
Bayesian networks 

Příčina 

Následek 



Example 

• Topology of network encodes conditional independence 
assertions: 

 

 

 

 

 

 

• Weather is independent of the other variables 

• Toothache and Catch are conditionally independent given 
Cavity 
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Bayesian Networks 

• In the opinion of many AI researchers, Bayesian  
networks are the most significant contribution in 
AI in the last 10 years 

• They are used in many applications eg. spam 
filtering, speech recognition, robotics, diagnostic 
systems and even syndromic surveillance 

HasAnthrax 

HasCough HasFever HasDifficultyBreathing HasWideMediastinum 
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Example 
BCR subset 

CDR3 V-Gene J - Gene Mutated 



Example 

• I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary 
doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar? 

 

• Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls 

 

• Network topology reflects "causal" knowledge: 
– A burglar can set the alarm off 

– An earthquake can set the alarm off 

– The alarm can cause Mary to call 

– The alarm can cause John to call 



Example contd. 



Compactness 

• A CPT for Boolean Xi with k Boolean parents has 2k rows for the combinations of 
parent values 

 

• Each row requires one number p for Xi = true 
(the number for  Xi = false is just 1-p) 

 

• If each variable has no more than k parents, the complete network requires O(n · 
2k) numbers 

 

• I.e., grows linearly with n, vs. O(2n) for the full joint distribution 

 

• For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31) 



Semantics 

The full joint distribution is defined as the product of the local conditional 
distributions: 

 

  P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

 
 

e.g., P(j  m  a  b  e) 

 

 = P (j | a) P (m | a) P (a | b, e) P (b) P (e) 

 

 

 

n 



Constructing Bayesian networks 

• 1. Choose an ordering of variables X1, … ,Xn 

• 2. For i = 1 to n 
– add Xi to the network 

–  

– select parents from X1, … ,Xi-1 such that 

 P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1) 

 

This choice of parents guarantees: 

 

P (X1, … ,Xn)  = πi =1 P (Xi | X1, … , Xi-1) 

(chain rule) 

   = πi =1P (Xi | Parents(Xi)) 

(by construction) 

n 

n 



• Suppose we choose the ordering M, J, A, B, E 

•  

 

 

 

 

P(J | M) = P(J)? 

 

 

Example 



• Suppose we choose the ordering M, J, A, B, E 

•  

 

 

 

 

P(J | M) = P(J)? 

No 

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? 

 

 

Example 



• Suppose we choose the ordering M, J, A, B, E 

•  

 

 

 

 

P(J | M) = P(J)? 

No 

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 

P(B | A, J, M) = P(B | A)?  

P(B | A, J, M) = P(B)? 

Example 



• Suppose we choose the ordering M, J, A, B, E 
•  

 
 
 
 

P(J | M) = P(J)? 
No 
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 
P(B | A, J, M) = P(B | A)? Yes 
P(B | A, J, M) = P(B)? No 
P(E | B, A ,J, M) = P(E | A)? 
P(E | B, A, J, M) = P(E | A, B)? 

Example 



• Suppose we choose the ordering M, J, A, B, E 
•  

 
 
 
 

P(J | M) = P(J)? 
No  
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 
P(B | A, J, M) = P(B | A)? Yes 
P(B | A, J, M) = P(B)? No 
P(E | B, A ,J, M) = P(E | A)? No 
P(E | B, A, J, M) = P(E | A, B)? Yes 

Example 
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Outline 

1. Introduction 

2. Probability Primer 

3. Bayesian networks  

4. Bayesian networks in syndromic 
surveillance 
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Probability Primer: Random Variables 

• A random variable is the basic element of 
probability  

• Refers to an event and there is some 
degree of uncertainty as to the outcome of 
the event 

• For example, the random variable A could 
be the event of getting a heads on a coin 
flip 
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Boolean Random Variables 

• We will start with the simplest type of random 
variables – Boolean ones 

• Take the values true or false 

• Think of the event as occurring or not occurring 

• Examples (Let A be a Boolean random variable): 

A = Getting heads on a coin flip  

A = It will rain today 

A = The Cubs win the World Series in 2007 
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Probabilities 

The sum of the red 

and blue areas is 1 

 

 

 

 

 

 

 

 

 

 

 

 

P(A = false) 

P(A = true) 

We will write P(A = true) to mean the probability that A = true. 

