COMPUTER ORGANIZATION AND DESIGN ('zz’iff?\x

The Hardware/Software Interface

Chapter 3

Arithmetic for Computers

Arithmetic for Computers

Operations on integers
Addition and subtraction
Multiplication and division
Dealing with overflow

Floating-point real numbers
Representation and operations

Chapter 3 — Arithmetic for Computers — 2

Integer Addition

Example: 7 + 6

RIHRERE

(0) 0 ©®o0 (© 1 ()1 (1) o

Overflow if result out of range
Adding +ve and —ve operands, no overflow

Adding two +ve operands
Overflow if result sign is 1

Adding two —ve operands
Overflow if result signis 0

Chapter 3 — Arithmetic for Computers — 3

Integer Subtraction

Add negation of second operand
Example: 7 -6 =7 + (-0)
+7: 0000 0000 ... 0000 0111

—06: 1111 1111 ... 1111 1010
+1: 0000 0000 ... 0000 0001

Overflow if result out of range
Subtracting two +ve or two —ve operands, no overflow

Subtracting +ve from —ve operand
Overflow if result signis 0

Subtracting —ve from +ve operand
Overflow if result sign is 1

Chapter 3 — Arithmetic for Computers — 4

Dealing with Overflow

Some languages (e.g., C) ignore overflow
Use MIPS addu, addui, subu instructions

Other languages (e.g., Ada, Fortran)
require raising an exception
Use MIPS add, add1i, sub instructions

On overflow, invoke exception handler

Save PC in exception program counter (EPC)
register

Jump to predefined handler address

mfcO (move from coprocessor reg) instruction can
retrieve EPC value, to return after corrective action

Chapter 3 — Arithmetic for Computers — 5

Arithmetic for Multimedia

Graphics and media processing operates
on vectors of 8-bit and 16-bit data

Use 64-bit adder, with partitioned carry chain
Operate on 8x8-bit, 4x16-bit, or 2x32-bit vectors
SIMD (single-instruction, multiple-data)
Saturating operations

On overflow, result is largest representable
value

c.f. 2s-complement modulo arithmetic
E.g., clipping in audio, saturation in video

Chapter 3 — Arithmetic for Computers — 6

Multiplication

Start with long-muiltiplication approach

-

multiplicand
Shift left |-—

64 bits
1000 } l

0000 N Multiplier
0000 64-bit ALU Shift right
1000 32 bits A—|

product | T 1001000 Product Control test)<
Write

64 bits

Length of product is
the sum of operand
lengths

Chapter 3 — Arithmetic for Computers — 7

Multiplication Hardware

Y i S—
Multiplier0 = 1 1. Test Multiplier0 = 0 Multiplicand
Multiplier0 Shift left |--—
! 64 bits
1a. Add multiplicand to product and
place the result in Product register Y \/ —
| _ Multiplier
64-bit ALU Shift right
\ Y
| 2. Shift the Multiplicand register left 1 bit | 32 bits
Y
| 3. Shift the Multiplier register right 1 bit | Product Control test
Write
64 bits
No: < 32 repetitions

32nd repetition?

Yes: 32 repetitions

Initially O

Chapter 3 — Arithmetic for Computers — 8

Optimized Multiplier

Perform steps in parallel: add/shift

Multiplicand
32 bits

N 4

B —

Product Shift rlqht @
Write

64 bits

One cycle per partial-product addition
That's ok, if frequency of multiplications is low

Chapter 3 — Arithmetic for Computers — 9

Faster Multiplier

Uses multiple adders
Cost/performance tradeoff

Mplier31 » Mcand Mplier30 » Mcand Mpli rzg Mcand Mplie 28 Mcand Mplier3 « Mcand Mplier2+* Mcand Mplier1 « Mcand Mplier0 » Mcand

