
PA103 - Object-oriented Methods for Design of Information Systems

Interface as contract

© Radek Ošlejšek 
Fakulta informatiky MU

oslejsek@fi.muni.cz



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 2Spring 2015

Lecture 2 / Part 1: 
Interfaces in general



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 3Spring 2015

Interface

 The interface of the receiving system, to which the using 
system must relate and refer.

 Used in several different places in IT architecture:
 Between human and computer, i.e. GUI.

 API of libraries.

 Interface of components.

 Low-level interface of objects/classes.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 4Spring 2015

Interfaces of objects and components

 Interface has following properties:

 Provides contact with outside world
 Consists of operations and input/output parameters

 So called signature
 Must be well-documented

 Including contract.
 Must be on display and easily accessible

 Visibility scope is often public
 Can specify contracts 

 Usage constraints
 e.g. Comparable in Java API

http://docs.oracle.com/javase/7/docs/api/java/lang/Comparable.html


PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 5Spring 2015

Object and component interfaces (cont.)

 Operations:

 Operations provide functionality.
 Without operations, no functionality.

 Input parameters:

 Data elements, which the operation needs to be able to 
perform the specified functionality

 Output parameters:

 Data elements, which the operation returns after 
performing the specified functionality

 Number of allowed output parameters depends on 
programming language

 Return value is always single, e.g. single array of 
integers.

 Some OO languages support out or in-out parameters. 



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 6Spring 2015

Information Hiding Rules

 Carefully define the public interface for classes as well as 
subsystems (components)

 For subsystems use facade design pattern if possible

 Always apply the “Need to know” principle:
 Only if somebody needs to access the information, make it 

publicly available

 The fewer details a class/component user has to know
 the easier the class/component can be changed

 the less likely will be affected by any changes in the 
class/component implementation



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 7Spring 2015

Modeling Constraints with Contract

 Example of constraints in a sports arena:
 An already registered player cannot be registered again

 The number of players in tournament should not be more than 
maxNumPlayers

 One can only remove players that have been registered

 These constraints cannot be modeled in UML, we model 
them with contracts (e. g. OCL)



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 8Spring 2015

Contract

Contract: 
 A lawful agreement between two parties in which both parties accept 

obligations and on which both parties can found their right

Object-oriented contract: 
 Describes the services that are provided by object, subsystem or 

system if certain conditions are fulfilled

 Services = „obligations“, conditions = „rights“

 For each service, it specifically describes two things:

 The conditions under which the service will be provided

 A specification of the result of the service

 Examples:

 A letter posted before 18:00 will be delivered on the next working day 
to any address in Czech Republic

 For the price of 4 Euros a letter with the maximum weight of 80 grams 
will be delivered anywhere in the USA within 4 hours of pickup



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 9Spring 2015

OO Contract

 Contracts enable the caller and the provider to share the same 
assumptions about the class, component or subsystem

 A contract is an exact specification of the interface

 A contract include three types of constraints:

 Invariants
 A predicate that is always true for all instances of a 

class/component
 Ex.: Pub is never out of beer

 Preconditions („rights“)
 Must be true before an operation/service is invoked
 Ex.: for visitPub method: customer has money (otherwise the 

method behavior is unpredictable)

 Postconditions („obligation“)
 Must be true after an operation/service is invoked
 Ex.: for visitPub method: customer has no money



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 10Spring 2015

Modeling OO Contracts

 Natural language

 Mathematical Notation

 Models and contracts
 OCL (Object Constraint Language) = language for the formulation of 

constraints with the formal strength of the mathematical notation and 
the easiness of natural language

 => UML models + OCL constraints or text notes

HashTable

put(key,entry:Object)
get(key):Object
remove(key:Object)
containsKey(key:Object):boolean
size():int

numElements:int

<<invariant>>
numElements >= 0<<precondition>>

!containsKey(key)

<<precondition>>
containsKey(key)

<<precondition>>
containsKey(key)

<<postcondition>>
!containsKey(key)

