Profile Hidden Markov Models

Methods for Characterizing a Protein Family

- Objective: Given a number of related sequences, encapsulate what they have in common in such a way that we can recognize other members of the family.
- Some standard methods for characterization:
 - Multiple Alignments
 - Regular Expressions
 - Consensus Sequences
 - Hidden Markov Models

A Characterization Example

- ACA---ATG
- TCAACTATC
- ACAC--AGC
- AGA---ATC
- ACCG--ATC

Example borrowed from Salzberg, 1998

- How could we characterize this (hypothetical) family of nucleotide sequences?
 - Keep the Multiple Alignment
 - Try a regular expression
 [AT] [CG] [AC] [ACTG]* A [TG] [GC]
 - But what about?
 - TGCT--AGG*vrs*
 - A C A C - A T C
 - Try a consensus sequence:
 - A C A - A T C
 - Depends on distance measure

- A C A - A T G T C A A C T A T C A C A C - - A G C
- AGA---ATC
- ACCG--ATC

ACA---ATGTCAACTATCACAC--AGCAGA---AGCAGA---ATCACCG--ATC

• #1 - "T G C T - - A G G" vrs: #2 - "A C A C - - A T C"

- Regular Expression ([AT] [CG] [AC] [ACTG]* A [TG] [GC]):
 - #1 = Member #2: Member
- HMM:
 - #1 = Score of 0.0023% #2 Score of 4.7% (Probability)
 - #1 = Score of -0.97 #2 Score of 6.7 (Log odds)

Standard Profile HMM Architecture

- Three types of states:
 - Match
 - Insert
 - Delete
- One delete and one match per position in model
- One insert per transition in model
- Start and end "dummy" states

Match States

Example borrowed from Cline, 1999

Insert States

Example borrowed from Cline, 1999

Delete States

Example borrowed from Cline, 1999

Aligning and Training HMMs

- Training from a Multiple Alignment
- Aligning a sequence to a model
 - Can be used to create an alignment
 - Can be used to score a sequence
 - Can be used to interpret a sequence
- Training from unaligned sequences

Training from an existing alignment

- This process what we've been seeing up to this point.
 - Start with a predetermined number of states in your HMM.
 - For each position in the model, assign a column in the multiple alignment that is relatively conserved.
 - Emission probabilities are set according to amino acid counts in columns.
 - Transition probabilities are set according to how many sequences make use of a given delete or insert state.

Remember the simple example

- Chose six positions in model.
- Highlighted area was selected to be modeled by an insert due to variability.
- Can also do neat tricks for picking length of model, such as model pruning.

Aligning sequences to a model

- Now that we have a profile model, let's use it!
- Try every possible path through the model that would produce the target sequence
 - Keep the best one and its probability.
- Viterbi alg. has been around for a while
 - Dynamic Programming based method
 - Time: O(N*M) Space: O(N*M)
 - (Assuming a constant # of transitions per state)
 - N = Length of sequence, M = # of states in HMM

So... what do we do with an alignment to a model?

- Align a bunch of sequences to the model, and get a new multiple alignment.
- Align a single sequence to the model and get a numerical score stating how well it fits the model
 - "Find me all sequences in the database that match this family profile X with a log odds score of at least Y"
- Align a single sequence to the model, and get a description of its columns
 - "Columns 124 and 125 map to insert states of family Y, I wonder what that means?"

Training from unaligned sequences

• One method:

- Start with a model whose length matches the average length of the sequences and with random emission and transition probabilities.
- Align all the sequences to the model.
- Use the alignment to alter the emission and transition probabilities
- Repeat. Continue until the model stops changing
- By-product: It produced a multiple alignment

Training from unaligned continued

- Advantages:
 - You take full advantage of the expressiveness of your HMM.
 - You might not have a multiple alignment on hand.
- Disadvantages:
 - HMM training methods are local optimizers, you may not get the best alignment or the best model unless you're very careful.
 - Can be alleviated by starting from a logical model instead of a random one.

How do we build a model using only one sequence?

Profile HMM Effectiveness Overview

- Advantages:
 - Very expressive profiling method
 - Transparent method: You can view and interpret the model produced
 - Very effective at detecting remote homologs
- Disadvantages:
 - Slow full search on a database of 400,000 sequences can take 15 hours (not HMMER 3)
 - Have to avoid over-fitting and locally optimal models

pHMMS tools

- Tools
 - SAM
 - HMMER
- GUI
 - HMMVE
 - UGENE (plugin)
- Database
 - Pfam