T Z Y N

[— ®
Louise H. Crockett
Ross A. Elliot
Martin A. Enderwitz

TUTO R I A L S Robert W. Stewart

In iation with
association wit] M

i: Xl I_I N X ?E“Fﬁiiyr‘ifaye

ALL PROGRAMMABLE.. Glasgow

The Zynq Book
Tutorials

Louise H. Crockett
Ross A. Elliot
Martin A. Enderwitz

Robert W. Stewart

Department of Electronic and Electrical Engineering
University of Strathclyde
Glasgow, Scotland, UK

v1.2 - September 2014

Acknowledgements

There are a number of people whom we would like to thank specifically for their help and contribution of

feedback with regards to the practical tutorials.

Once again, our sincerest thanks must go to Cathal McCabe of Xilinx University Program, who has not only
provided vital feedback and support in the creation of the tutorial material, but has also coordinated the
distribution of those materials to others. Our thanks must also go to Austin Lesea and Y.C. Wang at Xilinx
for taking the time to attempt the tutorial exercises at an early stage, and for providing us with valuable
feedback and suggestions. We also greatly appreciate the support of our colleagues from University of
Strathclyde, Iain Chalmers, Sarunas Kalade, and David Northcote, who have likewise been a great help in

working through the tutorials and feeding back their experiences.

Louise Crockett, Ross Elliot, Martin Enderwitz, and Bob Stewart.

July 2014.

ii

Contents

Creating a First [P INtegrator D@SIGNeineieresinesiensesssessissssssssssssssssssessssssssssssesssss 4
Creating @ Zynq SYStem iN VIVAOeneeneienrieisiseisesseissees 10
Creating a Software Application in the SDKccnnessssnssssssssssssssssssssssssnses 20
Expanding the Basic IP INtegrator DESIGN ... eerireineeneseieiseissisesessesssessessssssssenns 32
Creating a Zynq System with INnterrupts in Vivado ... 35
Creating a Software Application iN the SDKnesessssssssssissssesssssssssenes 45
Adding @ FUITher INTEITUPT SOUICEieeeireereieiseiseieiseisessiseisssssssessssssasssssssssssesssssssssens 52
Creating Projects in VIVAdo HLS ...t ssssssissssssssssssssssssssssssssssssssassases 60
Design Optimisation in Vivado HLS ... sesescseisisessisssessessssssessssssssenss 66
INTEITACE SYNTNESIS ottt sss s s s s sssns 78
Creating IP N HDL ... eeesisiesesesessessesseasessesssssssssssssssssssssssssssassassassassssssssssss 84
Creating IP in MathWorks HDL COAET ...minnininsinnineississssessssssssssssssssssssssssssssssssssssens 103
Creating IP in VIVAdo HLS ...ttt sssssssssssssssssssssssssssssssasssssssssssssns 111
Importing IP to the Vivado IP Catalogiensinsinsinsisssssisssssssssssssssssssssssssssssssssnns 122
ZedBoard Audio in Vivado IP INtEGratoreineinsinsssinssssssssissssssssssssssssssssssssssens 129
Creating an Audio Software Application in SDKnnensrnssnsesssssissssessssenns 139

iii

iv

The Zynq Book Tutorial

First Designs on Zynq

v1.3, April 2014

Revision History

Date Version Changes

14/06/2013 1.0 First release for Vivado Design Suite version 2013.1

19/06/2013 11 Updated for changes in Vivado Design Suite version
2013.2

27/01/2014 12 Updated for changes in Vivado Design Suite version
2013.4

30/04/2014 13 Updated for changes in Vivado Design Suite version
20141

First Designs on Zynq www.zyngbook.com

v1.3, April 2014

Introduction

Introduction

This tutorial will guide you through the process of creating a first Zynq design using the Vivado™ Integrated
Development Environment (IDE), and introduce the IP Integrator environment for the generation of a
simple Zynq processor design to be implemented on the ZedBoard. The Software Development Kit (SDK)
will then be used to create a simple software application which will run on the Zynq’s ARM Processing System

(PS) to control the hardware that is implemented in the Programmable Logic (PL).
The tutorial is split into three exercises, and is organised as follows:

Exercise 1A - This exercise will guide you through the process of launching Vivado IDE and creating a

project for the first time. The various stages of the New Project Wizard will be introduced.

Exercise 1B - In this exercise, we will use the project that was created in Exercise 1A to build a simple Zynq
embedded system with the graphical tool, IP Integrator, and incorporating existing IP from the Vivado IP
Catalog. A number of design aids will be used throughout this exercise, such as the Board Automation feature
which automates the customisation of IP modules for a specified device or board; in this case we will be using
the ZedBoard Zynq Evaluation and Development Kit. The Designer Assistance feature, which assists with the

connections between the Zynq PS and the IP modules in the PL will also be demonstrated.

Once the design is finished, a number of stages will be undertaken to complete the hardware system and
generate a bitstream for implementation in the PL. The completed hardware design will then be exported to

the Software Development Kit (SDK) for the development of a simple software application in Exercise 1C.

Exercise 1C - In this short third exercise, the SDK will be introduced, and a short software application will
be created to allow the Zynq processor to interact with the IP implemented in the PL. A connection to the
hardware server that allows the SDK to communicate with the Zynq processors will be established. The
software drivers that are automatically created by the Vivado IDE for IP modules will be explored and
integrated into the software application, before finally building and executing the software application on the

ZedBoard.

NOTE: Throughout all of the practical tutorial exercise we will be using C:\Zynq_Book as the working
directory. If this is not suitable, you can substitute it for a directory of your choice, but you should be aware
that you will be required to make alterations to some source files in order for exercises to complete

successfully.

First Designs on Zynq www.zyngbook.com 3
v1.3, April 2014

Exercise 1A: Creating a First IP Integrator Design

In this exercise we will create a new project in Vivado IDE by moving through the stages of the

Vivado IDE New Project Wizard.
We will start by launching the Vivado IDE.

(@) Launch Vivado by double-clicking on the Vivado desktop icon: E:;m , or by navigating to Start
> All Programs > Xilinx Design Tools > Vivado 2014.1> Vivado 2014.1

(b) When Vivado loads, you will be presented with the Getting Started screen as in Figure 1.1.

File Flow Tools Window Help

VlVADO’ FProductivity. Multiplied. ‘: ;..xplh!-c!m%

Quick Start
p
@L E

Create New Project Open Praoject Open Example Project

Tasks

- -

Manage IP Open Hardware Manager Xilinx Td Store

Information Center

@ b @

Documentation and Tutaorials Quick Take Videos Release Motes Guide

& Td Console

Figure 1.1: Vivado IDE Getting Started Screen

First Designs on Zynq www.zyngbook.com 4
v1.3, April 2014

Exercise 1A: Creating a First IP Integrator Design

(c) Selectthe option to Create New Project and the New Project Wizard will open, as in Figure 1.2.

Create a New Vivado Project

This wizard will guide you through the creation of a new project

To areate a Vivado project you will need to provide a name and a location
for your project files. Next, you will specify the type of flow you'll be
working with, Finally, you will spedify your project sources and choose a
default part.

To continue, dick Next.

Figure 1.2: New Project Dialogue

Click Next.
(d) At the Project Name dialogue, enter first_zynq_design as the Project name and C:/
Zynq_Book as Project location.
Make sure that you select the option to Create project subdirectory. All options should be the
same as shown below:
Projectname: | first_zynq_design

Project location: | C:/Zyng_Book E]

Create project subdirectory

Click Next.
A directory named Zynq_Book will be created on your C drive if it did not already exist.
(e) At the Project Type dialogue, select RTL Project and ensure that the option Do not specify
sources at this time is not selected:
@ RTLProject

You will be able to add sources, create blodk designs in IP Integrator, generate IP, run RTL analysis,
synthesis, implementation, design planning and analysis.

[7] Do not specify sources at this time

Click Next.

(f) Select VHDL as the Target language in the Add Sources dialogue.
If existing sources, in the form of HDL or netlist files, were to be added to the project they
could be imported at this stage.

As we do not have any sources to add to the project, click Next.

First Designs on Zynq www.zyngbook.com 5
v1.3, April 2014

Exercise 1A: Creating a First IP Integrator Design

(g) The Add Existing IP (optional) dialogue will open.
If existing IP sources were to be included in the project, they could be added here.
As we do not have any existing IP to add, click Next.

(h) The Add Constraints (optional) dialogue will open.
This is the stage where any physical or timing constraints files could be added to the project.
As we do not have any constraints files to add, click Next.

(i) From the Default Part dialogue, select Boards from the Specify box and select ZedBoard Zynq
Evaluation and Development Kit from the Display Name list and All from the Board Rev list, as
shown in Figure 1.3. Select the appropriate revision for your board (in this case Rev. C has

been selected).

Default Part
Choose a default Xilinx part or board for your project. This can be changed later.

Spedfy Filter

% Parts Vendor | All

& Boards Display Name | ZedBoard Zyng Evaluation and Dev...
Board Rey | All

Reset All Filters

Search:

Display Name Vendor Board Rev Part

" ZedBoard Zynq Evaluation and Development Kit

@ 7edBoard Zyng Evaluation and Development Kit em.avnet.com d

-« I

[< Back][Next >] Finish

Figure 1.3: Default Part Dialogue Options

Click Next.

() Inthe New Project Summary dialogue, review the specified options, and click Finish to create

the project.

Now that we have created our first project in Vivado IDE, we can now move on to creating our first Zynq

embedded system design.

Before doing that, the Vivado IDE tool layout should be introduced. The default Vivado IDE environment

layout is shown in Figure 1.4 (other layouts can be chosen by selecting different perspectives).

First Designs on Zynq www.zyngbook.com 6
v1.3, April 2014

Exercise 1A: Creating a First IP Integrator Design

File Edit Wlow Tools Window Laycut Wiew Help

AR o Rl X PP WS XK TG [Soehuayou - ek | D I v Reaﬂvl
Flow MNavigator E | Project Manager - first_zyng_design X |
A= Sources | I Project Summary X | SRERG
I =
4 Project Manager L Xl i Project Settings Edit &
. N i1 Design Sources =
ﬁ Project Settings (-5 Constraints Project name: first_zynq_design
w Add Sources - Simulation Sources Product family: Zyng-7000
LF Ip catalog o sim_1 Project part: xc72020cg484-1

Top module name: Mot defined

N

IP Integrator

._]% Create Block Design
Open Block Design

Board E
Display name: ZedBoard Zyng Evaluation and Development Kit

Board name: em.avnet.com:zyng:zed:d
‘ Generate Block Design URL b dboard
: ttp: /fwww. zedboard.org
4 Simulation Board overview: 'ZedBoard is a complete development kit for designers interesfied in exploring designs using the Xilinx : Zyng-7000 All
Programmable SoC. The board contains all the necessary inte§faces and supporting functions to enable a wide range of
ﬁ Simulation Settings applications. The expandability features of the board make inggeal for rapid prototyping and proof-of-concept development.'
() Run Simulation Lbraries [ch 4 » @ o = | [Tmslementation — |3
nthes S ®
4 RTL Analysis & Sources | 7 Ten
ey Status: = Notstarted Status: = Not started
[@ Open Elaborated Design Properties)
Messages: Mo errors or warnings Messages: No errors or warnings
4 Synthesis A halind s Part: xc72020clg484-1 Part: xc72020clg484-1
Strategy: Vivado Synthesis Defaults Strategy: Vivado Implementation Defaults

ﬁ Synthefis Settings

D Run Syhthesis Incremental Compile: MNone

> [Open Ynthesized Desig Routs Status |
4 Implementatiory DRC Violations E3 Timing FS
% Implemntation Settings
[Run Implementation DRC information is not available because it hasn't been run Timing information is not available because it hasn't been run
3 W’ Open Ihplemented Desig
Utilization S Power ES

[N

Program and Dgbug
ﬁ Bitstregm Settings
ﬁ Generake Bitstream =

[i?‘ Open Hardware Manage|

Part Constraints Strategy A Status Progress
B LauncrjvpacT

xc7z020clg484-1 constrs_1 Vivado Synthesis Defaults)(Vivado Synthesis 2013) Mot started 0%
xc7z020clg484-1 constrs_1 Vivado Implementation Defiaults (Vivado Implementation 2013) Not started 0%

m | =]

5 6 7 8

Figure 1.4: Vivado IDE Environment Layout

With reference to the numbered labels in Figure 1.4, the main components of the Vivado IDE environment

are:

1. Menu Bar - The main access bar gives access to the Vivado IDE commands.
2. Main Toolbar - The main toolbar provides easy access to the most commonly used Vivado IDE

commands. Tooltips that provide information for each command on the toolbar can be accessed

First Designs on Zynq www.zyngbook.com 7
v1.3, April 2014

Exercise 1A: Creating a First IP Integrator Design

by hovering the mouse pointer over the corresponding button, as shown in Figure 1.5.

%‘ B> {’ﬂ % ‘E% E % | ES Default Layout
Run Synthesis (F11)
Run synthesis on your project source files.