<<postcondition>>
get(key) == entry



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 11Spring 2015

Lecture 2 / Part 2: 
Interfaces of classes/objects



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 12Spring 2015

<<interface>> stereotype

 Interface of “ordinary” class = list of provided methods 

 Class with <<interface>> stereotype has special meaning in UML

 Realization vs. inheritance

 Two notations

 Related to the interfaces of components

 Often prescribe only partial behavior (and, on the contrary, class 
often implements multiple interfaces)

HotelManager

IHotelMngmt

realizationrealization

<<interface>>
IHotelMngmt

reservation()

HotelManager

interafceinterafce



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 13Spring 2015

Provided and Required Interfaces

realizationrealization

<<interface>>
Hashable

hash(): Integer

<<interface>>
Comparable

equals(Object): Boolean

String

hash(): Integer
equals(Object): Boolean

HashTable

dependencydependency

<<use>>

<<use>>

String

.....

isEqual(String):Boolean

hash():Integer

HashTable

Hashable

Comparable



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 14Spring 2015

Preferred notations for required interfaces



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 15Spring 2015

Visibility of Operations and Attributes

Public: +

 Public elements (attributes, operations) can be accessed by any external 
code.

Private: -

 Private elements can be accessed only by the class in which they are defined

 They cannot be accessed by subclasses or other classes

Protected: #

 Protected elements can be accessed by the class in which they are defined 
and by any descendant of the class

Package: ~

 Package-visible elements can be accessed by the class in which they are 
defined and by any class in the same package

 They cannot be accessed by classes in sub-packages

 They cannot be accessed by sub-classes in other packages.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 16Spring 2015

Lecture 2 / Part 3: 
Interfaces of components



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 17Spring 2015

From Classes to Components

 Component model = design model.

 UML component diagram is generic, concrete component-based 
runtime environments (CORBA, EJB, …) can have various limitations.

 Component is a logical, replaceable part of a system that conforms to 
and provides the realization of a set of interfaces.

 Unlike objects that arises and vanishes in the memory at runtime, 
components are carefully selected and connected at design time and 
then deployed in the form of binary replaceable artifacts (it is possible 
to replace a component with other that conforms to the same interface 
at runtime).

 Interfaces bridge logical and design models. For example, you may 
specify an interface for a class in a logical model, and that the same 
interface will carry over to some design component that realizes it.

 Interfaces allow you to build the implementation of a component using 
smaller components by wiring ports on the components together.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 18Spring 2015

Components – Terms and Concepts

 Component – replaceable part of a system that conforms to and 
provides the realization of a set of operations.

 Interface – collection of operations that specify a service that is 
provided by or required from a component.

 Port – specific window into an encapsulated component 
accepting messages to and from the component conforming to 
specified interfaces.

 Internal structure – implementation of a component by means of 
a set of parts that are connected together in specific way.

 Part – specification of a role that composes part of the 
implementation of a component.

 Connector – communication relationship between two parts or 
ports within the context of a component.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 19Spring 2015

Components and Interfaces

 Component interfaces are similar to interfaces in class diagrams...

Note: The dashed dependency lines show compatible provided and required 
interfaces, but when the interfaces have the same names the dependency lines are 
redundant and can be omitted.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 20Spring 2015

Ports
 … except for ports.

 Interfaces are useful in declaring the overall behavior of a component, 
but they have no individual identity.

 Ports provide greater control over the implementation of interfaces.

 Port has identity. Another component can communicate with the 
component through a specific port.

 External interactions into and out of the component should pass 
through ports.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 21Spring 2015

Ports (cont.)

 Both provided and required interfaces may be attached to the port.

 Each port has a name so that it can be uniquely identified given the 
component and the port name.

 Ports are part of a component. Instances of ports are created and 
destroyed along with the instance of the component to which they 
belong.

 Ports may also have multiplicity; this indicates the possible number of 
instances of a particular port within an instance of the component.