‘,l lll,

1 bit 4~ 1 bit+4~ T t-r~ 1bit

N 4

N
32 bits

Product63 Product62 Product47..16 Producti ProductO

Can be plpellned

Several multiplication performed in parallel

Chapter 3 — Arithmetic for Computers — 10

MIPS Multiplication

Two 32-bit registers for product
HI: most-significant 32 bits
LO: least-significant 32-bits

Instructions
mult rs, rt / multu rs, rt
64-bit product in HI/LO

mfhi rd / mflo rd

Move from HI/LO to rd
Can test HI value to see if product overflows 32 bits

mul rd, rs, rt
Least-significant 32 bits of product —> rd

Chapter 3 — Arithmetic for Computers — 11

Division

quotient
dividend \

1001

1000)1001010

/" ~1000
10

divisor

101
1010
-1000

—— 10

remainder

n-bit operands yield n-bit
quotient and remainder

Check for O divisor

Long division approach

If divisor < dividend bits
1 bit in quotient, subtract

Otherwise

0 bit in quotient, bring down next
dividend bit

Restoring division

Do the subtract, and if remainder
goes < 0, add divisor back

Signed division
Divide using absolute values

Adjust sign of quotient and remainder
as required

Chapter 3 — Arithmetic for Computers — 12

i
-

\

F

1. Subtract the Divisor register from the
Remainder register and place the
result in the Remainder register

Remainder =0

Y

Test Remainder

Remainder < 0

Y

2a. Shift the Quotient register to the left,
setting the new rightmost bit to 1

\i

2b. Restore the original value by adding
the Divisor register to the Remainder
register and placing the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to 0

]

Y

3. Shift the Divisor register right 1 bit

33rd repetition?

No: < 33 repetitions

ivision Hardware

‘ Start ’

Initially divisor
in left half

—
Divisor
Shift right |--s—
64 bits

-

64-bit ALU

Remainder
Write

64 bits

SR

Quotient
Shift left

32 bits

Control ™\

test

Yes: 33 repetitions

Chapter 3 — Arithmetic for Computers — 13

Initially dividend

Division Example

Iteration Step Quotient Divisor Remainder

0 Tnitial values 0000 0010 0000 0000 0111

1: Rem = Rem - Div 0000 0010 0000 | 1110 0111

1 2b: Rem < 0 - +Div, s11 Q, Q0 = 0 | 0000 0010 0000 0000 0111

3: Shift Div right 0000 0001 0000 0000 0111

1: Rem = Rem - Div 0000 0001 0000 | 1111 0111

11 2 2b: Rem < 0 - +Div, s11 Q, Q0 = 0 | 0000 0001 0000 0000 0111
0010)0111 3: Shift Div right 0000 0000 1000 0000 0111
- 10 1: Rem = Rem - Div 0000 0000 1000 | 1111 1111

11 3 2b: Rem < 0 - +Div, s11 Q, Q0 = 0 | 0000 0000 1000 0000 0111

-10 3: shift Div right 0000 0000 0100 0000 0111

—1 1: Rem = Rem - Div 0000 0000 0100 0000 0011

4 2a: Rem 2 0 — sll Q, Q0 = 0001 0000 0100 0000 0011

3: Shift Div right 0001 0000 0010 0000 0011

n+1=4+1 1: Rem = Rem - Div 0001 0000 0010 | 0000 0001
steps s 2a: Rem 2 0 - sll Q, Q0 = 0011 0000 0010 | 0000 0001

3: Shift Div right 0011 0000 0001 0000 0001

Chapter 3 — Arithmetic for Computers — 14

Optimized Divider

Divisor

132 bits
Y

\/

32-bit ALU

-l

P

_ Shift right
Remainder Shift left
Write

64 bits

One cycle per partial-remainder subtraction

Looks a lot like a multiplier!
Same hardware can be used for both

Chapter 3 — Arithmetic for Computers — 15

Faster Division

Can'’t use parallel hardware as in multiplier
Subtraction is conditional on sign of remainder

