Arithmetic for Computers

Arithmetic for Computers

Operations on integers

- Addition and subtraction
- Multiplication and division
- Dealing with overflow

Floating-point real numbers

- Representation and operations

Integer Addition

Example: $7+6$

Overflow if result out of range

- Adding +ve and -ve operands, no overflow
- Adding two +ve operands
- Overflow if result sign is 1
- Adding two -ve operands

Overflow if result sign is 0

Integer Subtraction

Add negation of second operand
Example: $7-6=7+(-6)$
+7: 00000000 ... 00000111

$-6:$	$11111111 \ldots 11111010$
$+1:$	$00000000 \ldots 0000001$

Overflow if result out of range

- Subtracting two +ve or two -ve operands, no overflow
- Subtracting +ve from -ve operand
- Overflow if result sign is 0
- Subtracting -ve from +ve operand
- Overflow if result sign is 1

Dealing with Overflow

Some languages (e.g., C) ignore overflow

- Use MIPS addu, addui, subu instructions

Other languages (e.g., Ada, Fortran) require raising an exception

- Use MIPS add, addi, sub instructions
- On overflow, invoke exception handler

Save PC in exception program counter (EPC) register
Jump to predefined handler address mfc 0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic for Multimedia

Graphics and media processing operates on vectors of 8 -bit and 16 -bit data

- Use 64-bit adder, with partitioned carry chain

Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors

- SIMD (single-instruction, multiple-data)

Saturating operations

- On overflow, result is largest representable value
c.f. 2s-complement modulo arithmetic
- E.g., clipping in audio, saturation in video

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Chapter 3 - Arithmetic for Computers - 7

Multiplication Hardware

Chapter 3 - Arithmetic for Computers - 8

Optimized Multiplier

Perform steps in parallel: add/shift

One cycle per partial-product addition

- That's ok, if frequency of multiplications is low

Faster Multiplier

Uses multiple adders

- Cost/performance tradeoff

- Can be pipelined
- Several multiplication performed in parallel

Chapter 3 - Arithmetic for Computers - 10

MIPS Multiplication

Two 32-bit registers for product

- HI: most-significant 32 bits
- LO: least-significant 32-bits

Instructions

- mu7t rs, rt / mu7tu rs, rt
- 64-bit product in HI/LO
- mfhi rd / mflo rd
- Move from HI/LO to rd
- Can test HI value to see if product overflows 32 bits
- mul rd, rs, rt
- Least-significant 32 bits of product -> rd

Division

n-bit operands yield n-bit quotient and remainder

Check for 0 divisor

Long division approach

- If divisor \leq dividend bits
- 1 bit in quotient, subtract
- Otherwise
- 0 bit in quotient, bring down next dividend bit
Restoring division
- Do the subtract, and if remainder goes < 0, add divisor back
Signed division
- Divide using absolute values
- Adjust sign of quotient and remainder as required

Division Hardware

Chapter 3 - Arithmetic for Computers - 13

Division Example

	Iteration	Step	Quotient	Divisor	Remainder
	0	Initial values	0000	00100000	00000111
		1: Rem = Rem - Div	0000	00100000	11100111
	1	2b: Rem < $0 \rightarrow+$ Div, sll $\mathrm{Q}, \mathrm{Q} 0=0$	0000	00100000	00000111
		3: Shift Div right	0000	00010000	00000111
		1: Rem = Rem - Div	0000	00010000	11110111
11	2	2b: Rem < $0 \rightarrow+$ Div, sll $\mathrm{Q}, \mathrm{Q} 0=0$	0000	00010000	00000111
$\begin{array}{r} 0010 \lcm{0111} \\ -\frac{10}{11} \\ -10 \end{array}$		3: Shift Div right	0000	00001000	00000111
		1: Rem = Rem - Div	0000	00001000	11111111
	3	2b: Rem < $0 \rightarrow+$ Div, sll $\mathrm{Q}, \mathrm{Q} 0=0$	0000	00001000	00000111
		3: Shift Div right	0000	00000100	00000111
		1: Rem = Rem - Div	0000	00000100	$\underline{0} 0000011$
	4	2a: Rem $\geq 0 \rightarrow$ sll $2, Q 0=1$	0001	00000100	00000011
		3: Shift Div right	0001	00000010	00000011
$\begin{gathered} \mathrm{n}+1=4+1 \\ \text { steps } \end{gathered}$		1: Rem = Rem - Div	0001	00000010	$\underline{0} 0000001$
		2a: Rem $\geq 0 \rightarrow$ sll $\mathrm{Q}, \mathrm{Q} 0=1$	0011	00000010	00000001
		3: Shift Div right	0011	00000001	00000001