£

Figure 1.5: Toolbar tooltips

3. Workspace - The workspace provides a larger area for panels which require a greater screen

space and those with a graphical interface, such as:
o Schematic panel
o Device panel
o Package panel
o Text editor panel
4. Project Status Bar - The project status bar displays the status of the currently active design.

5. Flow Navigator - The Flow Navigator provides easy access to the tools and commands that are
necessary to guide your design from start to finish, starting in the Project Manager section with
design entry and ending with bitstream generation in the Program and Debug section. Run
commands are available in the Simulation, Synthesis and Implementation sections to simulate,

synthesise and implement the active design.

6. Data Windows Pane -The Data Windows pane, by default, displays information that relates to

design data and sources, including:
o Properties window - Shows information about selected logic objects or device resources.
o Netlist window - Provides a hierarchical view of the synthesised or elaborated logic design.
o Sources window - Shows IP Sources, Hierarchy, Libraries and Compile Order views.
7. Status Bar - The status bar displays a variety of information, including:

o Detailed information regarding menu bar and toolbar commands will be shown in the lower

left side of the status bar when the command is accessed.

« When hovering over an object in the Schematic window with the mouse pointer, the object

details appear in the status bar.

o During constraint and placement creation in the Device and Package windows, validity and

constraint type will be shown on the left side of the status bar. Site coordinates and type will

First Designs on Zynq www.zyngbook.com 8
v1.3, April 2014

Exercise 1A: Creating a First IP Integrator Design

be shown in the right side.

« The task progress of a running task will be relocated to the right side of the status bar when

the Background button is selected.

8. Results Window Area -The Results Window displays the status and results of commands in a set
of windows grouped in the bottom of the Vivado IDE environment. As commands progress,
messages are generated and log files and reports are created. The related information is shown

here. The default windows are:
o Messages - Displays all messages for the active design.

o Tcl Console - Tcl commands can be entered here an a history of previous commands and

outputs are also available.
o Reports - Quick access is provided to the reports generated throughout the design flow.

+ Log -Displays the log files generated by the simulation, synthesis and implementation

processes.
o Design Runs -Manages runs for the current project.

Additional windows that can appear in this area as required are: Find Results window, Timing

Results window and Package Pins window.

With the layout of the Vivado IDE environment introduced, we can now move on to creating the Zynq

system.

First Designs on Zynq www.zyngbook.com 9
v1.3, April 2014

Exercise 1B: Creating a Zynq System in Vivado

Creating a Zynq System in Vivado

In this exercise we will be create a simple Zynq embedded system which implements a General
Purpose Input/Output (GPIO) controller in the PL of the Zynq device on the ZedBoard. The GPIO
controller will connect to the LEDs. It will also be connected to the Zynq processor via an AXI bus
connection, allowing the LEDs to be controlled by a software application which we will create in

Exercise 1C.

A graphical representation of the Zynq embedded design is provided in Figure 1.6.

/,/-AXI Connection

Zynq

PS AXI GPIO

Zynq PL
Development Board “LEDs

Figure 1.6: Zynq Embedded Design for Exercise 1B

We will begin by creating a new Block Design in Vivado IDE.

(@) Inthe Flow Navigator window, select Create Block Design from the IP Integrator section, as in

Figure 1.7:

Flow Mavigator “

=
g B

|4 Project Manager
{3 Project Settings
ﬁ Add Sources
L F 1P Catalog

4 [P Integrator
ﬁ Create Block Design

inn
Create Block Design
Create and add an IP subsystem to the project

Figure 1.7: Creating a new Block Design in Flow Navigator

First Designs on Zynq www.zyngbook.com 10
v1.3, April 2014

Exercise 1B: Creating a Zynq System in Vivado

The Create Block Design dialogue will open.

(b) Enter first_zynq_system in the Design name box, as in Figure 1.8:
rﬁ”_ Create Block Design ﬁ1

W':, Please specify name of block design

Design name: | first_zyng_system

[oK] [Cancel

Figure 1.8: Create Block Design dialogue
Click OK. The Vivado IP Integrator Diagram canvas will open in the Workspace.
The first block that we will add to our design will be a Zynq Processing System.

(c) Inthe Vivado IP Integrator Diagram canvas, right-click anywhere and select Add IP, as in Figure

1.9.
Ctrl+E
Delete
Ctrl+C
Ctrl+V
b Select All Ctrl+&
2 Addip.. Ctrl+I
¥ Validate Design Fé
Create Hierarchy...
Create Comment
Create Port... Ctrl+K
Create Interface Port... Ctrl+L
@ Regenerate Layout
™ Saveas PDFFile..

Figure 1.9: Add IP Option

Alternatively, select the Add IP option from the information message at the top of the canvas,

shown in Figure 1.10.

o Diagram X

#[]| 4, first_zyng_system

a8 \E} This design is empty. To get smrted,-.ﬂ.dd IF ffrom the catalog.

Figure 1.10: Add IP option in IP Integrator canvas information message

First Designs on Zynq www.zyngbook.com 11
v1.3, April 2014

Exercise 1B: Creating a Zynq System in Vivado

The pop-up IP Catalog window will open, as in Figure 1.11.

Search: |
A1
Name VLNV

{F 3GPP LTE Channel Estimator wilimx. comzipslte_... =
{F 3GPP LTE MIMO Decoder xilimx. com:ip:lte_...

{F 3GPP LTE MIMO Encoder wilim. comzipelte ... [=
{F 3GPPLTE Turbo Encoder xilime. com:iprtoc_. ..

{F 3GPP Mixed Mode Turbo Decoder xilimx.comiipstec ...
iF 3GPP Turbo Encoder xilime. com:iprtoc_. ..

{F Accumulator ilimx. comzipic_a...

{F Adder/Subtracter xilinx, com:ip:c_a...

{F AHB-Lite to AXI Bridge xilimx. com:ip:ahbl. ..

{F AXI-Stream FIFO xilinx. com:zip:axi_...

{F AXI4-Stream Accelerator Adapter xilinx. com:ip:axis. ..

{F AXI4-Stream Broadcaster xilime. com:ip:axis. ..

{F AXI14-Stream Clock Converter wilime. com:ip:axis. ..

{F AXI4-Stream Combiner wilime. com:ip:axis. ..

{F AXI4-Stream Data FIFO wilime. com:ip:axis. ..

{F AXI4-Stream Data Width Conv... xilinx.com:ip:axis...

{F AXI4-Stream Interconnect xilime. com:ip:axis...

{F AXI4-Stream Protocol Chedker wilime. com:ip:axis. ..

{F AXI4-Stream Register Slice xilime. com:ip:axis...

{F AXI4-Stream Subset Converter xilinx.com:ip:axis...

{F AXI4-Stream Switch xilime. com:ip:axis...

{F AXI4-Stream to Video Qut wilim.comiipsv_a.. _
{F AXI AHBLite Bridge xilimx. com:ipraxi_. ..]
Select and press ENTER. or drag and drop, ESC to cancel

Figure 1.11: Pop-up IP Catalog Window

(d) Enter zyngq in the search field and select the ZYNQZ Processing System, as shown in Figure
1.12, and press the Enter key on your keyboard.

Search: Zyng (2 matches)

&1

Mame VLNV

b comapiproc...

{F ZYNQ7 Processing System BFM xdlinx. com:ip:proc. ..
Figure 1.12: Adding ZYNQ?7 Processing System from IP

You should see a similar message to the following in the Tc/ Console window to confirm that
the processing system has indeed been configured correctly:

create_bd_cell -type ip -vlnv xilinx.com:ip:processing_system7:5.4
processing_system7_0

Messages like this will be displayed in the Tcl/ Console window for all actions carried out on IP

Integrator blocks.

The next step is to connect the DDR and FIXED_IO interface ports on the Zynq PS to the top-level

interface ports on the design.

First Designs on Zynq www.zyngbook.com 12
v1.3, April 2014

Exercise 1B: Creating a Zynq System in Vivado

(e) Clickthe Run Block Automation option from the Designer Assistance message at the top of the

Diagram window and select /processing_system7_0, as shown in Figure 1.13.

Ic Diagram % | B Address Editor X

#[|| # first_zyng_system

Oy I_a Designer Assistance available. Run Block Automation

. iF /processing_system7_0

Figure 1.13: Run Block Automation - Processing System

You should notice that the selected item, in this case the ZYNQ7 Processing System, is
highlighted in green.

Select OK, to generate the external connections for both the DDR and FIXED_IO interfaces,
ensuring that the option to Apply Board Preset is selected.

Your block diagram should now resemble Figure 1.14.

processing_system7_0

i ™

DDR - ||f====={"> DDR
FIXED_1O 4 || ™ FIXED_IO

USBIND_0<- |||

A M_AXL_GPO- |||

M_AXI_GPO_ACLK TTCO_WAVED_OUT =
B ZYNQ TTCO_WAVEL_OUT k=
TTCO_WAVE2_OUT =

FCLK_CLKO =

FCLK_RESETO_N =

b -
ZYNQ7Y Processing System

Figure 1.14: ZYNQ?7 Processing System External Connections

As we are using the ZedBoard platform, and we specified this when creating the project,

Vivado will configure the Zynq processor block accordingly.

Now that the main Zynq PS has been added to our design and configured, we can now add further
blocks which will be placed in the PL to add functionality to the system. In this case we will only

be adding a single block, AXI GPIO, to allow us to access the LEDs on the ZedBoard.

(f) Right-click in an empty area of the Diagram window and select Add IP. Enter GPIO in the
search field and add an instance of the AXI GPIO IP.

First Designs on Zynq www.zyngbook.com 13
v1.3, April 2014

Exercise 1B: Creating a Zynq System in Vivado

We will now use the IP Integrator Designer Assistance tool to automate the connection of the AXI

GPIO block to the ZYNQ7 Processing System.

(g) Click Run Connection Automation from the Designer Assistance message at the top of the

Diagram window and select /axi_gpio_0/S_AXI, as shown Figure 1.15.

hl

L{

A

Ic Diagram % | B Address Editor X

& first_zyng_system

i
i

Oy L.‘& Designer Assistance available. Run Connection Automation

Saxi_gpio_0/5_AXT
Saxi_gpio_0/GPIO

Figure 1.15: Run Block Automation - GPIO

This will automate the process of connecting the GPIO to an AXI port, and will automatically

instantiate two further IP blocks:

+ Processor System Reset Module - This provides customised resets for an entire

processing system, including the peripherals, interconnect and the processor itself.

« AXl Interconnect - Provides an AXl interconnect for the system, allowing further IP and

peripherals in the PL to communicate with the main processing system.

Leave the option for Clock Connection (for unconnected clks) to Auto, and Click OK.

All connections between the blocks should be made automatically.

One final connection is required to connect the AXI GPIO block to the LEDs on the ZedBoard. This

can also be completed using Designer Assistance.

First Designs on Zynq
v1.3, April 2014

www.zyngbook.com

14

Exercise 1B: Creating a Zynq System in Vivado

(h) Click Run Connection Automation from the Designer Automation message at the top of the

Diagram window and select /axi_gpio_0/GPIO.

The Run Connection Automation dialogue will open, as in Figure 1.16.

. ':, Connect Board Part Interface to IP interface: faxi_apio_0/GPIO

Select Board Part Interface: | LEDs_SBits «
LEDs_8Bits
SWs_8Bits
Custom

Figure 1.16: Run Connection Automation Dialogue - GPIO

Select LEDs_8Bits from the drop-down menu, and click OK.
The gpio interface of the AXI GPIO block will automatically be connected to the LEDs on the
ZedBoard.

(i) Click the Regenerate Layout % button to tidy up the design schematic. Your complete

design should resemble Figure 1.17.

processing_system7_0_axi_periph

o+
rst_processing_system?7_0_100M e | = 500_AXT
ACLK
slowest_sync_clk mb_reset ARESETN * axi_gpio_0
ext_reset_in bus_struct_reset[0:0] S00_ACLK MOO_AXI - s - 25001
—laux_reset_in eripheral_reset[0:0 7 = d i
reset | peripheral_reset[0:0] jsw_ARESETN _axi_aclk GPIO 4 || 3, leds_8bits
=mb_debug sys rst interconnect_aresetn[0:0] MOO_ACLK ‘ I eaein -
={dcm_locked perhera_anesetn[ﬂ:ﬂ]J; I“""_ﬁREETN _axi_
- AXI GPIO
Processor System Reset
AXI Interconnect
processing_system7_0
DDR < (|} DDR
FIXED_10 ||} FIXED_IO
ussIND_04- |||
- M_AXI_GPO < ||t

M_AXI GPO_ACLK ZYNQ TTCO_WAVED_QUT

N TTCO_WAVEL OUT

TTCO_WAVEZ_OUT

FCLK_CLKOD —

FCLK_RESETO_N

ZYNQ7 Processing System

Figure 1.17: Zynq Processor System

The positions of the individual IP blocks in your design may vary slightly from Figure 1.17, but

the blocks and their connections should be the same.

IP Integrator will automatically assign a memory map for all IP that is present in the design. We will
not be changing the memory map in this tutorial, but for future reference we will take a look at

the Address Editor.