 Each port on a component instance has an array of port instances.

 Although the port instances in an array all satisfy the same interface 
and accept the same kinds of requests, they may have different states 
and data values.

 For example, each instance in an array might have a different priority 
level, with the higher-priority port instances being served first.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 22Spring 2015

Ports – example

There are two ports for ticket sales, one for normal customers and one for priority 
customers. They both have the same provided interface of type Ticket Sales. The 
credit card processing port has a required interface; any component that provides 
the specified services can satisfy it. The attractions port has both provided and 
required interfaces. Using the Load Attractions interface, a theater can enter 
shows and other attractions into the ticket database for sale. Using the Booking 
interface, the ticket seller component can query the theaters for the availability of 
tickets and actually buy the tickets.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 23Spring 2015

Internal Structure of Components

Example: A compiler component built from four kinds of parts. There is a lexical 
analyzer, a parser, a code generator, and one to three optimizers. The appropriate 
optimizer can be selected at run time.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 24Spring 2015

Internal Structure of Components (cont.)

 A part is a unit of the implementation of a component. 

 A part has a name and a type. 

 In an instance of the component, there is one or more instance 
corresponding to each part having the type specified by the part. 

 A part has a multiplicity within its component. 

 If the multiplicity of the part is greater than one, there may be more 
than one part instance in a given component instance. 

 If the multiplicity is something other than a single integer, the number 
of part instances may vary from one instance of the component to 
another. 

 A component instance is created with the minimum number of parts; 
additional parts can be added later.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 25Spring 2015

Parts of the Same Type

Air Ticket Sales component might have separate Sales parts for frequent fliers and for regular 
customers; they both work the same, but the frequent-flier part is available only to special 
customers and involves less chance of waiting in line. Because these components have the 
same type, they must have names to distinguish them. The other two components of types 
SeatAssignment and InventoryManagement do not require names because there is only one 
of each type within the Air Ticket Sales component.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 26Spring 2015

Connectors

Connectors in UML = connection of two structured parts within a 
structured classifier or a collaboration.

Connectors in components = A wire between two ports

 Realizes calls between compatible interfaces/ports; can be generated by tool



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 27Spring 2015

Connectors – Example

Connector by interfaces

 Components are connected via compatible provided/required interfaces



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 28Spring 2015

Connectors – Example

Direct connector

 Components are explicitly wired together, either directly or through ports



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 29Spring 2015

Connectors – Example

Delegation connector

 Connection of internal ports to external ports. Contains arrow.

 Interpretation 1: the internal port is the same as the external port; it has been 
moved to the boundary and allowed to peek through.

 Interpretation 2: any message to the external port is transmitted immediately to 
the internal port, and vice versa.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 30Spring 2015

Components – Summary

 Components allow you to:
 Encapsulate the parts of your system.

 Reduce dependencies.

 Make dependencies explicit.

 Enhance replaceability and flexibility when the system must be 
changed in the future.

 A good component:
 Encapsulates a service that has a well-defined interface and boundary.

 Has enough internal structure to be worth describing.

 Does not combine unrelated functionality into a single unit.

 Organizes its external behavior using a few interfaces and ports.

 Interacts only through declared ports.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 31Spring 2015

Lecture 2 / Part 4: 
Interface Description Languages



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 32Spring 2015

IDL – Interface Description Language

 Alternatively Interface Definition Language.

 Specification language used to describe a software component's 
interface in a language-independent way.

 IDL is not programming language – has no constructs.

 IDL is not a part of UML.

 Software systems based on IDLs include:
 The Open Group's Distributed Computing Environment,

 IBM's System Object Model,

 the OMG CORBA, 

 Mozilla's XPCOM, 

 Facebook's Thrift,

 WSDL for Web services,

 ...



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 33Spring 2015

Distributed Computing

 The object reference contains:

 The network address.

 The port number (transport protocol).