Chapter 3 - Arithmetic for Computers - 14

Optimized Divider

One cycle per partial-remainder subtraction Looks a lot like a multiplier!

- Same hardware can be used for both

Faster Division

Can't use parallel hardware as in multiplier

- Subtraction is conditional on sign of remainder

Faster dividers (e.g. SRT devision) generate multiple quotient bits per step

- Still require multiple steps

MIPS Division

Use HI/LO registers for result

- HI: 32-bit remainder
- LO: 32-bit quotient

Instructions

- div rs, rt / divu rs, rt
- No overflow or divide-by-0 checking

Software must perform checks if required

- Use mfhi, mflo to access result

Floating Point

Representation for non-integral numbers

- Including very small and very large numbers

Like scientific notation

- -2.34×10^{56}
- $+0.002 \times 10^{-4}$
- $+987.02 \times 10^{9}$

In binary

- $\pm 1 . x x x x x x x_{2} \times 2^{y y y y}$

Types float and double in C

Floating Point Standard

Defined by IEEE Std 754-1985
Developed in response to divergence of representations

- Portability issues for scientific code

Now almost universally adopted
Two representations

- Single precision (32-bit)
- Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits double: 11 bits	single: 23 bits double: 52 bits	
S	Exponent	Fraction

$$
x=(-1)^{s} \times(1+\text { Fraction }) \times 2^{\text {(Exponent-Bias) }}
$$

- S : sign bit ($0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative $)$

Normalize significand: $1.0 \leq \mid$ significand $\mid<2.0$

- Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
- Significand is Fraction with the "1." restored

Exponent: excess representation: actual exponent + Bias

- Ensures exponent is unsigned
- Single: Bias = 127; Double: Bias = 1023

Single-Precision Range

Exponents 00000000 and 11111111 reserved Smallest value

- Exponent: 00000001
\Rightarrow actual exponent = $1-127=-126$
- Fraction: 000... $00 \Rightarrow$ significand $=1.0$
$\pm \pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
Largest value
- exponent: 11111110
\Rightarrow actual exponent $=254-127=+127$
- Fraction: $111 \ldots 11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

Exponents 0000... 00 and 1111... 11 reserved Smallest value

- Exponent: 00000000001
\Rightarrow actual exponent $=1-1023=-1022$
- Fraction: 000... $00 \Rightarrow$ significand $=1.0$
$\pm \pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
Largest value
- Exponent: 11111111110
\Rightarrow actual exponent $=2046-1023=+1023$
- Fraction: $111 \ldots 11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

Relative precision

- all fraction bits are significant
- Single: approx 2^{-23}
- Equivalent to $23 \times \log _{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
- Double: approx 2^{-52}

Equivalent to $52 \times \log _{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

Represent -0.75

- $-0.75=(-1)^{1} \times 1.1_{2} \times 2^{-1}$
- S = 1
- Fraction $=1000 \ldots 00_{2}$
- Exponent $=-1+$ Bias
- Single: $-1+127=126=01111110_{2}$
- Double: $-1+1023=1022=01111111110_{2}$

Single: 1011111101000...00
Double: 1011111111101000...00

Floating-Point Example

What number is represented by the singleprecision float 11000000101000... 00

- $S=1$
- Fraction = 01000...002
- Exponent $=10000001_{2}=129$

$$
\begin{aligned}
\mathrm{X} & =(-1)^{1} \times\left(1+.01_{2}\right) \times 2^{(129-127)} \\
& =(-1) \times 1.25 \times 2^{2} \\
& =-5.0
\end{aligned}
$$