First Designs on Zynq www.zyngbook.com 15
v1.3, April 2014

Exercise 1B: Creating a Zynq System in Vivado

(j) Select the Address Editor tab from the top of the Workspace window, as shown in Figure 1.18,

and expand the Data group.

ZaDiagram ¥ | B Address Editor X

Q.| cal Interface Pin Base Mame Offset Address HRange High Address
::K_:,' --4F processing_system7_0

— -) Data (32 address bits : 4G

o H— axi_gpio_0 5_ANI Reg 0x41200000 &4 - O0x4120FFFF

[

Figure 1.18: Address Editor Tab

You can see that IP Integrator has already assigned a memory map (the mapping of specific
sections of memory to the memory-mapped registers of the IP blocks in the PL) to the to the

AXI GPIO interface, and that it has a range of 64K.

Now that our system is complete, we must first validate the design before generating the HDL

design files.

(k) Save your design by selecting File > Save Block Design from the Menu Bar.

(I) Validate the design by selecting Tools > Validate Design from the Menu Bar. This will run a
Design-Rule-Check (DRC).
Alternatively, select the Validate Design button, [}, from the Main Toolbar, or right-cick
anywhere in the Diagram canvas and select Validate Design.

(m) A Validate Design dialogue should appear to confirm that validation of the design was

successful. Click OK, to dismiss the message.

With the design successfully validated, we can now move on to generating the HDL design files

for the system.

(n) Switch to the Sources Tab by selecting Window > Sources from the Menu Bar.

First Designs on Zynq www.zyngbook.com 16
v1.3, April 2014

Exercise 1B: Creating a Zynq System in Vivado

(o) Still in the Sources window, right-click on the top-level system design, which in this case is

first_zynq_system, and select Create HDL Wrapper, as shown in Figure 1.19.

Sources — O @ =
L
A== 2k RI|E

Source Node Properties... Ctrl+E
* Open File Alt+0

Create HDL Wrapper...

Wiewy Jnet--*iatine 7=

Figure 1.19: Create HDL Wrapper

The Create HDL Wrapper dialogue window will open. Select Let Vivado manage wrapper and

auto-update, and click OK.

This will generate the top level HDL wrapper for our system.

All of the source files for the IP blocks that were used in the IP Integrator block diagram, as well
as any relevant constraints files, will be generated during the synthesis process. As we
specified VHDL as the target language when creating the project in Exercise 1A, all generated

source files will be VHDL.

With all HDL design files generated, the next step in Vivado is to implement our design and

generate a bitstream file.

(p) In Flow Navigator, click Generate Bitstream from the Program and Debug section.
If a dialogue window appears prompting you to save your design, click Save.

(g) A dialogue window will open requesting that you launch synthesis and implementation
before starting the Generate Bitstream process. Click Yes to accept.
The combination of running the synthesis, implementation and bitstream generation
processes back-to-back may take a few minutes, depending on the power of your computer

system.

First Designs on Zynq www.zyngbook.com 17
v1.3, April 2014

Exercise 1B: Creating a Zynq System in Vivado

(r) Once the bitstream generation is complete a dialogue window will open to inform you that

the process has been completed successfully, as in Figure 1.20.

P -
Bitstream Generation Completed Iﬁ

I'o'l Bitstream Generation successfully completed.

Mext

@ Dpen Implemented Desigr

View Reports
Open Hardware Session

Launch iMPACT

Don't show this dialog again

[Ok]| Cancel |

L

Figure 1.20: Bitstream Generation Completion Dialogue Window

Select Open Implemented Design, and click OK.
At this point you will be presented with the Device view, where you can see the PL resources

which are utilised by the design.

With the bitstream generation complete, the building of the hardware image is complete. It must
now be exported to a software environment where we will build a software application to control

and interact with the custom hardware.

The final step in Vivado is to export the design to the SDK, where we will create the software

application that will allow the Zynq PS to control the LEDs on the ZedBoard.

(s) Select File > Export > Export Hardware for SDK... from the Menu Batr.

First Designs on Zynq www.zyngbook.com 18
v1.3, April 2014

Exercise 1B: Creating a Zynq System in Vivado

(t) The Export Hardware for SDK dialogue window will open. Ensure that the options to Include

bitstream and Launch SDK are selected, as in Figure 1.21, and click OK.

-~

ﬁl*"_ Export Hardware for SDK Iﬁ
il

,'0‘, Export hardware platform for SDK.

Options
Source: 3, first_zyng_system.bd =
Export to: | B0 <Local to Project= - |
Workspace: | B0 <Local to Project -

Export Hardware

Include bitstream (Mote: an implemented design must be loaded)

[oK] I Cancel

Figure 1.21: Export Hardware for SDK

NOTE: For the option to Include bitstream to be enabled, an implemented design must be

active. This is the reason that we opened the implemented design in Step (r).

This concludes the steps that are required in Vivado IDE. All hardware components of the system
have been configured and generated. In the next exercise we will move on to creating a simple

software component which will control the system.

First Designs on Zynq www.zyngbook.com 19
v1.3, April 2014

Exercise 1C: Creating a Software Application in the SDK

In this exercise we will create a simple software application which will control the LEDs on the
ZedBoard. The software application will run on the Zynq processing system and communicate
with the AXI GPIO block which isimplemented in the PL. We will take a look at the software drivers
that are created by IP Integrator, for each of the IP modules, before building and executing the

software on the ZedBoard.

The SDK should have opened after the conclusion of Exercise 1B. If it did not open, you can open
the SDK by navigating to Start > All Programs > Xilinx Design Tools > Vivado 2014.1 > Xilinx
SDK 2014.1
When launching the SDK from the start menu, you will need to specify the workspace that was
created when the Vivado IP Integrator design was exported in Exercise 1B. It should be:
C:\Zynq_Book\first_zynq_design\first_zynq_design.sdk\SDK\SDK_Export

Enter this in the Workspace field of the Workspace Launcher dialogue window, as shown in Figure
1.22.

Workspace Launc (e S

Select a workspace

Xilinx 50K stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session,

Workspace: C\Zynq_Book\first_zyng_designfirst_zynq_design.sdk\SDK\SDE_Export -

¢ Copy Settings

{?:1 [QK] I Cancel

Figure 1.22: SDK Workspace Launcher Dialogue Window

With the SDK open, we can begin the creation of our software application.

(@) Select File > New > Application Project from the Menu bar.

First Designs on Zynq www.zyngbook.com 20
v1.3, April 2014

Exercise 1C: Creating a Software Application in the SDK

(b) The New Project dialogue window will open. Enter LED_test in the Project name field, as shown

in Figure 1.23, keeping all other options with the default settings. Click Next.
r MNew Project L@ér

Application Project .
Create a managed make application project. \&

Project name: LED_test|

Use default location

C\Zynqg_Book\first_zynq_design\first_zyng_desic Browse...
default

Target Hardware
Hardware Platform ’hw_platform_ﬂ v]
Processor ’ ps7_cortexad 0 -]
Target Software
05 Platform ’standalone v]
Language @C ©C++

Board Support Package @ Create New LED_test_bsp

Use existing

@ <gack | Net> |[Fnsh][Cancel |

Figure 1.23: New Application Project Dialogue

(c) At the New Project Templates screen, select Empty Application, as in Figure 1.24, and click

Finish to create the project.

Templates

Create one of the available templates to generate a fully-
functioning application project.

Available Templates:

Peripheral Tests A blank C project.

Dhrystone

Hello World

IwIP Echo Server

Memory Tests

RSA Authentication App

SREC Bootloader

Kilkernel POSLX Threads Demo
Zyng DRAM tests

Zyng FSBL

Figure 1.24: New Project Template Dialogue

NOTE: the new project should open automatically. If it doesn’t, you may need to close the

Welcome tab in order to view the project.

First Designs on Zynq www.zyngbook.com 21
v1.3, April 2014

Exercise 1C: Creating a Software Application in the SDK

With the new Application Project created, we can now import some pre-prepared source code for

the application.

(d) Inthe Project Explorer panel, expand LED_test and highlight the src directory. Right-click and

select Import..., as shown in Figure 1.25.

[{ Project Explorer &3 =8
Eg|v~
s E hw_platform_0
a =% LED test
» [Includes

» |22 SIC|
> [l LED te New D

Go Into

Open in New Window

Copy Ctrl+C

Em"

Paste Ctrl+V

¥ Delete Delete
Source 4
Move...

Rename... F2

Import...
Export...

C.

Figure 1.25: Import Source Files to Project

(e) The Import window will open. Expand the General option and highlight File System, as in
Figure 1.26, and click Next.

Select
- \‘
Imnport resources from the local file systern into an existing I E 5 I
project.
Select an import source:

type filter text

4 [= General
@ Archive File
= Existing Projects into Workspace
[, File System
=, Preferences
s CIC++
» = Install
+ [Remote Systems
+ = Run/Debug
= Team

Figure 1.26: Import File System

First Designs on Zynq www.zyngbook.com 22
v1.3, April 2014

Exercise 1C: Creating a Software Application in the SDK

(f) Inthe Import File System window, click the Browse... button.

(g) Navigate to the directory: C:\Zynq_Book\sources\first_zynq_design and click OK.
(h) Select the file LED_test_tut_1C.c, as shown in Figure 1.27, and click Finish.
File system

Import resources from the local file system,

From directory: Ch\Zyng_Book\sources\first_zynq_design

(= first_zynq_design [£] LED test_tut 1C.c

| Filter Types... | [SelectAll || DeselectAll |

Into folder: LED_test/src

Options

["] Overwrite existing resources without warning
[T] Create top-level folder

Next > [Fnish || Cancel

Figure 1.27: Import C Source File

The C source file will be imported and the project should automatically build. You should see

a similar message to Figure 1.28 in the Console window.

[L Problems | 4 Tasks | Bl Conscle &3 E Properties | & Terminal L 9 | aE A _;|| By =0
CDT Build Conscle [LED test]

12:@4:12 **** pytc Build of configuration Debug for project LED _test *%%*

make all

"Building file: ../src/LED_test tut 1C.c'

"Invocking: ARM gcc compiler’

arm-xilinx-eabi-gcc -Wall -08 -g3 -c -fmessage-length=8 -I../../LED_test_bsp/ps7_cortexa? 8/include

-MMD -MP -MF"src/LED_test_tut 1C.d" -MT"src/LED_test tut_1C.d"™ -o “src/LED_test_tut 1C.o"
"..fsrc/LED test tut 1C.c"
'Finished building: ../src/LED_test tut_ 1C.c'
'Building target: LED_test.elf’
"Invoking: ARM gcc linker'
arm-xilinx-eabi-gcc -Wl,-T -Wl,../src/lscript.1ld -L../../LED_test_bsp/ps7_cortexa? @/lib -o
"LED_test.elf" ./src/LED_test_tut_1C.c -Wl,--start-group,-lxil,-lgcc,-lc,--end-group
'Finished building target: LED test.elf’
"Invoking: ARM Print Size'’
arm-xilinx-eabi-size LED test.elf |tee "LED test.elf.size"
text data bss dec hex filename
23954 1128 20812 54896 d678 LED _test.elf
'Finished building: LED_test.elf.size'

12:84:13 Build Finished (tock 891ms)

Figure 1.28: Build Finished Console Message

First Designs on Zynq www.zyngbook.com 23
v1.3, April 2014

Exercise 1C: Creating a Software Application in the SDK

(i) Open the imported source file by expanding the src folder and double-clicking on

LED_test_tut_1C.c, and explore the code.

Note the command XGpio_Initialize(&Gpio, GPIO_DEVICE_ID); This is a function provided
by the GPIO device driver in the file xgpio.h. It initialises the XGpio instance, Gpio, with the

unique ID of the device specified by GP10_DEVICE_ID.

If you look toward the top of the source file you will see that GP10_DEVICE_ID is defined as
XPAR_AXI_GPIO_@_DEVICE_ID. The value of XPAR_AXI_GPIO_©_DEVICE_ID can be found by
opening the file, xparameters.h, which is automatically generated by Vivado IDE when
exporting a hardware design to the SDK. It contains definitions of all the hardware parameters
of the system.

The function, XGpio_SetDataDirection(&Gpio, LED_CHANNEL, OxFF); is also provided by the
GPIO device driver, and sets the direction of the specified GPIO port. As we are specifying the
LEDs in this case, it is specifying an output. Bits set to ‘0’ are output, and bits set to ‘1" are input.
As there are 8 LEDs, by setting the LED channel direction to a value of exee, or eeeeeeee in

binary, we are setting all 8 LEDs as outputs.

Further information on the peripheral drivers can be found by selecting the system.mss tab.
A list of all the peripherals in the system is provided, along with links to available

documentation and examples, as shown in Figure 1.29.

First Designs on Zynq www.zyngbook.com 24
v1.3, April 2014

Figure 1.29: Peripheral Documentation and Drivers in system.mss tab

Target Information

Exercise 1C: Creating a Software Application in the SDK

|5 system.xml | Hl, system.mss E5

This Board Support Package is compiled te run on the following -
Hardware Specification: C:\Zynq_Book\first_zyng_design\first_z

Target Processon: ps/_cortexa8 0

Operating System

Board Support Package 05.