Faster dividers (e.g. SRT devision)
generate multiple quotient bits per step

Still require multiple steps

Chapter 3 — Arithmetic for Computers — 16

MIPS Division

Use HI/LO registers for result
HI: 32-bit remainder
LO: 32-bit quotient
Instructions
div rs, rt / divu rs, rt

No overflow or divide-by-0 checking
Software must perform checks if required

Use mfhi, mflo to access result

Chapter 3 — Arithmetic for Computers — 17

Floating Point

Representation for non-integral numbers
Including very small and very large numbers

Like scientific notation
—2.34 x 1056 « normalized

+0.002 x 10 ~—— not normalized
+087.02 x 10°

In binary

+1.XXXXXXX, X 299y

Types float and doublein C

Chapter 3 — Arithmetic for Computers — 18

Floating Point Standard

Defined by IEEE Std 754-1985

Developed in response to divergence of
representations

Portability issues for scientific code
Now almost universally adopted

Two representations
Single precision (32-bit)
Double precision (64-bit)

Chapter 3 — Arithmetic for Computers — 19

IEEE Floating-Point Format

single: 8 bits single: 23 bits
double: 11 bits double: 52 bits
S| Exponent Fraction

X = (_1)S v (1 n FraCtiOn) - 2(Exponent—Bias)

S: sign bit (0 = non-negative, 1 = negative)
Normalize significand: 1.0 < |significand| < 2.0

Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)

Significand is Fraction with the “1.” restored
Exponent: excess representation: actual exponent + Bias

Ensures exponent is unsigned
Single: Bias = 127; Double: Bias = 1023

Chapter 3 — Arithmetic for Computers — 20

Single-Precision Range

Exponents 00000000 and 11111111 reserved

Smallest value

Exponent: 00000001
= actual exponent =1 - 127 = -126

Fraction: 000...00 = significand = 1.0
+1.0 x 2716 = £1.2 x 1038

Largest value

exponent: 11111110
— actual exponent = 254 — 127 = +127

Fraction: 111...11 = significand = 2.0
+2.0 x 2127 = £3 .4 x 10*38

Chapter 3 — Arithmetic for Computers — 21

Double-Precision Range

Exponents 0000...00 and 1111...11 reserved

Smallest value

Exponent: 00000000001
— actual exponent =1 — 1023 = -1022

Fraction: 000...00 = significand = 1.0
+1.0 x 271022 = £2 2 x 10308

Largest value

Exponent: 11111111110
= actual exponent = 2046 — 1023 = +1023

Fraction: 111...11 = significand = 2.0
+2.0 x 2+1023 = +1 8 x 1(*308

Chapter 3 — Arithmetic for Computers — 22

Floating-Point Precision

Relative precision
all fraction bits are significant
Single: approx 223

Equivalent to 23 x log,,2 = 23 x 0.3 = 6 decimal
digits of precision

Double: approx 2-°2

Equivalent to 52 x log,,2 = 52 x 0.3 = 16 decimal
digits of precision

Chapter 3 — Arithmetic for Computers — 23

Floating-Point Example

Represent —0.75
—0.75=(-1)1x 1.1, x 2
S =
Fraction = 1000...00,

Exponent = -1 + Bias
Single: =1 + 127 =126 = 01111110,
Double: -1 + 1023 = 1022 =01111111110,

Single: 1011111101000...00
Double: 1011111111101000...00

Chapter 3 — Arithmetic for Computers — 24

Floating-Point Example

What number is represented by the single-
precision float
1000000101000...00
S =
Fraction = 01000...00,
Exponent = 10000001, = 129
X=(=1)" % (1+.01,) x 2(129-127)
= (=1) x 1.25 x 22
=-5.0

Chapter 3 — Arithmetic for Computers — 25

Denormal Numbers
Exponent = 000...0 = hidden bit is O

X = (—1)° x (0 +Fraction)x 27

Smaller than normal numbers

allow for gradual underflow, with
diminishing precision

Denormal with fraction = 000...0

X =(=1)° x(0+0)x27°® =40.0
e

Two representations
of 0.0!