Denormal Numbers

Exponent $=000 \ldots 0 \Rightarrow$ hidden bit is 0

$$
x=(-1)^{s} \times(0+\text { Fraction }) \times 2^{- \text {Bias }}
$$

Smaller than normal numbers

- allow for gradual underflow, with diminishing precision

Denormal with fraction $=000$... 0

$$
\begin{gathered}
x=(-1)^{S} \times(0+0) \times 2^{- \text {Bias }}= \pm 0.0 \\
\begin{array}{c}
\text { Two representations } \\
\text { of } 0.0!
\end{array}
\end{gathered}
$$

Infinities and NaNs

Exponent $=111 \ldots 1$, Fraction $=000 \ldots 0$

- \pm Infinity
- Can be used in subsequent calculations, avoiding need for overflow check
Exponent $=111 \ldots 1$, Fraction $\neq 000 \ldots 0$
- Not-a-Number (NaN)
- Indicates illegal or undefined result
e.g., 0.0 / 0.0
- Can be used in subsequent calculations

Floating-Point Addition

Consider a 4-digit decimal example

- $9.999 \times 10^{1}+1.610 \times 10^{-1}$

1. Align decimal points

- Shift number with smaller exponent
$=9.999 \times 10^{1}+0.016 \times 10^{1}$

2. Add significands

- $9.999 \times 10^{1}+0.016 \times 10^{1}=10.015 \times 10^{1}$

3. Normalize result \& check for over/underflow

- 1.0015×10^{2}

4. Round and renormalize if necessary

- 1.002×10^{2}

Floating-Point Addition

Now consider a 4-digit binary example

- $1.000_{2} \times 2^{-1}+-1.110_{2} \times 2^{-2}(0.5+-0.4375)$

1. Align binary points

- Shift number with smaller exponent
- $1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}$

2. Add significands

- $1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}=0.001_{2} \times 2^{-1}$
- 3. Normalize result \& check for over/underflow
- $1.000_{2} \times 2^{-4}$, with no over/underflow

4. Round and renormalize if necessary

- $1.000_{2} \times 2^{-4}$ (no change) $=0.0625$

FP Adder Hardware

- Much more complex than integer adder

Doing it in one clock cycle would take too long

- Much longer than integer operations
- Slower clock would penalize all instructions

FP adder usually takes several cycles

- Can be pipelined

FP Adder Hardware

Chapter 3 - Arithmetic for Computers - 31

Floating-Point Multiplication

Consider a 4-digit decimal example

- $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$

1. Add exponents

- For biased exponents, subtract bias from sum
- New exponent $=10+-5=5$

2. Multiply significands

- $1.110 \times 9.200=10.212 \Rightarrow 10.212 \times 10^{5}$

3. Normalize result \& check for over/underflow

- 1.0212×10^{6}
- 4. Round and renormalize if necessary
- 1.021×10^{6}
- 5. Determine sign of result from signs of operands
- $+1.021 \times 10^{6}$

Floating-Point Multiplication

Now consider a 4-digit binary example

- $1.000_{2} \times 2^{-1} \times-1.110_{2} \times 2^{-2}(0.5 \times-0.4375)$

1. Add exponents

- Unbiased: $-1+-2=-3$
- Biased: $(-1+127)+(-2+127)=-3+254-127=-3+127$

2. Multiply significands

- $1.000_{2} \times 1.110_{2}=1.1102 \Rightarrow 1.110_{2} \times 2^{-3}$

3. Normalize result \& check for over/underflow

- $1.110_{2} \times 2^{-3}$ (no change) with no over/underflow

4. Round and renormalize if necessary

- $1.110_{2} \times 2^{-3}$ (no change)
- 5. Determine sign: +ve $\times-\mathrm{ve} \Rightarrow-\mathrm{ve}$
- $-1.110_{2} \times 2^{-3}=-0.21875$

FP Arithmetic Hardware

FP multiplier is of similar complexity to FP adder

- But uses a multiplier for significands instead of an adder
FP arithmetic hardware usually does
- Addition, subtraction, multiplication, division, reciprocal, square-root
- FP \leftrightarrow integer conversion

Operations usually takes several cycles

- Can be pipelined

FP Instructions in MIPS

FP hardware is coprocessor 1

- Adjunct processor that extends the ISA Separate FP registers
- 32 single-precision: \$f0, \$f1, .. \$f31
- Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...