 Object (agent) name or ID.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 34Spring 2015

CORBA

 CORBA = Common Object Request Broker Architecture, 
specified by OMG (Object Management Group)

 Open and vendor independent architecture and infrastructure 
that computer applications use to work together over the 
network

 ORB (Object Request Broker) mediates the communication 
between applications:

 Locating the remote object

 Activating the remote object

 Communicating the client request to the object

 Communicating the reply after carrying out the reply



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 35Spring 2015

CORBA IDL

 Declares data members, methods and parameters

 Has its own type system

 Maps to many programming languages like C, C++, Java and 
COBOL via OMG standards (interface compilers)

module BankSimple {
  typedef float CashAmount;
  interface Bank {
    ...
  };
  interface Account {
    // account owner and balance
    readonly attribute string name;
    readonly attribute CashAmount balance;
    // operations available on the account
    void deposit (in CashAmount amount);
    void withdraw (in CashAmount amount);
  };
};



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 36Spring 2015

CORBA Workflow



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 37Spring 2015

Mapping IDL to Java/C++

IDL Java C++

module package namespace

interface interface abstract class 

operation method member function 

attribute pair of methods pair of functions

exception exception exception 



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 38Spring 2015

Declaring Data Members in CORBA IDL

 Data members are declared using the attribute keyword. 

 The declaration must include a name and a type.

 Attributes are readable and writable by default. 

 To make a read-only attribute, use the readonly keyword.

 IDL compiler generates public read and write methods for the 
data member as required. 

attribute long assignable;

generates

int assignable();

void assignable (int i); 



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 39Spring 2015

Declaring Data Members (cont.)

 CORBA const values declared in an IDL map to public static 
final fields in the corresponding Java interface. 

 Constants not declared inside the interface are mapped to public 
interface with the same name containing a field value.

const float sample = 2.3;

 It is also possible to define your own types using the typedef 
keyword:

typedef string name;



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 40Spring 2015

Declaring Methods in CORBA IDL

 Methods are declared by specifying name, return type, and 
parameters. 

float calculate(in float val1, in char operator);

 Methods can optionally throw exceptions. User-defined 
exceptions must be declared in the IDL.  

 Methods are synchronous by default. The client program will wait 
for the remote method to execute and return. 

 Asynchronous methods are defined using the oneway keyword. 
oneway methods have no return value, can have input parameters 
only and cannot throw exceptions. The client makes the call to 
the oneway method and continues processing while the remote 
object executes it – the client is not blocked. 



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 41Spring 2015

Declaring Parameters in CORBA IDL

 Parameters can be of following types: 

 Basic (char, long, short, float, bool, etc.),

 Constructed (struct, union, array, sequence),

 Typed objects, 

 any.

 Parameters can be declared as in, out or inout. 

  in parameters are copied from client to server 

  out parameters are copied from server to client 

  inout parameters are used both for incoming and outgoing 
information and are copied both ways.

 CORBA 2.0 supports only pass-by-value for non-object data 
types. Objects are passed by reference

 CORBA 3.0 supports pass-by-value for objects by using the 
valuetype keyword.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 42Spring 2015

Web Services

 W3C definition: 

 “A Web service is a software system designed to support inter-
operable machine-to-machine interaction over a network. It has 
an interface described in a machine-processable format 
(specifically WSDL). Other systems interact with the Web service 
in a manner prescribed by its description using SOAP messages, 
typically conveyed using HTTP with an XML serialization in 
conjunction with other web-related standards”.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 43Spring 2015

WS – Key Technologies

 XML (eXtensible Markup Language):

 is a markup language for exchanging structured messages.

 SOAP:

 is a XML based protocol for exchanging messages between 
nodes over different transport protocols (HTTP, SMTP, …)

 WSDL (Web Services Description Language):

 Based on XML Schema

 The interface description (operations, operations parameters, 
data types)

 The implementation description (service location, transport 
protocol)

 Generated automatically, e.g. from annotated EJB

 Convertible from IDL



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 44Spring 2015

WS – Key Technologies (cont.)