Chapter 3 — Arithmetic for Computers — 26

Infinities and NaNs
Exponent = 111...1, Fraction = 000...0

tInfinity

Can be used in subsequent calculations,
avoiding need for overflow check

Exponent = 111...1, Fraction # 000...0
Not-a-Number (NaN)

Indicates illegal or undefined result
e.qg.,0.0/0.0

Can be used in subsequent calculations

Chapter 3 — Arithmetic for Computers — 27

Floating-Point Addition

Consider a 4-digit decimal example
9.999 x 10" + 1.610 x 10"

1. Align decimal points

Shift number with smaller exponent
9.999 x 10" + 0.016 x 10’

2. Add significands
9.999 x 10" + 0.016 x 10" = 10.015 x 101

3. Normalize result & check for over/underflow
1.0015 x 102

4. Round and renormalize if necessary
1.002 x 102

Chapter 3 — Arithmetic for Computers — 28

Floating-Point Addition

Now consider a 4-digit binary example
1.000, x 2-1 + -1.110, x 22 (0.5 + —0.4375)
1. Align binary points

Shift number with smaller exponent
1.000, x 2-1 + -0.111, x 27
2. Add significands
1.000, x 2-1+-0.111, x 2-1 = 0.001, x 2~
3. Normalize result & check for over/underflow
1.000, x 24, with no over/underflow

4. Round and renormalize if necessary
1.000, x 24 (no change) = 0.0625

Chapter 3 — Arithmetic for Computers — 29

FP Adder Hardware

Much more complex than integer adder

Doing it in one clock cycle would take too
long

Much longer than integer operations
Slower clock would penalize all instructions

FP adder usually takes several cycles
Can be pipelined

Chapter 3 — Arithmetic for Computers — 30

FP Adder Hardware

Sign | Exponent

Exponent

Fraction Sign

Fraction

—+

Y

hVvd
Small ALU

\

Exponent
difference

-

i

Co 1

—

Y
(\
o

\ A

Control

Ak

| Shift right

Increment or -
decrement

Shift left or right

1 Rounding hardware

\ Y

Sign | Exponent

-

Fraction

Chapter 3 — Arithmetic for Computers — 31

Compare
exponents

Shift smaller
number right

Add

Normalize

Round

J

Step 1

Step 2

Step 3

Step 4

Floating-Point Multiplication

Consider a 4-digit decimal example
1.110 x 1070 x 9.200 x 10-°

1. Add exponents
For biased exponents, subtract bias from sum
New exponent=10+-5=5

2. Multiply significands
1.110 x 9.200 = 10.212 = 10.212 x 10°

3. Normalize result & check for over/underflow
1.0212 x 106

4. Round and renormalize if necessary
1.021 x 108

5. Determine sign of result from signs of operands
+1.021 x 108

Chapter 3 — Arithmetic for Computers — 32

Floating-Point Multiplication

Now consider a 4-digit binary example
1.000, x 2-1 x —1.110,, x 2-2 (0.5 x —0.4375)
1. Add exponents
Unbiased: -1 + -2 = -3
Biased: (-1 + 127) + (-2 + 127) = -3 + 254 — 127 = -3 + 127
2. Multiply significands
1.000, x 1.110, = 1.1102 = 1.110, x 2-3
3. Normalize result & check for over/underflow
1.110, x 273 (no change) with no over/underflow
4. Round and renormalize if necessary
1.110, x 273 (no change)
5. Determine sign: +ve x —ve = —ve
—-1.110, x 23 =-0.21875