Release 2 of MIPs ISA supports 32×64-bit FP reg's
FP instructions operate only on FP registers

- Programs generally don't do integer ops on FP data, or vice versa
- More registers with minimal code-size impact

FP load and store instructions

- 1wc1, 1dc1, swc1, sdc1
e.g., 1dc1 \$f8, 32(\$sp)

FP Instructions in MIPS

Single-precision arithmetic

- add.s, sub.s, mu7.s, div.s
e.g., add.s \$f0, \$f1, \$f6

Double-precision arithmetic

- add.d, sub.d, mu7.d, div.d
e.g., mul.d \$f4, \$f4, \$f6

Single- and double-precision comparison

- c. $x x$.s, c. $x x$.d ($x x$ is eq, $7 \mathrm{t}, 7 \mathrm{e}, \ldots$)
- Sets or clears FP condition-code bit
e.g.c.7t.s \$f3, \$f4

Branch on FP condition code true or false

- bc1t, bc1f
e.g., bc1t TargetLabe1

FP Example: ${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$

C code:

float f2c (float fahr) \{ return ((5.0/9.0)*(fahr - 32.0));
\}

- fahr in \$f12, result in \$f0, literals in global memory space
Compiled MIPS code:
f2c: 1wc1 \$f16, const5(\$gp)
1wc2 \$f18, const9(\$gp)
div.s \$f16, \$f16, \$f18

1wc1 \$f18, const32(\$gp) sub.s \$f18, \$f12, \$f18 mul.s \$f0, \$f16, \$f18 jr \$ra

FP Example: Array Multiplication

$X=X+Y \times Z$

- All 32×32 matrices, 64-bit double-precision elements

C code:
void mm (double x[][], doub7e y[][], doub7e z[][]) \{ int i, j, k;
for (i $=0 ; \mathrm{i}!=32 ; \mathrm{i}=\mathrm{i}+1$)
for ($\mathrm{j}=0 ; \mathrm{j}!=32 ; \mathrm{j}=\mathrm{j}+1$)
for (k = 0; k! = 32; k = k + 1)
$\mathrm{x}[\mathrm{i}][\mathrm{j}]=\mathrm{x}[\mathrm{i}][\mathrm{j}]$

$$
+y[i][k] * z[k][j] ;
$$

\}

- Addresses of x, y, z in $\$ a 0, \$ a 1, \$ a 2$, and $\mathrm{i}, \mathrm{j}, \mathrm{k}$ in $\$ \mathrm{~s} 0, \$ \mathrm{~s} 1, \$ \mathrm{~s} 2$

FP Example: Array Multiplication

MIPS code:

FP Example: Array Multiplication

Accurate Arithmetic

IEEE Std 754 specifies additional rounding control

- Extra bits of precision (guard, round, sticky)
- Choice of rounding modes
- Allows programmer to fine-tune numerical behavior of a computation
Not all FP units implement all options
- Most programming languages and FP libraries just use defaults
Trade-off between hardware complexity, performance, and market requirements

Interpretation of Data

Bits have no inherent meaning

- Interpretation depends on the instructions applied
Computer representations of numbers
- Finite range and precision
- Need to account for this in programs

Associativity

Parallel programs may interleave operations in unexpected orders

- Assumptions of associativity may fail

		$(x+y)+z$	$x+(y+z)$
x	$-1.50 E+38$		$-1.50 E+38$
y	$1.50 E+38$	$0.00 E+00$	
z	1.0	1.0	$1.50 E+38$
		$1.00 E+00$	$0.00 E+00$