Marme: standalone

Version: 4.0

Description: Standalone is a simple, low-level software layel

Documentation: standalone v4 0

Peripheral Drivers

Drivers present in the Board Suppeort Package.

axi_gpic_0
ps/_afi 0
ps7_afi_l
ps/_afi_2
ps7_afi_3
psi_coresight_comp_0
psi_ddr 0
ps7_ddrc_0
ps/_dev_cfg 0
ps/_dma_ns
ps7_dma_s
ps/_ethernet 0
ps7_globaltimer_0
psi_gpic_0
psi_gpv_0
ps/_intc_dist 0
ps7_iep_bus_config_0
psi_lZcachec 0
ps?_ocme_ 0
ps/_gspi_0
psi_gspi_linear_0
psi_ram_0
ps7_ram_1
psd_scuc_ 0
ps7_scugic_0
ps7_scutimer_0
ps7_scuwdt 0
psi_sd_0
psi_slcr 0

gpio
generic
generic
generic
generic
generic
generic
generic
devcfg
dmaps
dmaps
emacps
generic
gpiops
generic
generic
generic
generic
generic
gspips
generic
generic
generic
generic
scugic
scutimer
scuwdt
sdps
generic

psT_ttc 0 ttcps

ps7_uart_1
ps/_usb 0

uartps
usbps

psi_xadc_0 xadcps

Documentation

Documentation
Documentation

Documentaticn

Documentaticn

Examples

Examples
Examples

Examples
Examples

Documentation

Documentation

Examples

Examples

Documentation
Documentation

Documentation

Documentation
Documentation

Documentation

Documentation

Examples
Examples
Examples

Examples
Examples

Examples
Examples

The next step is to program the Zynq PL with the bitstream file that we generated in Exercise 1B.

Ensure that the ZedBoard is powered on and that the JTAG port is connected to the PC via the
provided USB-A to USB-B cable.

First Designs on Zynq
v1.3, April 2014

www.zyngbook.com

25

Exercise 1C: Creating a Software Application in the SDK

(j): Download the bitstream to the Zynq PL by selecting Xilinx Tools > Program FPGA from the
Menu bar. The Program FPGA window will appear. The Bitstream field should already be

populated with the correct bitstream file, as in Figure 1.30.

2 Program FPGA e

Program FPGA
Specify the bitstrearn and the ELF files that reside in BRAM memory

Hardware Configuration

Hardware Platform: ’hw_platform_ﬂ v]

Connection: ’Local 'H Mew]

Device: Auto Detect

Bitstrearn: first_zynq_system_wrapper.bit [Search...] [Browse..]

BMM/MMI File: | Search... | | Browse.. |

Software Configuration
Processor ELF File to Initialize in Block RAM

4|

Run reset_zynqpl

@j [Program J[Cancel

Figure 1.30: Program FPGA dialogue Window

NOTE: Once the device has successfully been programmed, the DONE LED on the ZedBoard

will turn blue.

With the Zynq PL successfully configured with the bitstream file, we can now launch our software

application on the Zynq PS.

First Designs on Zynq www.zyngbook.com 26
v1.3, April 2014

Exercise 1C: Creating a Software Application in the SDK

(k) Select the project LED _test in Project Explorer. Right-click and select Run As > Launch on
Hardware (GDB).

After a few seconds the LEDs on the ZedBoard should begin to flash between the states
highlighted in Figure 1.31.

State A:

) M |

State B:

AVTRRRY

Figure 1.31: LED Flashing States

You have successfully created and executed your first software application on the Zynq

processing system.

First Designs on Zynq www.zyngbook.com 27
v1.3, April 2014

First Designs on Zynq
v1.3, April 2014

Exercise 1C: Creating a Software Application in the SDK

www.zyngbook.com 28

The Zynq Book Tutorial

Next Steps in Zynq SoC Design

v1.2, April 2014

Revision History

Date Version Changes
13/09/2013 1.0 First release for Vivado Design Suite version 2013.2
27/01/2014 11 Updated for changes in Vivado Design Suite version
2013.4
30/04/2014 12 Updates for changes in Vivado Design Suite version

2014.1

Next Steps in Zynq SoC Design

v1.2, April 2014

www.zyngbook.com

30

Introduction

Introduction

This tutorial will guide you through the process of creating a Zynq design utilising interrupts. Using the
Vivado™ Integraded Development Environment (IDE) and the IP Integrator environment, a simple Zynq™
processor design, to be implemented on the ZedBoard, will be generated. The Software Development Kit
(SDK) will then be used to create a simple software application which will run on the Zynq’s ARM Processing
System (PS) to control the hardware that is implemented in the Programmable Logic (PL). This tutorial leads

on from the previous one, expanding on the skills acquired in it.
The tutorial is split into four exercises, and is organised as follows:

Exercise 2A — This exercise provides a further guide to the process of launching Vivado IDE and creating a

project using New Project Wizard

Exercise 2B — In this exercise, we will use the project that was created in Exercise 2A to build a Zynq
embedded system utilising interrupts with IP Integrator and incorporating existing IP from the Vivado IP
Catalog. This will expand on previous knowledge gained in creating and connecting a block based system in
IP Integrator. The completed design will have an associated bitstream generated and will be exported to the

Xilinx SDK for creating of a test application.

Exercise 2C — In the Xilinx SDK, a test software application for the generated hardware system will be
created and explained. Running this application on the ZedBoard will demonstrate the function of interrupts

and how the application is coded to utilise them.

Exercise 2D — Finally, we will return to the system from Exercise 2B and include an additional source of
interrupt, making the necessary connections, and generating a bitstream and exporting to the Xilinx SDK.

We will then modify our previous software application to inspect the operation of the altered system.

Next Steps in Zynq SoC Design www.zyngbook.com 31
v1.2, April 2014

Exercise 2A: Expanding the Basic IP Integrator Design

In this exercise we will expand upon the previous project in Vivado IDE by adding additional GPIO
and configuring the system to utilise interrupts. For the sake of clarity and understanding, we will
run through the building of a basic system once more. Start by launching the Vivado IDE.

4
(@) Launch Vivado by double-clicking on the Vivado desktop icon: w?m;;m ,or by navigating to Start

> All Programs > Xilinx Design Tools > Vivado 2014.1 > Vivado 2014.1

(b) When Vivado loads, you will be presented with the Getting Started screen as in Figure 2.1.

File Flow Tools Window Help

VIVADO! o s € XILINX

Quick Start

Create New Project Open Project Open Example Project

Tasks
I@
Manage IP Open Hardware Manager ¥ilinx Td Store

Information Center

Documentation and Tutorials Quick Take Videos Release Notes Guide

5 Td Console

Figure 2.1: Vivado IDE Getting Started screen

Next Steps in Zynq SoC Design www.zyngbook.com 32
v1.2, April 2014

(@

Exercise 2A: Expanding the Basic IP Integrator Design

Select the option to Create New Project as in Figure 2.2

Create a New Vivado Project

This wizard will guide you through the creation of a new project

To create a Vivado project you will need to provide a name and a location
for your project files. Next, you will spedfy the type of flow you'll be
working with, Finally, you will specify your project sources and choose a
default part.

To continue, dick Mext.

Figure 2.2: New Project dialogue

Click Next.

At the Project Name dialogue, enter zynq_interrupts as the Project name and C:/Zynq_Book
as Project location.

Make sure that you select the option to Create project subdirectory. All options should be the

same as shown below:
Project name: zyng_interrupts
Project location: | C:fZ2yng_Book E]
Create project subdirectory

Project will be created at: C:/Zyng_Book/zyng_interrupts

Click Next.
A directory named Zynq_Book will be created on your Cdrive if it did not already exist.
At the Project Type dialogue, select RTL Project and ensure that the option Do not specify
sources at this time is not selected:
@ RITLProject

You will be able to add sources, generate IP, run RTL analysis, synthesis,
implementation, design planning and analysis.

[7] Do not specify sources at this time

Click Next.

Select VHDL as the Target language in the Add Sources dialogue.

If existing sources, in the form of HDL or netlist files, were to be added to the project they
could be imported at this stage.

As we do not have any sources to add to the project, click Next.

Next Steps in Zynq SoC Design www.zyngbook.com 33
v1.2, April 2014

Exercise 2A: Expanding the Basic IP Integrator Design

(g) The Add Existing IP (optional) dialogue will open.
If existing IP sources were to be included in the project, they could be added here.
As we do not have any existing IP to add, click Next.
(h) The Add Constraints (optional) dialogue will open.
This is the stage where any physical or timing constraints files could be added to the project.
As we do not have any constraints files to add, click Next.
(i) From the Default Part dialogue, select Boards from the Specify box and choose ZedBoard

Zynq Evaluation and Development Kit, Board Version ¢ from the list of boards, as shown in

Figure 2.3.
Specify Filter
& Parts Board Vendor | Al v
@ Boards Library | Al -
MName | Al b
Version | Al b
Search:
Board Board B_-:ard Board Bc-ar_d Part
Vender Library MName Version
B MicroZed Board em.avnet,com zynq microzed 9 xc7z010cg400-1 .
~ Sedbomd 2y Evaluabon and Development Gt [em.svietcamma i8S
B ZedBoard Zyng Evaluation and Development Kit em. avnet com zynq e & xc7z020cd484-1
@ Artix-7 AC701 Evaluation Platform wilire, com artix7 ac?Dl 1 0 i xcTa200thas7s| E
H Kintex-7 KC705 Evaluation Platform wilire. com kintex? kc705 1.0 i xcTk325tFgo00-
@ Kintex-7 KC705 Evaluation Platform wilire. com kintex? kc705 1.1 i xcTk3I25HFgo00-—
@ virtex-7 VC707 Evaluation Platform wiliroe. com virtex7 we707 1.1 @ xcTuxdB5tig 17
@ virtex-7 VC707 Evaluation Platform xilin, com virtex7 w707 a @ xcTundBStig 17
& virtex-7 VC709 Evaluation Platform ilin, com virtex7 w709 1.0 i xcTvnsEa0tfg 17 ~
a | T O

Figure 2.3: Default part dialogue options

Click Next.
(j) Inthe New Project Summary dialogue, review the specified options, and click Finish to create

the project.

As in the previous tutorial we will now create the basic Zynq embedded system design before adding and

configuring additional IP to utilise hardware interrupts.

Next Steps in Zynq SoC Design www.zyngbook.com 34
v1.2, April 2014

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

In this exercise we will create a simple Zynq embedded system which implements two General
Purpose Input/Output (GPIO) controllers in the PL of the Zynq device on the ZedBoard, one of
which uses the push buttons to generate interrupts. The other GPIO controller will connect to the
LEDs. Both will also be connected to the Zynq processor via an AXI bus connection, allowing the

LEDs to be controlled by a software application which we will create in Exercise 2C.

(@) Inthe Flow Navigator window, select Create Block Design from the IP Integrator section, as in

Figure 2.4:

Flow Mavigator L

o T &

4 Project Manager
% Project Settings
Q"J'}T Add Sources

1 F 1P Catalog

4 [P Integrator
ﬁ}: Create Block Design

¥ Open Block Design
Create Block Design

4 Simula Create and add an [P subsl.}rstem to the project.

Figure 2.4: Creating a new Block Design in Flow Navigator

The Create Block Design dialogue will open.
(b) Enter zynq_interrupt_system in the Design name box, as in Figure 2.5:

gl*':_L Create Block Design ﬁ

[0:, Please specify name of block design

Design name: zynq_interrupt_system|

Directory: & <Local to Project>> -

’ OK H Cancel |

Figure 2.5: Create Block Design dialogue
Click OK. The Vivado IP Integrator Diagram canvas will open in the Workspace.

The first block that we will add to our design will be a Zynq Processing System.

Next Steps in Zynq SoC Design www.zyngbook.com 35
v1.2, April 2014

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

(c) Inthe Vivado IP Integrator Diagram canvas, right-click anywhere and select Add IP, as in Figure

2.6.
Ctrl+E
Delete
Ctrl+C
Ctrl+V
L Select All Ctrl+A
& AddIP.. Ctrl+1
Create Hierarchy...
Create Comment
Create Port... Ctrl+K
Create Interface Port... Ctrl+L
T Saveas PDF File..

Figure 2.6: Add IP option

Alternatively, select the Add IP option from the information message at the top of the canvas,

shown in Figure 2.7.

o Diagram X

e | M zyng_interrupt_system

N .L;} This design is empty. To get starteq§ Add IF §from the catalog.

Figure 2.7: Add IP option in IP Integrator canvas information message

The pop-up IP Catalog window will open, as in Figure 2.8.