Chapter 3 — Arithmetic for Computers — 33

FP Arithmetic Hardware

FP multiplier is of similar complexity to FP
adder

But uses a multiplier for significands instead of
an adder

FP arithmetic hardware usually does

Addition, subtraction, multiplication, division,
reciprocal, square-root

FP < integer conversion

Operations usually takes several cycles
Can be pipelined

Chapter 3 — Arithmetic for Computers — 34

FP Instructions in MIPS

FP hardware is coprocessor 1
Adjunct processor that extends the ISA

Separate FP registers
32 single-precision: $f0, $f1, ... $f31
Paired for double-precision: $f0/$f1, $f2/$f3, ...
Release 2 of MIPs ISA supports 32 x 64-bit FP reg’s
FP instructions operate only on FP registers

Programs generally don’t do integer ops on FP data,
or vice versa

More registers with minimal code-size impact
FP load and store instructions

Twcl, Tdcl, swcl, sdcl
e.g., 1dcl $f8, 32($sp)

Chapter 3 — Arithmetic for Computers — 35

FP Instructions in MIPS

Single-precision arithmetic

add.s, sub.s, mul.s, div.s
e.g.,add.s $f0, $f1, $f6

Double-precision arithmetic

add.d, sub.d, mul.d, div.d
e.g.,mul.d $f4, $f4, $f6

Single- and double-precision comparison
C.Xxx.S,c.xx.d(xxiseq, 1t, le, ...)

Sets or clears FP condition-code bit
eg.c.1t.s $f3, $f4

Branch on FP condition code true or false

bclt, bclf
e.g., bclt TargetLabel

Chapter 3 — Arithmetic for Computers — 36

FP Example: °F to °C

C code:

float f2c (float fahr) {
return ((5.0/9.0)*(fahr - 32.0));

}

fahr in $f12, result in $f0, literals in global memory
space

Compiled MIPS code:

f2c: Twcl $f16, const5($gp)
lwc2 $f18, const9($gp)
div.s $fl16, $fl6, $f18
lwcl $f18, const32($gp)
sub.s $f18, $f12, $f18
mul.s $f0, $fl6, $f18
jr $ra

Chapter 3 — Arithmetic for Computers — 37

FP Example: Array Multiplication

X=X+Yx/
All 32 x 32 matrices, 64-bit double-precision elements

C code:

void mm (double x

[1[],
double y[][], double z[][]) {
int 1, J, k;

for (1 = 0; 1! = 1 =1 + 1)
for (J =0; J! =32; 3 =73 + 1)
for (k = 0; k! = 32; k = k + 1)
x[11[3]1 = x[i1[3j]
+ y[1]1[k] * z[k][3];

Addresses of X, y, z in $a0, $a1, $a2, and
1, J, kin $s0, $s1, $s2

Chapter 3 — Arithmetic for Computers — 38

FP Example: Array Multiplication

MIPS code:
11 $tl, 32 # $tl1l = 32 (row size/loop end)
11 $s0, O # 1 = 0; initialize 1st for Tloop
L1: 11 $s1, O # 3 = 0; restart 2nd for loop
L2: 11 $s2, O # k = 0; restart 3rd for loop
s11 $t2, $s0, 5 # %$t2 =1 * 32 (size of row of x)
addu $t2, $t2, $s1 # $t2 = 1 * size(row) + jJ
s11 $t2, $t2, 3 # $t2 = byte offset of [i][j]
addu $t2, $a0, $t2 # $t2 = byte address of x[i][j]
1.d $f4, 0(%$t2) # $f4 = 8 bytes of x[i][j]
L3: s11 $t0, $s2, 5 # $t0 = k * 32 (size of row of z)
addu $t0, $t0, $s1 # $t0 = k * size(row) + j
s11 $t0, $t0, 3 # $t0 = byte offset of [k][j]
addu $t0, $a2, $t0 # $t0 = byte address of z[k][j]

1.d $f16, 0($t0) # $f16 = 8 bytes of z[k][7]