Need to validate parallel programs under varying degrees of parallelism

x86 FP Architecture

Originally based on 8087 FP coprocessor

- 8×80-bit extended-precision registers
- Used as a push-down stack
- Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
- Converted on load/store of memory operand
- Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
- Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i)	FIADDP mem/ST(i)	FICOMP	FPATAN
FISTP mem/ST(i)	FISUBRP mem/ST(i)	FIUCOMP	F2XMI
FLDPI	FIMULP mem/sT(i)	FSTSW AX/mem	FCOS
FLD1	FIDIVRP mem/sT(i)		FPTAN
FLDZ	FSQRT		FPREM
	FABS		FPSIN
	FRNDINT		FYL2X

Optional variations

- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

Adds 4×128-bit registers

- Extended to 8 registers in AMD64/EM64T

Can be used for multiple FP operands

- 2×64-bit double precision
- 4×32-bit single precision
- Instructions operate on them simultaneously Single-Instruction Multiple-Data

Right Shift and Division

Left shift by i places multiplies an integer by 2^{i}
Right shift divides by 2^{i} ?

- Only for unsigned integers

For signed integers

- Arithmetic right shift: replicate the sign bit
- e.g., -5 / 4
- $11111011_{2} \gg 2=11111110_{2}=-2$

Rounds toward $-\infty$

- c.f. $11111011_{2} \ggg 2=00111110_{2}=+62$

Who Cares About FP Accuracy?

Important for scientific code

- But for everyday consumer use?
"My bank balance is out by $0.0002 \phi!$ " $:$
The Intel Pentium FDIV bug
- The market expects accuracy
- See Colwell, The Pentium Chronicles

Concluding Remarks

ISAs support arithmetic

- Signed and unsigned integers
- Floating-point approximation to reals

Bounded range and precision

- Operations can overflow and underflow

MIPS ISA

- Core instructions: 54 most frequently used 100% of SPECINT, 97% of SPECFP
- Other instructions: less frequent

Exercises

Answer the following exercises, and send your answers as a PDF attachment to the email address listed below
xamiri@fi.muni.cz
Leave body of the email blank
Deadline is March 31st

Exercise 1

Calculate the product of the octal unsigned 6-bit integers $A=50$ and $B=23$ using the hardware described below (adjust the register sizes). You should show the contents of each register on each step.

Exercise 2

Calculate the product of the hexadecimal unsigned 8-bit integers $\mathrm{A}=$ 66 and $B=04$ using the hardware described below (adjust the register sizes). You should show the contents of each register on each step.

Exercise 3

Calculate $A=50$ divided by $B=23$ using the hardware described below. You should show the contents of each register on each step. Assume A and B are octal unsigned 6-bit integers (adjust the register sizes in the hardware).

Exercise 4

Calculate $A=50$ divided by $B=23$ using the hardware described below. You should show the contents of each register on each step. Assume A and B are octal unsigned 6-bit integers (adjust the register sizes in the hardware).

Exercise 5

What decimal number does the following bit pattern represent if it is a floating-point number? Use the IEEE 754 standard.

0xAFBF0000

Exercise 6

Write down the binary representation of the following decimal number:

- 938.8125
a) assuming the IEEE 754 single precision format.
b) assuming the IEEE 754 double precision format.

Exercise 7

NVIDIA has a "half" format, which is similar to IEEE 754 except that it is only 16 bits wide. The leftmost bit is still the sign bit, the exponent is 5 bits wide (exponent bias $=01111_{2}=15$), and the mantissa is 10 bits long. A hidden 1 is assumed.
a) Calculate the sum of the following decimal numbers A and B by hand, assuming A and B are stored in the 16-bit NVIDIA format. Assume one guard bit, one round bit and one sticky bit, and round to the nearest even. Show all the steps.

$$
A=2.3109375 \times 10^{1} \quad B=6.391601562 \times 10^{-1}
$$

b) Calculate the product of the following decimal numbers A and B by hand, assuming A and B are stored in the 16-bit NVIDIA format. Assume one guard bit, one round bit and one sticky bit, and round to the nearest even. Show all the steps; however, do the multiplication in human-readable format instead of using any techniques. Write your answer as a 16-bit pattern. How accurate is your result?

$$
A=6.18 \times 10^{2} \quad B=5.796875 \times 10^{1}
$$