 UDDI (Universal Description, Discovery and Integration):

 Discovery agency that provides find and publish services for the 
requester and provider agents.

 Provides two kinds of information: business related information 
and technical information.

 The communication between the UDDI and the requester and 
provider agents uses SOAP messages.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 45Spring 2015

The General Process of Engaging a WS

(1) the requester and provider entities become known to each other (or at least one 
becomes know to the other); (2) the requester and provider entities somehow agree on the 
service description and semantics that will govern the interaction between the requester and 
provider agents; (3) the service description and semantics are realized by the requester and 
provider agents; and (4) the requester and provider agents exchange messages



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 46Spring 2015

WSDL Example

<?xml version="1.0" ?> 
- <definitions name="BNQuoteService" 

targetNamespace="http://www.xmethods.
net/sd/BNQuoteService.wsdl" 
xmlns:xsd="http://www.w3.org/2001/XML
Schema" 
xmlns:soap="http://schemas.xmlsoap.org/
wsdl/soap/" 
xmlns="http://schemas.xmlsoap.org/wsdl/
" 
xmlns:tns="http://www.xmethods.net/sd/B
NQuoteService.wsdl">

- <message name="getPriceRequest">
  <part name="isbn" type="xsd:string" /> 
  </message>
- <message name="getPriceResponse">
  <part name="return" type="xsd:float" /> 
  </message>
- <portType name="BNQuotePortType">
- <operation name="getPrice">
  <input message="tns:getPriceRequest" 

name="getPrice" /> 
  <output message="tns:getPriceResponse" 

name="getPriceResponse" /> 
  </operation>
  </portType>

- <binding name="BNQuoteBinding" type="tns:BNQuotePortType">
  <soap:binding style="rpc" 

transport="http://schemas.xmlsoap.org/soap/http" /> 
- <operation name="getPrice">
  <soap:operation soapAction="" /> 
- <input name="getPrice">
  <soap:body use="encoded" namespace="urn:xmethods-

BNPriceCheck" 
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" /> 

  </input>
- <output name="getPriceResponse">
  <soap:body use="encoded" namespace="urn:xmethods-

BNPriceCheck" 
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" /> 

  </output>
  </operation>
  </binding>
- <service name="BNQuoteService">
  <documentation>Returns price of a book at BN.com given an ISBN 

number</documentation> 
- <port name="BNQuotePort" binding="tns:BNQuoteBinding">
  <soap:address 

location="http://services.xmethods.net:80/soap/servlet/rpcrouter
" /> 

  </port>
  </service>
  </definitions>

Data types

Port typeMessage 
type

Binding

Port



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 47Spring 2015

CORBA - WS Comparison

Aspect CORBA Web Services

Computing model Objects distribution SOAP messages exchanging

Interface definition IDL WSDL

Location transparency Object reference URI

Registry Interface repository UDDI

Service discovery Naming and trader services UDDI

Implementation language Any language with an IDL compiler Any language

Message encoding Binary format Unicode

Transport protocol GIOP/IIOP HTTP, SMTP, HTTPS and other 
transport protocols

Parameter passing By reference & by value By value

State Stateful Stateless



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 48Spring 2015

CORBA - WS Comparison (cont.)

 The differences between both technologies are due to the fact 
that they were developed for different reasons using different 
technologies.

 Web Services require less effort and cost for deployment of the 
technology components.

 A lot of work has been done to implement SOAP messaging over 
CORBA IIOP.

 WSDL can be generated from CORBA IDL and vice versa.

 CORBA and Web Services can play a complementary role.



PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 49Spring 2015

Questions?

The Optimist, The Pessimist and The Engineer:

The optimist says, “The glass is half full”.
The pessimist says, “The glass is half empty”.
The engineer says, “The glass is twice as big as it needs to be”.


	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40
	Snímek 41
	Snímek 42
	Snímek 43
	Snímek 44
	Snímek 45
	Snímek 46
	Snímek 47
	Snímek 48
	Snímek 49