Chapter 3 — Arithmetic for Computers — 39

FP Example: Array Multiplication

sl

$t0, $s0O, 5 # $t0 = i*32 (size of row of y)
addu $tO0, $t0, $s2 # $t0 = i*size(row) + k
s11 $t0, $t0, 3 # $t0 = byte offset of [i][k]
addu $t0, $al, $tO # $t0 = byte address of y[i][k]
1.d $f18, 0($t0) # $f18 = 8 bytes of y[i][k]
mul.d $fl16, $f18, $f16 # $f16 = y[il[k] * z[k][j]
add.d $f4, $f4, $f16 # f4=x[i][j] + y[illk]l*z[k][j]
addiu $s2, $s2, 1 # %k k + 1
bne $s2, $t1, L3 # if (k !'= 32) go to L3
s.d $f4, 0($t2) # x[11[j] = $f4
addiu $s1, $s1, 1 #%3 =7+ 1
bne $s1, $tl1, L2 # if (!'= 32) go to L2
addiu $s0, $s0, 1 #% =1 +1
bne $s0, $t1, L1 # if (i !'= 32) go to L1

Chapter 3 — Arithmetic for Computers — 40

Accurate Arithmetic

IEEE Std 754 specifies additional rounding
control
Extra bits of precision (guard, round, sticky)
Choice of rounding modes

Allows programmer to fine-tune numerical behavior of
a computation

Not all FP units implement all options

Most programming languages and FP libraries just
use defaults

Trade-off between hardware complexity,
performance, and market requirements

Chapter 3 — Arithmetic for Computers — 41

Interpretation of Data

Bits have no inherent meaning

Interpretation depends on the instructions
applied

Computer representations of numbers

Finite range and precision
Need to account for this in programs

Chapter 3 — Arithmetic for Computers — 42

Associativity

Parallel programs may interleave
operations in unexpected orders

Assumptions of associativity may falil

(xty)rz x*+(y+z)

X| -1.50E+38 -1.50E+38
y| 1.50E+38 0.00E+00
Z 1.0 1.0 1.50E+38

1.00E+00 0.00E+00

Need to validate parallel programs under
varying degrees of parallelism

Chapter 3 — Arithmetic for Computers — 43

x86 FP Architecture

Originally based on 8087 FP coprocessor
8 x 80-bit extended-precision registers
Used as a push-down stack
Registers indexed from TOS: ST(0), ST(1), ...
FP values are 32-bit or 64 in memory

Converted on load/store of memory operand

Integer operands can also be converted
on load/store

Very difficult to generate and optimize code
Result: poor FP performance

Chapter 3 — Arithmetic for Computers — 44

x86 FP Instructions

Data transfer Arithmetic Compare Transcendental
FILD mem/ST(i) | FIADDF mem/ST(i) |FICOM FPATAN
FISTF mem/ST(i) | FISUB mem/ST(i) | FIUCOM F2XMI
FLDPI FIMUL® mem/ST(1) | FSTSW AX/mem | FCOS
FLD1 FIDIV:P mem/ST(i) FPTAN
FLDZ FSQRT FPREM
FABS FPSIN
FRNDINT EVL2X

Optional variations
. Integer operand
. pop operand from stack
. reverse operand order
But not all combinations allowed

Chapter 3 — Arithmetic for Computers — 45

Streaming SIMD Extension 2 (SSE2)

Adds 4 x 128-bit registers
Extended to 8 registers in AMD64/EM64 T

Can be used for multiple FP operands
2 x 64-bit double precision
4 x 32-bit single precision
Instructions operate on them simultaneously
Single-Instruction Multiple-Data

Chapter 3 — Arithmetic for Computers — 46

Right Shift and Division

Left shift by / places multiplies an integer
by 2/
Right shift divides by 2/?
Only for unsigned integers
For signed integers
Arithmetic right shift: replicate the sign bit
e.g.,—o/4

1111011, >> 2 = 11110, = -2
Rounds toward —

c.f. 11111011, >>>2 = 11110, = +62

Chapter 3 — Arithmetic for Computers — 47

Who Cares About FP Accuracy?