Next Steps in Zynq SoC Design www.zyngbook.com 36
v1.2, April 2014

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

Search: |
=1 =3

Mame Version

{F AHB-Lite to AXI Bridge 2.0 ~
{F AXI-Stream FIFO 4.0

{F A¥I4-Stream to Video Cut 3.0 -
{F AXI AHBLite Bridge 2.0 y
{F AXI APB Bridge 2.0

{F AXIBFM Cores 4.0

{F A¥IBRAM Controller 3.0

IF AXI CAN 5.0

{F A¥I Central Direct Memory Access 4.0

{F A¥I Chip2Chip Bridge 4.0

{F A¥I Clock Converter 2.0

{F AXI Crossbar 2.0

{F AXI Data FIFO 2.0

{F A¥I DataMover 5.0

{F A¥I Data Width Converter 2.0

{F AXI Direct Memory Access 7.0

IF AXIEMC 2.0

{F AXIEPC 2.0

iF AXI Ethernet 4.0 il
{F AXI Ethernet Buffer 1.0 =]
I mswer el P R) 4 M

Select and press ENTER or drag and drop, ESC to cancel

Figure 2.8: Pop-up IP Catalog window

(d) Enter zynq in the search field and select the ZYNQ7 Processing System, ensuring that you

select the option for Version 5.4, as shown in Figure 2.9, and press the Enter key on your

keyboard.
Search: zynq| (2 matches)
=1
Name VLNV
{F Z¥YNQ7 Processing System xilinx. com:ip:processing_system7:5.4

{F Z¥YNQ7 Processing System BFM xilinx. com:ip:processing_system7_bfm:2.0

Select and press ENTER. or drag and drop, ESC to cancel

Figure 2.9: Adding ZYNQ?7 Processing System from IP Catalog

As in the previous tutorial, the next step is to connect the DDR and FIXED_IO interface ports
on the Zynq PS to the top-level interface ports on the design.

(e) Select the Run Block Automation option from the Designer Assistance message at the top of
the Diagram window. Select OK, ensuring that the option to Apply Board Preset is selected,
to generate the external connections for both the DDR and FIXED_IO interfaces, and apply

the relevant board presets.

Next Steps in Zynq SoC Design www.zyngbook.com 37
v1.2, April 2014

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

Your block diagram should now resemble Figure 2.10.

processing_system7_0

i -3

DDR 4 || === DDR
FIXED 104k || "> FIXED_IO

USBIND_0: |||
A M_AX1_GPo<: |||
= M_AXI_GPO_ACLK TTCO_WAVED_OUT =

Ry ZYNQ TTCO_WAVEL OUT

TTCO_WAVE2_OUT =

FCLK_CLKO b=
FCLK_RESETO_N &=

LS o
ZYMNQ7 Processing System

Figure 2.10: ZYNQ?7 Processing System external connections

Now that the main Zynq PS has been added to our design and configured, we can now add further
blocks which will be placed in the PL to add functionality to the system. In this case we require an

AXI GPIO block for the LEDs and another for the push buttons.

(f) Right-click in an empty area of the Diagram window and select Add IP. Enter GPIO in the
search field and add an instance of the AXI GPIO IP. Repeat this procedure to add a second
AXI GPIO block to the design.

We will now use the IP Integrator Designer Assistance tool to automate the connection of the AXI

GPIO blocks to the ZYNQ7 Processing System.

(g) Click Run Connection Automation from the Designer Assistance message at the top of the
Diagram window and select /axi_gpio_0/S_AXI, as shown Figure 2.11.

L-;% Designer Assistance available. Run Connection Automation

faxi_gpio_0/5_AXI
faxi_gpio_0/GPIO
faxi_gpio_1/5_AXI
faxi_gpio_1/GPIO

HFEEE

Figure 2.11: Run Block Automation - GPIOinstance 1

Click OK to ensure automatic clock connection, which adds the Processor System Reset

Module and the AXI Interconnect blocks.

Next Steps in Zynq SoC Design www.zyngbook.com 38
v1.2, April 2014

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

(h) Click Run Connection Automation from the Designer Automation message at the top of the
Diagram window and select /axi_gpio_0/GPIO.
The Run Connection Automation dialogue will open, as in Figure 2.12. Select btns_5bits from

the drop-down menu, and click OK.
rg"';'_=. Run Connection Automation [ﬁ1

, Connect Board Part Interface to IP interface: faxi_gpio_0/GFIO

Select Board Part Interface: | btns_5hits +

ook |[Cancel]

'

Figure 2.12: Run Connection Automation dialogue — GPIO

(i) Repeat steps (g) and (h) for the second GPIO block, this time selecting leds_8bits for /
axi_gpio_1/GPIO.

@ axi_gpio_0
processing_system?7_0_axi_periph
—i|es.na
|4 S00_AXI _axi_adk GPIO 4 || btns_Sbits
ACLK P 5, _3X1_aresetn
rst_processing_system7_0_100M T »
lowest_sync_dk mb_reset s _ACLK N AXI GPIO
ext_reset_in bus_struct_reset[0:0] s 00_ARESETN mg‘ﬁi axi_gpio_1
=—aux_reset_in peripheral_reset[0:0] s MOO_ACLK ‘ e B & H5A
=mb_debug sys rst interconnect_aresetn[0:0] MOO_ARESETN = 2 E
==dcm_locked peripheral_aresetn[0:0] MO1_ACLK _::_::_:r‘;kem S0+ l leds_8bits
MO1_ARESETN e
Processor System Reset o CPIO
processing_system7_0) AXI Interconnect
DR 4 ||| {3 DDR
FIXED_104 |} [FIXED_IO
USBIND_0+ ||
- M_AXI_GPO<: ||}
M_AXI_GPO_ACLK ZYNQ TTCO_WAVED_OUT
TTCO_WAVEL OUT =
TTCO_WAVE2_OUTE
FCLK_CLKO
FCLK_RESETO_N F

ZYNQ7 Processing System

Figure 2.13: Zynq processor system

You will now have a system that is similar to Figure 2.13. We now need to configure the system to

utilise hardware interrupts from the push buttons to trigger functions in the Zynq PS.

Next Steps in Zynq SoC Design www.zyngbook.com 39
v1.2, April 2014

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

(j) Double--click on the GPIO block connected to the push buttons, axi_gpio_0, to open the Re-

customize IP window,.

Component Name zynqg_interrupt_system_axi_gpio_0_0

Board- IP Configuration
GPIO
All Inputs
All Qutputs

GPIO Width

[1.32)

Default Qutput Value [0x00000000, 0xFFFFFFFF]

Default Tri State Value |0xFFFFFFFF [0x0D000000, 0xFFFFFFFF]

Enable Dual Channel
GFIO 2
All Inputs
All Outputs

GPIO Width 32 [1.32]

Default Qutput Value | 0x00000000 [0%00000000, 0xFFFFFFFF]

Default Tri State Value DxFFFFFFFF [0%00000000, 0xFFFFFFFF]

I V] Enable Interrupt
|

Figure 2.14: Enabling GPIO interrupts

Click the IP Configuration tab and enable interrupts from the push buttons by clicking in the
box highlighted in Figure 2.14 and click OK. This will add an additional output port for the
interrupt request to the GPIO block as in Figure 2.15.

e -,
HIL=N

{5 > catel ||
== axi_ack

| o 2Nt _irpt =

=z Axl_aresem

e -

Figure 2.15: GPIO block with interrupt port

Now we must configure the Zynq PS to accept interrupt requests.

(k) Double-click on the Zynq PS block, processing_system7_0, to open the Re-Customize IP

window.

Next Steps in Zynq SoC Design www.zyngbook.com 40
v1.2, April 2014

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

() Select Interrupts from the Page Navigator on the left-hand side and expand the menu on the
right as in Figure 2.16. Since we want to allow interrupts from the programmable logic to the
processing system, tick the box to enable Fabric Interrupts, then click to enable the shared
interrupt port as in Figure 2.16. This means interrupts from the PL can be connected to the

interrupt controller within the Zynq PS. Click OK.

Page Navigator < || Interrupts Summary Report
Zynq Block Design
na N + Search:
PS-PL Configuration N
\XJ Interrupt Port jin] Description
2]
Peripheral [/O Pins e | B+ [#] Fabric Interrupts Enable PL Interrupts to PS and vice versa
: -

| = PLPS Interrupt Ports

- [¥] IRQ_F2P[15:0] [91:84], [68:... Enables 16-bit shared interrupt port from the PL. MSE is assigned the highest In...

MIO Configuration

Corel_nFIQ 28 Enables fast private interrupt signal for CPUD from the PL
Clack Configuration Core0_nIRQ 31 Enables private interrupt signal for CPUD from the PL

Corel_nFIQ 23 Enables fast private interrupt signal for CPU1 from the PL
DOR Configuration Corel_nIRQ 31 Enables private interrupt signal for CPU1 from the PL

SMC Timing Calculation b 3L r LEEE

Interrupts

Figure 2.16: Configuring Zynq PS to utilise interrupts

Next Steps in Zynq SoC Design www.zyngbook.com 41
v1.2, April 2014

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

(m) Make a connection between the interrupt request of the GPIO block and the newly created

interrupt port of the Zynq PS, highlighted in Figure 2.17.
processing_system7_0

i "
DDR < ||f=
FIXED_IO5 ||j=
USBIND_0< |||
—mm M_AXT_ GPO_ACLK M_AXT_GPOk ||_

ERg F2ro:07] Z\/Nd"L TTCO_WAVED_OUT &=

TTCO_WAVEL OUT ==
TTCO_WAVEZ _OUT ==
FCLK_CLKD m=—
FCLK_RESETO_MN m=—

L -

ZYNQ7 Processing System

Figure 2.17: Zynq PS with interrupt port

Your final design should resemble Figure 2.18, although the positioning of your blocks may

be different.

processing_system?7_0_axi_periph axi_gpio_0
gpio|
. |- S00_AXI
rst_processing_system?7_0_100M e
lowest_sync_dk mb_reset ETN »
ext_reset_in bus_struct_reset[0:0] S00_ACLK MDO_AXT - 0 =
m—alx_reset_in peripheral_reset[0:0]jm 00_ARESETN MDI_A)(I+ AXI GPIO
=mb_debug_sys st interconnect_aresetn[0:0] MO0 _ACLK - o axi_gpio_1
—dem_locked peripheral_aresetn[0:0] MOO_ARESETN ‘ sV
M01_ACLK |
Processor System Reset e _axi_adk GPIO 4 |||t), ledis_8bits
P 521 _arESELN
processing_system7_0 AXI Interconnect AXI GPIO
DDR - (|} [DDR
FIXED_IO- (|} [FIXED_IO
ussIND_04 |||
M_AXI_GPO! =
M_AXI_GPO_ACLK - LRGP0 =

IRQ_F2P[0:0] ZYNQ LR AVEDOLT

: " TTCO_WAVEL_OUT

TTCO_WAVE2_OUT

FCLK_CLKO -
FCLK_RESETO_N
ZYNQ? Processing System

Figure 2.18: Zynq processor system with interrupts

(n) Save your design by selecting File > Save Block Design from the Menu Bar.

(o) Validate the design by selecting Tools > Validate Design from the Menu Bar. This will run a
Design-Rule-Check (DRQ).

Alternatively, select the Validate Design button, 5%, from the Main Toolbar.

(p) A Validate Design dialogue should appear to confirm that validation of the design was

successful. Click OK, to dismiss the message.

Next Steps in Zynq SoC Design www.zyngbook.com 42
v1.2, April 2014

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

With the design successfully validated, we can now move on to generating the HDL design files

for the system. The procedure here is identical to the previous tutorial, First Designs on Zynq.

() Inthe Sources window of the Data Windows pane, select the Sources tab.

(r) Right-click on the top-level system design, which in this case is zynq_interrupt_system, and
select Create HDL Wrapper.
The Create HDL Wrapper dialogue window will open. Accept the default option specifying that

Vlvado should manage the wrapper and click OK.

With all HDL design files generated, the next step in Vivado is to implement our design and

generate a bitstream file.

(s) In Flow Navigator, click Generate Bitstream from the Program and Debug section.
If a dialogue window appears prompting you to save your design, click Save.
The combination of running the synthesis, implementation and bitstream generation
processes back-to-back may take a few minutes, depending on the power of your computer
system.

(t) Once the bitstream generation is complete a dialogue window will open to inform you that

the process has been completed successfully, as in Figure 2.19.

Bitstream Generation Completed I,&J

[0] Bitstream Generation successfully completed.

Mext

@ Dpen Implemented Desigr

View Reports
Open Hardware Session

Launch iMPACT

Don't show this dialog again

[K]| Cancel |

L

Figure 2.19: Bitstream Generation completion dialogue window

Select Open Implemented Design, and click OK.
At this point you will be presented with the Device view, where you can see the PL resources

which are utilised by the design.

Next Steps in Zynq SoC Design www.zyngbook.com 43
v1.2, April 2014

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

With the bitstream generation complete, the final step in Vivado is to export the design to the
SDK, where we will create the software application that will allow the Zynq PS to control the LEDs

on the ZedBoard.

(u) Select File > Export > Export Hardware for SDK... from the Menu Batr.

(v) The Export Hardware for SDK dialogue window will open. Ensure that the options to Include

bitstream and Launch SDK are selected, and Click OK.

This concludes the steps that are required in Vivado IDE. All hardware components of the system
have been configured and generated. In the next exercise we will create the software application

that utilises this hardware system.

Next Steps in Zynq SoC Design www.zyngbook.com 44
v1.2, April 2014

Exercise 2C: Creating a Software Application in the SDK

In this exercise a software application will be created that utilises hardware interrupts on the

Zedboard. The push buttons will be used to increment a counter by different values, and the

count will be continuously displayed on the LEDs in binary form, where LEDO corresponds to the

least significant bit (LSB) and LED7 the most significant bit (MSB). This application will run on the

Zynq processing systems, communicating with the AXI GPIO blocks implemented in the PL.