What is probability?  It is the relative frequency with which an outcome would be 
obtained if the process were repeated a large number of times under similar 
conditions* 

*Ahem…there’s also the Bayesian 
definition which says probability is your 

degree of belief in an outcome 
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Conditional Probability 
• P(A = true | B = true) = Out of all the outcomes in which B 

is true, how many also have A equal to true 

• Read this as: “Probability of A conditioned on B” or 
“Probability of A given B” 

P(F = true) 

P(H = true) 

H = “Have a headache” 
F = “Coming down with Flu” 
 
P(H = true) = 1/10 
P(F = true) = 1/40 
P(H  = true | F = true) = 1/2 
 
“Headaches are rare and flu is rarer, but if 
you’re coming down with flu there’s a 50-
50 chance you’ll have a headache.” 
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The Joint Probability Distribution 

• We will write P(A = true, B = true) to mean 
“the probability of A = true and B = true” 

• Notice that: 

 P(H=true|F=true) 

region F"" of Area

region F" and H" of Area


true)P(F

true)Ftrue,P(H






In general, P(X|Y)=P(X,Y)/P(Y) 

P(F = true) 

P(H = true) 
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The Joint Probability Distribution 

• Joint probabilities can be between 
any number of variables 

 eg. P(A = true, B = true, C = true) 

• For each combination of variables, 
we need to say how probable that 
combination is 

• The probabilities of these 
combinations need to sum to 1 

A B C P(A,B,C) 

false false false 0.1 

false false true 0.2 

false true false 0.05 

false true true 0.05 

true false false 0.3 

true false true 0.1 

true true false 0.05 

true true true 0.15 

Sums to 1 
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The Joint Probability Distribution 

• Once you have the joint 
probability distribution, you can 
calculate any probability involving 
A, B, and C  

• Note: May need to use 
marginalization and Bayes rule, 
(both of which are not discussed in 
these slides) 

A B C P(A,B,C) 

false false false 0.1 

false false true 0.2 

false true false 0.05 

false true true 0.05 

true false false 0.3 

true false true 0.1 

true true false 0.05 

true true true 0.15 Examples of things you can compute: 

• P(A=true) = sum of P(A,B,C) in rows with A=true 

• P(A=true, B = true | C=true) =  

 P(A = true, B = true, C = true) / P(C = true) 
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The Problem with the Joint 
Distribution 

• Lots of entries in the 
table to fill up! 

• For k Boolean random 
variables, you need a 
table of size 2k 

• How do we use fewer 
numbers?  Need the 
concept of 
independence 

A B C P(A,B,C) 

false false false 0.1 

false false true 0.2 

false true false 0.05 

false true true 0.05 

true false false 0.3 

true false true 0.1 

true true false 0.05 

true true true 0.15 
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Independence 

Variables A and B are independent if any of 
the following hold: 

• P(A,B) = P(A) P(B) 

• P(A | B) = P(A) 

• P(B | A) = P(B) 

This says that knowing the outcome of A does not 
tell me anything new about the outcome of B. 
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Independence 

How is independence useful? 

• Suppose you have n coin flips and you want to 
calculate the joint distribution P(C1, …, Cn) 

• If the coin flips are not independent, you need 2n 
values in the table 

• If the coin flips are independent, then 

 




n

i

in CPCCP
1

1 )(),...,(
Each P(Ci) table has 2 entries and there 
are n of them for a total of 2n values 
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Conditional Independence 

Variables A and B are conditionally 
independent given C if any of the following 
hold: 

• P(A, B | C) = P(A | C) P(B | C) 

• P(A | B, C) = P(A | C) 

• P(B | A, C) = P(B | C) 

Knowing C tells me everything about B. I don’t gain anything by knowing A 
(either because A doesn’t influence B or because knowing C provides all 
the information knowing A would give) 
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Outline 

1. Introduction 

2. Probability Primer 

3. Bayesian networks  

4. Bayesian networks in syndromic 
surveillance 

 



A Bayesian Network 
A Bayesian network is made up of: 

A P(A) 

false 0.6 

true 0.4 

A 

B 

C D 

A B P(B|A) 

false false 0.01 

false true 0.99 

true false 0.7 

true true 0.3 

B C P(C|B) 

false false 0.4 

false true 0.6 

true false 0.9 

true true 0.1 

B D P(D|B) 

false false 0.02 

false true 0.98 

true false 0.05 

true true 0.95 

1. A Directed Acyclic Graph 

2. A set of tables for each node in the graph 



Shotgun proteomics 

Trained 
Model 

Test 
PSMs 

Training 
PSMs 

Probability 
Model 

Evaluation 

PSM = peptide-spectrum match 



Peptide sequence influences peak height 



Bayesian network 

• We model peptide fragmentation using a 
Bayesian network. 

• Nodes represent random variables, and 
edges represent conditional dependencies. 

• Each node stores a conditional probability 
table (CPT) giving Pr(node|parents). 

1.00 0.00 no b-ion observed 

0.75 0.25  b-ion observed 

intensity > 50% intensity < 50% 

Is b-ion 
observed? 

b-ion 
intensity 



Ion series modeled in a Markov chain 

Is b-ion 
observed? 

b-ion 
intensity 

Is b-ion 
observed? 

b-ion 
intensity 

Is b-ion 
observed? 

b-ion 
intensity 

Is b-ion 
observed? 

b-ion 
intensity 

Is b-ion 
observed? 

b-ion 
intensity 

~ PepHMM (Han et al., 2005). 



A more realistic model 

 Is b-ion 
observed? 

b-ion  
intensity 

N-term 
AA 

C-term 
 AA 

Is ion  
detectable? 

Fractional 
m/z 

Is proton 
mobile? 



Ion series modeled in a Markov chain 

 
 model nullpeptide ions,-bPr

modelpeptide ions,-bPr
logbLOR


