
By Dr. Fotis Liarokapis 1

Introduction to C++ (Part I)

Welcome to the first laboratory session which will introduce you to C++.

Setting Up

First start Microsoft Visual C++. Then go to File->New Project. This will open the

project window. Then select Win32->Win32 Console Application, and enter the directory

that you want to store the source code as well as the name of source file. Select as

Tutorial 1 for the name of the directory and as tutorial 1 for the name of the source file as

shown from the figure below.

Next, follow the wizard and leave the default options as shown from the screenshots

below.

By Dr. Fotis Liarokapis 2

By Dr. Fotis Liarokapis 3

Congratulations, up not now you have created your first C++ program without writing

any code. To see what you have done, press Ctrl+F5 to execute the application. When

you do that you should get an empty MS-DOS window.

However, if you prefer to write everything from scratch you can do it! Close that

workspace by selecting File->Close Solution. Try creating a new project (File->New

Project) but in this case select General->Empty project, as shown from the screenshot

below.

Input a new directory name (call it Tutorial 1 Empty) and specify a name (call it main).

Right-click on the main solution (which can be found on the Solution Explorer) and

select the Rebuilt Solution from the drop-down menu. You should get a message like the

one shown below:

1>------ Rebuild All started: Project: main, Configuration: Debug Win32 ------

1>Deleting intermediate and output files for project 'main', configuration 'Debug|Win32'

1>main - up-to-date

========== Rebuild All: 1 succeeded, 0 failed, 0 skipped ==========

Next right-click again on the main solution and select the Add->New Item option as

shown from below.

By Dr. Fotis Liarokapis 4

Then from the menu, select C++ File (.cpp), and choose the name main again as shown

below.

By Dr. Fotis Liarokapis 5

If you try to ‘Rebuilt’ the solution, you will get an error since there is nothing included in

the main.cpp file. The next step is to add the necessary code to open the MS-DOS

window again. This can be done by typing:

int main()

{

}

Try to rebuilt and execute the application by pressing Ctrl+F5.

Now it is time to start writing some code!

Example 1: Print a String on the Screen

First include the standard C++ library (iostream) and add some comments. To include the

iostream library type the following:

#include <iostream>

using namespace std;

Note that we use cin.get() which is another function call: it reads in input and expects the

user to hit the return key. So, inside the main function type the following code:

cout<<"PHYSICS FOR COMPUTER GRAPHICS! My first C++ program!\n";

cin.get();

return 1;

Now, rebuilt and execute the solution. Change the text string to something else. You can

also try the same code in the Win32 console application.

Example 2: Get User Input

In this example we need to demonstrate how to get input from the user and print it on the

screen. One of the first things that we need to do is to define a variable, which will hold

the data. In this example, we call the variable number and declare it as integer type. The

function cin>> reads a value into number; the user must press enter before the number is

read by the program. cin.ignore() is another function that reads and discards a character.

Remember that when you type input into a program, it takes the enter key too. We don't

need this, so we throw it away.

int number;

cout<<"Please enter an interger number: ";

cin>> number;

cin.ignore();

cout<<"User has entered: "<< number <<"\n";

cin.get();

By Dr. Fotis Liarokapis 6

return 1;

Now, rebuilt and execute the solution.

Example 3: If Statements

Without a conditional statement such as the if statement, programs would run almost the

exact same way every time. If statements allow the flow of the program to be changed,

and so they allow algorithms and more interesting code. Moreover, a true statement is

one that evaluates to a nonzero number. A false statement evaluates to zero. When you

perform comparison with the relational operators, the operator will return 1 if the

comparison is true, or 0 if the comparison is false. To get a better idea type the following

code.

int age;

cout<<"Please input your age: "; // Enter the age

cin>> age; // The input is stored in age variable

cin.ignore(); // Throw away enter

if (age < 100) // If the age is less than 100

{

 cout<<"You are pretty young!\n";

}

else if (age == 100)

{

 cout<<"You are old\n";

}

else

{

cout<<"You are really old\n";// Executed if no other statement is

}

cin.get();

return 1;

Now, rebuilt and execute the solution.