The SDK should have opened after the conclusion of Exercise 2B. If it did not open, you can open

the SDK by navigating to Start > All Programs > Xilinx Design Tools >Vivado 2013.4>SDK>

Xilinx SDK 2013.4 and specifying the workspace as in Exercise 2A.

(@) Select File > New > Application Project from the Menu bar.

(b) The New Project dialogue window will open. Enter interrupt_counter in the Project name field,

as shown in Figure 2.20, keeping all other options with the default settings. Click Next.
m New Project l J_I—JEI e |

Next Steps in Zynq SoC Design

v1.2, April 2014

Application Project

Create a managed make application project.

Project name: | interru pt,controlleri

V| Use default location
C\Zyng_Book\zyng_interrupts\zyng_interrupts.sdk\SDEASDE

default

Target Hardware

Hardware Platform |hw_p|atform_0 v| New
Processor | ps7_cortexad 0 - |

Target Software

05 Platform |standa|0ne v|
Language @ C C++

Board Support Package (@ Create New interrupt_controller_bsp

Use existing

@ <Back | Net»> | [Fmsh ||

Cancel

Figure 2.20: New Application Project dialogue

www.zyngbook.com

45

Exercise 2C: Creating a Software Application in the SDK

(c) At the New Project Templates screen, select Empty Application, as in Figure 2.21, and click

Finish to create the project.

& New Project

=1 [|

Templates

Create one of the

available templates to generate a fully-functioning f 7
t.

Available Templates:

application project

Peripheral Tests
Dhrystone

Hello World

IwIP Echo Server
Memory Tests

Zyng DRAM tests

i |Zyng FSBL

RSA Authenticatio
| |SREC Bootloader
||| |Xilkernel POSIX Threads Demao

Ablank C project.

n App

®

< Back Jest > Cancel

Figure 2.21: New Project Template dialogue

NOTE: the new project should open automatically. If it doesn’t, you may need to close the

Welcome tab in order to view the project.

With the new Application Project created, we can now import some pre-prepared source code for

the application.

(d) Inthe Project Explorer panel, expand interrupt_counter and highlight the src directory. Right-

click and select Import..., choosing General > File System as an import source.
(e) Inthe Import File System window, click the Browse... button.

(f) Navigate to the directory: C:\Zynq_Book\sources\zynq_interrupts and click OK.

Next Steps in Zynq SoC Design

v1.2, April 2014

www.zyngbook.com

46

Exercise 2C: Creating a Software Application in the SDK

(g) Select the file interrupt_counter_tut_2B.c, as shown in Figure 2.22, and click Finish.

B} tmport BTN
File system —
Y y y
Import resources from the local file system. /
-
From directory: C:\Zyng_Book\sources - Browse...
4 = sources /| |g] interrupt_counter_tut_2B.c
(= first_zynq_design L] interrupt_counter_tut_2D.c
= hls

(= zyng_interrupts

Filter Types... | ‘ Select All | | Deselect All
Into folder: interrupt_counter/src Browse...
Options
Overwrite existing resources without warning
Create top-level folder
Advanced >>
P o]
l\?) < Back lext = [Finish] | Cancel

Figure 2.22: Import C source file

This file contains C Code that has been written to perform the interrupt triggered counter
operation on the ZedBoard.
(h) Open the imported source file by expanding the src folder and double-clicking on

interrupt_counter_tut_2B.c, and explore the code.

The code has been fully commented, but will be briefly discussed here for clarity. Note that
this file contains several portions of code which have been commented out; these will be

utilised and discussed further in the next exercise and can be ignored for now.

By now, you should be familiar with the use of drivers and parameters in configuring and
operating the GPIO. Remember, detailed information of these drivers can be found in the
system.mss file, explaining the purpose of each function and the parameters passed to it.

Predesignated parameters can also be found in xparameters.h.

The Zynq PS features a built in interrupt controller, initialised here as XScuGic INTCInst. This
handles all incoming interrupt requests passed to the PS and performs the function
associated with each interrupt source. It is also capable of prioritising multiple interrupt

sources to the requirements of the application.

Next Steps in Zynq SoC Design www.zyngbook.com 47
v1.2, April 2014

Exercise 2C: Creating a Software Application in the SDK

Of particular note is the inclusion of the function BTN_Intr_Handler(void *InstancePtr);.This
is the interrupt handler function for the push buttons and is called every time an interrupt
request from the push buttons in the PL is received in the PS. This performs a counter

increment on each call and displays the value of the counter on the LEDs in binary.

An initial setup function can be found below the main function. This s
InterruptSystemSetup(XScuGic *XScuGicInstancePtr);. The function initialises and
configures the interrupt controller in the Zynq PS, connecting the interrupt handler to the
interrupt source. It also makes a call to the latter function which enables the interrupt sources

and registers exceptions.

The next step is to program the Zynq PL with the bitstream file that we generated in Exercise 2B.

Ensure that the ZedBoard is powered on and that the JTAG port is connected to the PC via the
provided USB-A to USB-B cable.

Download the bitstream to the Zynq PL by selecting Xilinx Tools > Program FPGA from the
Menu bar. The Program FPGA window will appear. The Bitstream field should already be

populated with the correct bitstream file, as in Figure 2.23.

@ Program FPGA

Program FPGA
Specify the bitstream and the ELF files that reside in BRAM memory

Hardware Configuration

Hardware Platform: | hw_platform_0 - |

Connection: |L0ca| v| | MNew |

Device: Auto Detect Select

Bitstream: Zynq_interrupt_system_wrapper.bit Search... | | Browse..
BMM/MMI File: Search... | | Browse..

Software Configuration
Processor ELF File to Initialize in Block RAM

a4 T S

+| Run reset_zyngpl

'@:‘ [Program ” Cancel

Figure 2.23: Program FPGA dialogue window

Next Steps in Zynq SoC Design www.zyngbook.com 48
v1.2, April 2014

Exercise 2C: Creating a Software Application in the SDK

If it is not, enter:
zynq_interrupt_system_wrapper.bit
and click Program.

As in the previous tutorial, once the device has successfully been programmed, the DONE LED

on the ZedBoard will turn blue.

With the Zynq PL successfully configured with the bitstream file, we can now launch our software

application on the Zynq PS.

Next Steps in Zynq SoC Design www.zyngbook.com 49
v1.2, April 2014

Exercise 2C: Creating a Software Application in the SDK

(j) Select interrupt_counter in Project Explorer. Right-click and select Run As > Launch on
Hardware.
The counter increments by different values based on the push button which is pressed. The

counter operates as demonstrated in Figure 2.24.

LSB MSB
LEDO LED7
00000000 =0
00000001 =1
00000010 =2
o
o

o

Figure 2.24: LED flashing states

(k) Try pressing different push buttons and observing how the counter increments (or does it
increment at all?) Based on your findings, can you determine the value assigned to each of the
push buttons (BTNU, BTND, BTNL, BTNR and BTNC as noted on the ZedBoard)?

Next Steps in Zynq SoC Design www.zyngbook.com 50
v1.2, April 2014

Exercise 2C: Creating a Software Application in the SDK

You have successfully created and executed a software application utilising interrupts on the
Zynq PS. The next step is to go back and add an additional interrupt source with higher priority to

alter the functionality of the system.

Next Steps in Zynq SoC Design www.zyngbook.com 51
v1.2, April 2014

Exercise 2D: Adding a Further Interrupt Source

In this exercise we will add an additional source of interrupt to the project created in Exercise 2B
in the form of an AXI Timer.

<
(a) Launch Vivado by double-clicking on the Vivado desktop icon: swws , or by navigating to

Start > All Programs > Xilinx Design Tools > Vivado 2014.1 > Vivado 2014.1

(b) When the program launches, open the previously created project by selecting Open Project.
The previously created project should appear in the list of recent projects as C:/Zynq_Book/
zynq_interrupts/zynq_interrupts.xpr so click on it. If it doesn't, click Browse Projects... and

navigate to that directory, selecting zynq_interrupts.xpr and clicking open.

(c) Open the block design from the sources panel by expanding the sources and double clicking

on the block design as highlighted in Figure 2.25.

—I-t7 Design Sources (1]
1-igh i - -vn i
: +- 4% zyng_interrupt_system_i - zyng_interrupt_system (zyna_interrupt_system.bd) (1] I
+] 1=
- Simulation Sources (1)

Figure 2.25: Opening an existing block diagram

(d) With the block diagram now open we will add an AXI Timer to the design. In the Vivado IP
Integrator Diagram canvas, right-click anywhere and select Add IP. Enter timer in the search
field and add the IP AXI TIMER to the design by either dragging it onto the canvas or selecting
it and pressing ENTER.

Search: timer (3 matches)
=T

MName VLNV

{F AXI Timebase Watchdog Timer ilinx. com:ip...

i bl com:ip...

{F Fixed Interval Timer ilinx. com:ip...

Select and press ENTER or drag and drop, ESC to cancel

Figure 2.26: AXI Timer in the IP Catalog

Next Steps in Zynq SoC Design www.zyngbook.com 52
v1.2, April 2014

Exercise 2D: Adding a Further Interrupt Source

(e) Select Run Connection Automation option from the Designer Assistance message at the top

of the Diagram window and select/axi_timer_0/S_AXI and click OK to connect the timer to

the AXI Interconnect.

axi_timer_0

P

s 0
capturetrigd generat2outl s
capturetrigl generatzout] -
AT ()

s _axi_adk I interrupt 3

freeze

5_axi_aresetn
L

-

AXT Timer

Figure 2.27: AXI Timer in the block design

(f) Note that in Figure 2.27 the AXI Timer features an interrupt request, which requires

connection to the Zynq PS. However, we already have an interrupt connected to the input of

the PS. This input is a shared interrupt port, and so accepts multiple interrupts via one signal.

We therefore require an additional IP block to concatenate these two interrupt requests into

one signal. In the canvas, right-click anywhere and select Add IP. Enter concat in the search

field and add the IP Concat to the design.

¥lconcat_0

In0[0:0]

processing_system7_0

IRQ_F2P[0:0]

M_AXI_GPO_ACLK

.
DOR < || =
FIXED_1O45 ||j=

ussIND_0<- |||

M_AXI_GPO<-

ZYNQ Tmeowaveo our -
" TTCO_WAVEL OUTE-
TTCO_WAVE2_OUT =
FCLK_CLKO f—
FCLK_RESETO_N f=—

ZYNQ7 Processing System

Figure 2.28: Concat in the block design

(g) Remove the connection to IRQ_F2P[0:0] on the Zynq PS by clicking it and pressing DELETE.

Connect the output from the Concat block, xIconcat 0 to this instead. Then, connect the

interrupt request from the GPIO to In0[0:0] and the interrupt from the timer to In1[0:0],

creating a shared interrupt signal that is passed to the PS. Your block diagram should be

similar to Figure 2.29.

Next Steps in Zynq SoC Design
v1.2, April 2014

www.zyngbook.com 53

Exercise 2D: Adding a Further Interrupt Source

axi_gpio_1

=S A
_axi_adk GPIO= ||———3 leds_8bits
pr—_xi_aresetn
AXI GPIO
) o axi_timer_0
processing_system?7_0_axi_periph
@ i s s
H it =capturetrigl generateoutiijm
—=ACLK ={capturetrigl generateoutlp=
rst_processing_system?7_0_100M TN[O:0] —frooze pwm(
ACLK axi_adk e -—
L_sync_clk mb_resatps * A S s
K bus_struct_reset(0:0 [ARESETN[0:0] MOO_AXI A 1S_axi_amesetn
et recs ;u uinu : ma.o ALk MO AT
- - AL Time
au:}nahc Lin 4 g perip! :ua nz {G.G} 1 MO2_AXL 4 - AT Timer
—mb_debug_sys_r intereannect_aresetn[0: d P
ACLK * axi_gpio_0
=dom_locked peripheral_aresetn[0:0] t i _op
ks)
Processar System Reset 2_ACLK . GPIOSE "——D btns_5Shits
b 10 2_ARESETH iy

xlooncat_0 AXI Interconnect AXI GPIO
processing_system?7_0

DoR 3 ||} { DDR
FIxeD_10 4 ||| {3 FIXED_IO
useIND_0 4 |||
_ m_axt_Geo 3 |||——
ZYNQ TTO0_WAVED_OUT|
TTCO_WAVEL OUT)
TTOO_WAVE2_OUT)

FELK_OLKI
FCLK_RESETO, N|R

ZYMNQY7 Processing System

Figure 2.29: Complete system with multiple interrupt sources

We now need to regenerate the output products, update the HDL wrapped and generate a
new bitstream for our altered design.

(h) Right-click on the top-level system design and select Create HDL Wrapper... selecting the
default option as previous. Click OK.

(i) In Flow Navigator, click Generate Bitstream from the Program and Debug section.

If a dialogue window appears prompting you to save your design, click Save.