Important for scientific code

But for everyday consumer use?
“My bank balance is out by 0.0002¢!” ®

The Intel Pentium FDIV bug

The market expects accuracy
See Colwell, The Pentium Chronicles

Chapter 3 — Arithmetic for Computers — 48

Concluding Remarks

ISAs support arithmetic
Signed and unsigned integers
Floating-point approximation to reals
Bounded range and precision
Operations can overflow and underflow

MIPS ISA

Core instructions: 54 most frequently used
100% of SPECINT, 97% of SPECFP

Other instructions: less frequent

Chapter 3 — Arithmetic for Computers — 49

Exercises

Answer the following exercises, and send your

answers as a PDF attachment to the email address
listed below

xamiri@fi.muni.cz
Leave body of the email blank
Deadline is March 31st

Chapter 1 — Computer Abstractions and Technology — 50

Exercise 1

Calculate the product of the octal unsigned 6-bit integers A = 50 and
B = 23 using the hardware described below (adjust the register
sizes). You should show the contents of each register on each step.

-

Multiplicand

Shift left

Y

164 bits

\

64-bit ALU

_...

Multiplier

Product

Write

64 bits

Shift right
32 bits

Control test

Chapter 1 — Computer Abstractions and Technology — 51

Exercise 2

Calculate the product of the hexadecimal unsigned 8-bit integers A =
66 and B = 04 using the hardware described below (adjust the
register sizes). You should show the contents of each register on
each step.

Multiplicand

132 bits
Y

\/

32-bit ALU

D —

Product Shift rlqht
Write

64 bits

Chapter 1 — Computer Abstractions and Technology — 52

Exercise 3

Calculate A = 50 divided by B = 23 using the hardware described
below. You should show the contents of each register on each step.
Assume A and B are octal unsigned 6-bit integers (adjust the register
sizes in the hardware).

—_—
Divisor
Shift right |-—
164 bits
Y -
_/ Quotient
64-bit ALU Shift left |-.—
32 bits
Remainder Cm
Write test
64 bits

Chapter 1 — Computer Abstractions and Technology — 53

Exercise 4

Calculate A = 50 divided by B = 23 using the hardware described
below. You should show the contents of each register on each step.
Assume A and B are octal unsigned 6-bit integers (adjust the register

sizes in the hardware).

Divisor

132 bits
Y

\/

32-bit ALU

-

Remainder

Shift right
Shift left
Write

64 bits

Chapter 1 — Computer Abstractions and Technology — 54

Exercise 5

What decimal number does the following bit pattern represent if it is
a floating-point number? Use the IEEE 754 standard.

OxAFBF0000

Chapter 1 — Computer Abstractions and Technology — 55

Exercise 6

Write down the binary representation of the following decimal
number:

- 938.8125

a) assuming the IEEE 754 single precision format.
b) assuming the IEEE 754 double precision format.

Chapter 1 — Computer Abstractions and Technology — 56

Exercise 7

NVIDIA has a “half” format, which is similar to IEEE 754 except that
it is only 16 bits wide. The leftmost bit is still the sign bit, the
exponent is 5 bits wide (exponent bias = 01111, = 15), and the
mantissa is 10 bits long. A hidden 1 is assumed.

a) Calculate the sum of the following decimal numbers A and B by
hand, assuming A and B are stored in the 16-bit NVIDIA format.
Assume one guard bit, one round bit and one sticky bit, and round to
the nearest even. Show all the steps.

A =2.3109375 x 101 B =6.391601562 x 10"

b) Calculate the product of the following decimal numbers A and B
by hand, assuming A and B are stored in the 16-bit NVIDIA format.
Assume one guard bit, one round bit and one sticky bit, and round to
the nearest even. Show all the steps; however, do the multiplication
in human-readable format instead of using any techniques. Write
your answer as a 16-bit pattern. How accurate is your result?

A =6.18 x 102 B =5.796875 x 10’

Chapter 1 — Computer Abstractions and Technology — 57

