

+getEmployees() : Person []

Company

-name

Person

*

*

*

*

employes

*

*

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 40Spring 2015

Association vs. entity relation (VI)

 Approach 2, model 1: Bidirectional association

 Pros: Clear responsibilities. Responsibilities are uniformly distributed
to all classes

 Cons: Very complicated memory management, especially without
automatic “garbage collection“

-name
Person

-ico
-name

Company 0..*

0..*

employs

0..*

0..*

-name
-companies : Company[]

+getCompanies() : Company []

Person

-ico
-name
-employees : Person[]

+getEmployees() : Person []

Company

-companies : Company[]
-employees : Person[]

+getCompany(c : Company) : Company
+getEmployee(p : Person) : Person

<<singleton>>
JobsMngr

0..*

0..*

0..*

0..*

employs

0..*

0..*

0..* 0..*

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 41Spring 2015

Association vs. entity relation (VII)

 Approach 2, model 2: Preserved bidirectional association,
responsibility located in a big “God” object.

 Pros: (a) Management code located in JobsMngr => maintainability.
 (b) Efficiency.

 Q: Where to store salary?

-name
Person

-ico
-name

Company 0..*

0..*

employs

0..*

0..*

-companies : Map<Company, Set<Person>>
-employees : Map<Person, Set<Company>>

+getCompanies(e : Person) : Set<Company>
+getEmployees(c : Company) : Set<Person>

<<singleton>>
JobsMngr

-ico
-name

Company

-name
Person

*

*

*

*

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 42Spring 2015

Association vs. entity relation (VIII)

 Approach 3, model 1: Helper class (similar to the association entity in
ERD). This class links concrete couple and stores additional data
related to the couple.

 Q: Putting jobs to list/array is not optimal. Do you know better solution?

-name
Person

-ico
-name

Company 0..*

0..*

employs

0..*

0..*

-jobs : Job[]

+getCompanies(p : Person) : Compan...
+getEmployees(c : Company) : Person []

<<singleton>>
JobsMngr

-salary
-company : Company
-employee : Person

+getCompany() : Company
+getEmployee() : Person
+getSalary() : double

Job

-ico
-name

Company

-name

Person* 1

* 1

1

**

1

1*

1*

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 43Spring 2015

Association vs. entity relation (IX)

 Approach 3, model 2: Maps provide efficient access to the individual
sets of companies and employees as well as to concrete jobs
(couples). On the other hand, this solution is unnecessary complicated
in many situations.

=> Designer has to choose the best solution for concrete context=> Designer has to choose the best solution for concrete context

-salary
-company : Company
-employee : Person

+getCompany() : Company
+getEmployee() : Person
+getSalary() : double

Job
-ico
-name

Company

-name
Person

-companies : Map<Company, Set<Job>>
-employees : Map<Person, Set<Job>>

+getJobs(p : Person) : Set<Job>
+getJobs(c : Company) : Set<Job>
+getCompanies() : Set<Company>
+getEmployees() : Set<Person>

<<singleton>>
JobsMngr

* 1

*

* 1

*

companies

employees

1

1

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 44Spring 2015

Conclusion:

Entity-relational paradigm is definitely not the same as
object-oriented paradigm. Therefore, ER diagrams are
definitely not the same as UML class diagrams, although
they look similar.

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 45Spring 2015

Questions?

Three Engineers

There are three engineers in a car going for a drive. The first is a mechanical
engineer, the second an electronics engineer and the third is a software engineer.

Fortunately, the mechanical engineer is driving because the brakes fail as they
are going downhill. The mechanical engineer eventually brings the car safely to a
halt and gets out to examine the hydraulic systems.

The electronics engineer gets out and checks the body computer, ABS system and the
power train CAN bus.

The software engineer stays in the car and when queried about it says that they
should all just get back in the car and see if it happens again!

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40
	Snímek 41
	Snímek 42
	Snímek 43
	Snímek 44
	Snímek 45