(j) A dialogue window will open requesting that you launch synthesis and implementation
before starting the Generate Bitstream process. Click Yes to accept.

Again these back-to-back processes may take a few minutes, depending on the power of your
computer system.

(k) When this process is completed click OK.

(I) Select File > Export > Export Hardware for SDK... from the Menu Batr.

(m) The Export Hardware for SDK dialogue window will open. Ensure that the options to Include
bitstream and Launch SDK are selected, and Click OK. A dialog will be presented asking if you
wish to overwrite an exported file, which is the initial system featuring a single interrupt.
Select Yes for this and any further prompts.

(n) Once the SDK opens and builds the project, we will alter our application to make use of the
new interrupt source. Right-click on the project interrupt_counter in the Project Explorer

and select Delete.

Next Steps in Zynq SoC Design www.zyngbook.com 54
v1.2, April 2014

Exercise 2D: Adding a Further Interrupt Source

Repeat for the BSP, interrupt_controller_bsp.
Repeat the steps outlined in Exercise 2B (a) to (h) for creating a new application project, BSP

and importing a source file, this time selecting interrupt_counter_tut_2D.c.

Notice the inclusion of a second interrupt handler, TMR_Intr_Handler(void *data); which will
increment the value of the counter after the timer has expired three times, writing the new

value to the LEDs.

Additional code has been included in the main to configure and start the timer, and full details
of these functions can be found in the system.mms. The function IntcInitFunction(ul6
Deviceld, XTmrCtr *TmrInstancePtr,XGpio *GpioInstancePtr); also contains additional

code to connect the timer interrupt to the handler and enable it.

In brief, the timer is loaded with a value TMR_LOAD and configured to automatically reload on
each expiration. The interrupt handler keeps track of the number of expirations and after
three expirations performs the required steps, otherwise it simply increments the variable

storing the number of expirations.

Save the file.

(o) Download the bitstream to the Zynq PL by selecting Xilinx Tools > Program FPGA from the
Menu bar.

(p) Once the blue LED signalling successful programming lights, select zynq_interrupts in Project

Explorer. Right-click and select Run As > Launch on Hardware.

Note that the counter will increment by 1 every time the timer expires three times. The

buttons still operate as in the previous exercise.

This completes this tutorial and systems utilising both a single and multiple interrupt sources

have been created and tested.

Next Steps in Zynq SoC Design www.zyngbook.com 55
v1.2, April 2014

Next Steps in Zynq SoC Design
v1.2, April 2014

Exercise 2D: Adding a Further Interrupt Source

www.zyngbook.com

56

The Zynq Book Tutorial

Designing With Vivado High Level Synthesis

v1.2, May 2014

Revision History

Date Version Changes
30/10/2013 1.0 First release for Vivado Design Suite version 2013.2
28/01/2014 11 Updated for changes in Vivado Design Suite version
2013.4
06/5/2014 12 Updated for changes in Vivado Design Suite version

2014.1

Designing With Vivado High

Level Synthesis
v1.2, May 2014

www.zyngbook.com

58

Introduction

Introduction

This tutorial presents an introduction to High Level Synthesis using the Vivado™ HLS environment. The
creation of projects manually through the GUI, and automatically through scripting will be covered. The
process of simulating, synthesising and analysing a Vivado HLS design will then be explored, with sufficient

design optimisation and solution comparison along the way.
The tutorial is split into three exercises, and is organised as follows:

Exercise 3A — This exercise concerns the creation of projects using both the Vivado HLS GUI and use of Tl
scripting. It details the inclusion of relevant source and test files and generation of a project for use in the

proceeding exercise.

Exercise 3B — This exercise involves design optimization of a matrix multiplication function through use of
various directives. It presents the Vivado HLS design environment and method of synthesis and analysis of

project solutions.

Exercise 3C — Finally, a more detailed look at how Vivado HLS synthesises interfaces is investigated.

Designing With Vivado High www.zyngbook.com 59
Level Synthesis
v1.2, May 2014

Exercise 3A: Creating Projects in Vivado HLS

In this exercise we will present the creation of Vivado HLS projects using both the Vivado HLS GUI

and the use of Tcl scripting to expedite the process.

(a) Before we begin it is necessary to copy the files from C:\Zynq_Book\sources\hls to a new

directory, C:\Zynq_Book\hls.

(b) Launch the Vivado HLS GUI by navigating to Start > All Programs > Xilinx Design Tools >
Vivado 2014.1> Vivado HLS > Vivado HLS 2014.1

(c) When the Vivado HLS GUI loads, you will be presented with the Welcome screen as in Figure

3.1.
p
VIVADQO™ .

Quick Start

Create New Project Open Project Open Example Project

Documentation

Tuterials User Guide Release Notes Guide

Figure 3.1: Vivado HLS welcome screen

(d) Select the option to Create New Project in Figure 3.1

(e) At the Project Name dialogue, enter matrix_mult_prj as the Project name and C:/
Zynq_Book/hls/tut3A as Project location.
Click Next.

Designing With Vivado High www.zyngbook.com 60
Level Synthesis
v1.2, May 2014

Exercise 3A: Creating Projects in Vivado HLS

(f) You will now be prompted to add or remove source files for the project. All C-based source
files for this tutorial have been created in advance, as we seek to guide the design flow rather

than the programming itself. Click Add Files... and navigate to C:\Zynq_Book\hls\tut3A

([New Vivado HLS Project l El &r
Add/Remove Files e =
Add/remove C-based source files (design specification) %y
Top Function: matrix_mult
Design Files
Name CFLAGS

matrix_mult.cpp ?
ew File...
matriz_mult.h

| < Back ” MNext = | Finish Cancel

Figure 3.2: Adding files to a Vivado HLS project

Select the files matrix_mult.cpp and matrix_mult.h and click Open. Set the top function to
matrix_mult as in Figure 3.2.
Click Next.

(9) You will now be prompted to add a testbench file for design testing. Once more, click Add
Files... and navigate to the previous directory this time adding the file matrix_mult_test.cpp
and clicking Next.

(h) The next step is configuring a solution for a specific FPGA technology. In this case, leave the
solution name and clock settings as the default options.

Since we are using the ZedBoard with the Zyng-7020 FPGA click ... in the part selection panel.

Designing With Vivado High www.zyngbook.com 61
Level Synthesis
v1.2, May 2014

Exercise 3A: Creating Projects in Vivado HLS

+" | Device Selection Dialog &J
Support for devices prior to series 7 and Zynq requires an additional license.
Please contact your Xilinx representative for more details.
RTL Tool Specify Filter
Auto - '@ Parts Family: All -
yBoards Package: All -
L Speed Grade: | All -
Il Search: +
Board Part Family Package Speed
y Zyng ZC706 Evaluatio... xc72045ffg900-1 zZyng ffga00 -1
y Zyng ZC702 Evaluatio.., xc72020clgd84-1 zZyng clgdid -1
y ZedBoard Zynq Evalu.. xc7z020clgd84-1 zZyng clgdgd -1
y Virtex-7 VC709 Evalua.. xclwxb80tffgl7el-2 virtex7? ffgl761l -2
| y Virtex-7 VC707 Evalua.. xclvd85tffgl7el-2 virtex7 ffgl76l -2
y MicroZed Board xc72010clg400-1 zZyng clgd0o -1
ﬂ Kintex-7 KC705 Evalua... xc7k325tffg200-2 kintex7? ffga00 -2
y Artix-7 ACT01 Evaluati.., xc7a200tfbgb76-2 artix? fbgb76 -2
[OK] | Cancel

Figure 3.3: The device selection dialogue

Under the Specify section select Boards and then select the ZedBoard Zynq Evaluation and
Development Kit before clicking OK as in Figure 3.3.
Click Finish.

(i) The project will be generated and the workspace will open in Synthesis mode for the
generated project and solution as in Figure 3.4.
Expanding the Source and Test Bench sections in the Explorer tab on the left side shows the
inclusion of the source and test files from the previous steps. Double clicking on these files

opens them in the editor view for examination and editing.

The project consists of a matrix multiplier, which multiplies two matrices inA and inB to
produce the output prod. The testbench performs the multiplication of two known matrices

and checks the value of prod against expected values.

Designing With Vivado High www.zyngbook.com 62
Level Synthesis
v1.2, May 2014

'/ | Vivado HLS - matrix_mult_prj (C:\Zynq_Book\HLS\/ak
=)

File Edit Project Seolution Window Help
| o | e
%5 Debug &d” Analysis

' FDE)(pI.ulel 23 t:><h = 0O

4 [=5 matrix_mult_prj

. &} Includes
a = Source
matrix_mult.cpp
[B matriz_mult.h
a flz Test Bench
ratrix_mult_test.cp
a = solution?
4 % constraints
4 directives.tcl
G scriptel

& Console 2

.

[é

Exercise

R e

] Errors | @ Warnings

CDT Build Console [matrix_mult_prj]

4| m] »

matrix_mult_prj

3A: Creating Projects in Vivado HLS

= 0|5z outli 2 [Direc

An outline is not available.

O G [E@EEIR =D

Figure 3.4: Synthesis view in the workspace

While the process of getting to this stage of HLS development is relatively straightforward, it

can be quite repetitive and so can be facilitated by use of Tcl scripting. This automates the

process of project naming and adding files. As such, we will now demonstrate the creation of

the same project using the aforementioned scripting approach.

Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zyngbook.com

63

Exercise 3A: Creating Projects in Vivado HLS

(j) First, close the Vivado HLS GUI. We will now open the Vivado HLS Command Prompt.

Launch the command prompt by navigating to Start > All Programs > Xilinx Design Tools

> Vivado 2014.1 > Vivado HLS > Vivado HLS 2041.1 Command Prompt.

& Vivado HLS 2014.1 Command Prompt e

Microsoft Windows 5 6.1.76811
[Copyright <{c» 288? Microsoft Corporation. All rights reserved.

C:sKilinx\Uivado HLSN2814 .13

Figure 3.5: Vivado HLS command prompt

(k) Itis observed that the default directory for commands is the install directory of Vivado HLS, as
in Figure 3.5. To change this to the working directory for this tutorial, use the following
commandes, followed by pressing the Enter key.

+ cd.. — This is a change directory command which moves up a

level in the directory. Repeat this until you have reached the level of the C: drive.

+ «dZynq_Book — This changes directory to the Zynqg_Book folder.
« cdHLS — This changes directory to Zynq_Book/HLS.
+ cdtut3A — This changes directory to Zynq_Book/HLS/tut3A.

The command prompt should now be in the working directory C:\Zynq_Book\HLS\tut3A. This
folder contains the source and test files for a project, and also the Tcl script required to build the

project, run_hls.tcl.

(I) With the correct working directory and the required files present in that directory, we can now

build the project. This is achieved through simply running the Tcl script using the command:

vivado_hls -f run_hls.tcl

This will begin the process of creating the project and adding source and test bench files. A HLS
solution is then created before configuring the project for the target device. Finally a C simulation

is run which utilises the test bench to ensure the project operates correctly.

Designing With Vivado High www.zyngbook.com 64
Level Synthesis
v1.2, May 2014

Exercise 3A: Creating Projects in Vivado HLS

The testbench performs identical multiplications using the HLS hardware solution and software,

and compares the results. If these results are identical, a “Test passed!” message is displayed.:

(m) To open the project in the Vlvado HLS GUI enter the following command:

vivado_hls -p matrix_mult_prj

And press Enter. This will open the Vivado HLS GUI for the project, which we will utilise in the next

exercise.

Using the project generated in the previous exercise, we will now investigate the process of design
optimisation in Vivado HLS. This will also provide an insight into the flow from project creation to C
synthesis and C/RTL cosimulation. We will also discuss the use of the Analysis perspective in analysing a HLS

solution.

Designing With Vivado High www.zyngbook.com 65
Level Synthesis
v1.2, May 2014

Exercise 3B: Design Optimisation in Vivado HLS

(@) You should already have the GUI open from the previous exercise, but if you don’t open the
project matrix_mult_prjin the directory C:\Zynq_Book\HLS\tut3A and save in to the \tut3B

directory using File > Save As and selecting the \tut3B directory as the location.

(b) Expand the tabsfor Source and Test Bench in the Explorer tab of the Synthesis view. As before,
this shows that the source and test files have been successfully added to the project. Double
clicking on each of these will open them in the editor allowing the code to be inspected and

altered as required.

matrix_mult.cpp contains code that performs the multiplication of two matrices through use
of iterative loops that run through the rows and columns of the matrices to calculate the

product.
matrix_mult.h contains definitions and the prototype function for the matrix multiplication.

matrix_mult_test.cpp is the test bench file which calculates the product of two given
matrixes using both the HLS hardware solution and software, comparing to two to ensure
successful operation.

(c) Click the Run C Simulation button B in the toolbar to run a C simulation of the solution.
Leave the options as default (no boxes checked, no input arguments) and click OK. Upon
completion of the simulation, the “Test passed!” message will be displayed in the console in

the bottom of the screen as in Figure 3.6.

El console i3 9] Errors| & Warnings

Vivado HLS Conscle

@I [5YN-201] Setting up clock 'default’ with a pericd of Sns.
@I [HLS-1@] Setting target device to 'xc7z@2@clg4ss-1'

make: “csim.exe' is up to date.

Test passed!

@I [5IM-1] CSim done with @ errors.

@I [LIC-1@1] Checked in feature [HLS]

Figure 3.6: Vivado HLS console detailing successful testing

(d) The next step is to synthesise the C++ code using HLS. Click the C Synthesis button B in
the toolbar. Vivado HLS will begin the process of converting the C++ code into an RTL model
with associated VHDL/Verilog/SystemC code. The console details the steps performed in

achieving this.

Designing With Vivado High www.zyngbook.com 66
Level Synthesis
v1.2, May 2014

Exercise 3B: Design Optimisation in Vivado HLS

Upon completion, a Synthesis Report will open automatically. This details various aspects of
the synthesised design, such as information concerning timing and latency and FPGA

resource utilisation estimates.

Performance Estimates
-| Timing (ns)
=I Summary
Clock Target Estimated Uncertainty
default 5.00 344 0.62
- Latency (clock cycles)
=I Summary
Latency Interval
min max min max Type
686 686 687 687 none
= Detail
+ Instance
= Loop
Latency Initiaticn Interval

Loop Mame min max IHeration Latency achieved target Trip Count Pipelined

- Row 685 685 137 - - 5 no
+ Col 135 135 27 - - 5 no
++ Product 25 25 5 - - 5 no

Figure 3.7: Synthesis report for the matrix multiplier, solutionl

The synthesised design has an interval of 687clock cycles. Each input array contains 25

elements (as it used 5x5 matrices) and so this suggests roughly 27 clock cycles per input read.
(e) We can now run a C/RTL cosimulation to ensure that the synthesised RTL behaves exactly the

same as the C++ code under test.

Click the Run C/RTL Cosimulation button

and click OK. Cosimulation will now begin, with the RTL system being generated using VHDL.

“! FortheRTL selection, ensure VHDL is selected

This process make take a short while to complete but progress can be viewed in the console.

Designing With Vivado High www.zyngbook.com 67
Level Synthesis
v1.2, May 2014

Exercise 3B: Design Optimisation in Vivado HLS

Upon completion, the Cosimulation Report will be opened as in Figure 3.8

Cosimulation Report for ‘'matrix_mult’

Result

Latency Interval
RTL min avg max min avg max
WHDL Pass WM 686 686 686 687 687 687
Verilog MA NA L NA MA - MNA L NA MA
System(C MA NA L NA MA - MNA L NA MA

Export the report(.html) using the Export Wizard

Figure 3.8: Cosimulation report for the matrix multiplier, solution1

Note the “Pass” message of Figure 3.8 indicating that the RTL behaves the same as the C++
source code.

i
9 in the

(f) Create a new solution for the design by either clicking the New Solution button
toolbar or the menu option Project > New Solution. Click Finish to accept the defaults for

solution2.

(g) Double click on matrix_mult.cpp in the Source section of the Explorer tab to ensure the code
is visible in the workspace. We will now insert a directive which will pipeline the nested loops
of the matrix multiplication code. This will perform loop flattening, removing the need for

loop transitions.

Open the Directive tab to the right of the workspace. Click on Product and you will observe
the associated portion of code highlighted in the editor, in this instance the multiplication of
array elements to produce the product elements of the resulting matrix. Right click on

Product and select Insert Directive. This will open the Directives Editor. Use the type drop-

Designing With Vivado High www.zyngbook.com 68
Level Synthesis
v1.2, May 2014

Exercise 3B: Design Optimisation in Vivado HLS

down menu to select the option PIPELINE. Click OK to accept the default options. The

directives tab should now resemble Figure 3.9.

EE Outline | [14 Directive &2

= B8

4 @ matr_mult
4 13
F
prod
a ' Row
4 % Col

WAy
F | =%

Product
O HLS PIPELIME

Figure 3.9: Pipelining nested loops in HLS

(h) Click the C Synthesis button to synthesise the RTL design. The console yields some

information about the process of flattening the Row loop. It also explains that the default

initiation internal (Il) target of 1 could not be met for the Product loop. This is due to loop

dependency.

Performance Estimates

- Timing (ns)
=| Summary
Clock Target Estimated Uncertainty
default 5.00 7.80 0.63
- Latency (clock cycles)
=| Summary
Latency Interval
min max min max Type
426 426 427 421 none
= Detail
+ Instance
= Loop
Latency
Loop Mame min max Iteration Latency
- Row_Col 425 425 17
+ Product 12 12 5

Initiation Interval

achieved target Trip Count Pipelined
25 no
2 1 5 yes

Figure 3.10: Synthesis report for the matrix multiplier, solution2

Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zyngbook.com 69

Exercise 3B: Design Optimisation in Vivado HLS

From the synthesis report shown in Figure 3.10 it is observed that the top level loop, Row_Col
has not been pipelined as loop Col was not flattened. It is also observed an Il of 2 was achieved
despite the target of 1.

Open the Analysis perspective by clicking on &d" Analysis This will also open the
Performance view showing how the various operations within the code are scheduled as clock
cycles.

Expand the loops Row_Col and Product by clicking on them to obtain the view shown in Figure

3.11.

Corrent Module : matrix mult

Operation\Control Step Co C1 c2 C3 C4 C5 C6 Cc7 C8

(o "R T R SR

[y
]

11

—|Row_Col

indvar flatten(phi ...
i(phi_ mux)

J (phi_mux)

exitcond flatten (icmp)
indvar flatten next (+)
exitcondl (icmp)

J_mid2 (select)

i s({+)

i mid2 (=select)

p_addr7 (+)

12 addri (+)
I 13 node 33 (write) I
-

14

-]Product

15 k(phi_mux)

16 exitcond (icmp)

17 k_1(+)

18 p_addrl (+)

19 p_addrs3 (+)

20 p_addr4(+)

21 a_load (read)

22 b load(read)

23 tmp T (%)

24 prod load(read)

25 tmp 8 (+)

26 node 62 (write)

27 | i_1(9)

Figure 3.11: Performance view for solution2
Note that the highlighted write operation occurs in state C3, node_33(write). Right clicking on
this cell and selecting Goto Source will highlight the associated line of code in the source file.
This is a write operation initialised as a write to a port in the RTL which occurs before any
operations in the loop, Product, can be executed. This prevents the flattening of loop Product
Designing With Vivado High www.zyngbook.com 70
Level Synthesis

v1.2, May 2014

Exercise 3B: Design Optimisation in Vivado HLS

in to Row_Col.
Furthermore, the inability to meet the target of Il = 1 can be explained by considering

consecutive iterations of the loop. Consulting the console reveals the following message:

@W [SCHED-68] Unable to enforce a carried dependency constraint (II =
1, distance = 1) between ‘store’ operation (matrix_mult.cpp:16) of
variable ‘tmp_8’ on array ‘prod’ and ‘load’ operation (‘prod_load’,
matrix_mult.cppl6) on array ‘prod’.

There exists a dependency between iterations of the operation at line 18 of the source code,

which is the operation within the Product loop.

prod[i][]j] += a[i][k] * b[k][]];

Due to the presence of the += operator, this line of code contains a read from array prod (the
aforementioned load operation) and a write to array prod (a store operation). With an Il of 1, a
succeeding Product loop iteration would occur one clock cycle after the initiation of the first
iteration. This is visualised in Figure 3.12. With Il set to 1, the highlighted overlap is observed.
Arrays are mapped to BRAM by default, and since this overlap requires a read and a write operation

to be performed on the same clock cycle, this is simply not possible as both operations cannot

Designing With Vivado High www.zyngbook.com 71
Level Synthesis
v1.2, May 2014

Exercise 3B: Design Optimisation in Vivado HLS

occur on the BRAM at the same time. Therefore, setting the Il to 2 allows the write operation to be

completed before the read operation of the next loop iteration begins.

Current Module : matrix mult

| operation\control step co ci | 2 | aa | ca | s | cs c7 cs
1 ERow _Col
2 indvar_flacten(phi_... I H k - 0
3 1 (phi_mux) teration
4 J (phi_mux)
5 exitcond flatten (icmp)
6 indvar_flatten next (+)
7 exitcond] (icmp)
8 3_mid2 (select)
9 1s(+)
10 i mid2 (select)
11 | p_addr7(+)
12 p_addr8 (+)
13 node_33(write)
14 =Product
15 k (phi_mux)
16 exitcond (icmp)
17 K 1(+)
18 p_addrl (+)
19 p_addr3(+)
20 ©_addzd (+)
21 a_load (read)
22 b_load (read)
23 tmp_7 (%)
24 prod load(read)

25 tnp_8 (+)
ol e earaeien i
27 | 318

- Row_Col [r

indvar flatten(phi
Iteration k = 1

1 (phi_mux)
3 (phi_mux)
exitcond_flatten (icmp)
indvar_flatten next (+)
exitcondl (icmp)

j_mid2 (select)

is(+)

i_mid2 (select)

P_addr7 (+)

p_addre (+)

OVERLAP

node_33 (write)

K (phi_mux)
exitcond (icmp)
K_1(+)
p_addri (+)
p_addr3(+)
p_addrd (+)
a_load (read)

(1) 1easeu] uoneusy|

e e e N A O e e e e e e ey |

= Product I

b_load (read)
tmp_7 (%) I
prod_load (read)

. —
tmp_8 (+)
node_62 (write)
i_1#)

L —d

Figure 3.12: Consecutive iterations of Product loop with IT =1

(k) Return to the Synthesis perspective by clicking on | Synthesis

We will now create a new solution which pipelines the Col loop, unrolling the Product loop at
to eliminate inter-iteration dependency but at the cost of increased operators and hence

hardware cost.

Designing With Vivado High www.zyngbook.com 72
Level Synthesis
v1.2, May 2014

Exercise 3B: Design Optimisation in Vivado HLS

o
N the

(I) Create a new solution for the design by either clicking the New Solution button
toolbar or the menu option Project > New Solution. From the drop-down menus, ensure

solution1 is selected, as in Figure 3.13, as this contains no existing directives or constraints.

Solution Configuration —r)

Create Vivado HLS selution for selected technology

Solution Mame: solution3

Clock
Pericd: 5 Uncertainty:

Part Selection
Part: xc7z020clg484-1]

Options
J| Copy existing directives from solution: solutionl -

J| Copy existing custom constraints from sclution: sclutionl -

Figure 3.13: Configuring solution3

Click Finish to create the solution.
(m) Ensure the source code matrix_mult.cpp is visible in the editor. In the Directives tab, right-click
on loop Col and select Insert Directive. From the drop-down menu, select directive type

PIPELINE and click OK to select the directive with the defaults (Il = 1).

(n) Click the C Synthesis button to synthesise the RTL design. Observing the Console will show
that while Product was unrolled and loop Row was flattened the Il target of 1 could not be met

for loop Row_Col, this time due to limitations in the resources.

@W [SCHED-69] Unable to schedule ‘load’ operation (‘b_load 4°,
matrix_mult.cpp:16) on array ‘b’ due to limited memory ports.
(0) Open the Analysis perspective by clicking on ad” Analysis This will open the Performance

view. Switch to the Resource view by clicking the tab at the bottom of the screen.

Designing With Vivado High www.zyngbook.com 73
Level Synthesis
v1.2, May 2014

Exercise 3B: Design Optimisation in Vivado HLS

(p) Expand the Memory Ports to view resource sharing on the memory within the system.

Current Module

Resource\Control Step

: matrix mmlt

Co o | Cc2 =3 C4 C5 Co C7 Ccs Cco C10 €11

1-4 FHI/0C Ports
5-10 @ Instances

11 [FMemory Ports

12 b
13 a
14 b
15 a
16 prod

17-41HExpressions

read read

read read read

read read read
read read

write

Figure 3.14: Resource sharing on memory ports of solution3

Figure 3.14 shows the operations per resource on each clock cycle. In actual fact, the 2 cycle read
operation on b beginning in C3 overlaps with those in C4 so only a single cycle is visible. There are
instances of both a and b being subjected to 3 read operations at once, which you will remember
is not possible for dual-port BRAM. It is therefore necessary to partition these arrays into smaller

sections, allowing modification of the array without altering the source code.

() Return to the Synthesis perspective by clicking on 1* | ynthesis

gh__
1 in the

Create a new solution for the design by either clicking the New Solution button
toolbar or the menu option Project > New Solution. Click Finish to accept the defaults for

solution4.

For this solution, we will reshape the input arrays using directives. The Product loop is
accessed via loop index k, therefore arrays a and b should be partitioned along their k
dimension. Inspecting line 16 of matrix_mult.cpp it is observed that for a[i][k] this is dimension
2 and for b[k][j] dimension 1.

Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zyngbook.com 74

Exercise 3B: Design Optimisation in Vivado HLS

(r) Ensure the source code matrix_mult.cpp is visible in the editor, and open the Directives tab.
Right-click on variable a and select Insert Directive. Ensure the directive is configured as in

Figure 3.15, with ARRAY_RESHAPE selected as directive type and dimension specified as 2.

Type
Directive: | ARRAY_RESHAPE -

Destination
Source File

@ Directive File

Options

variable (required): a

object:

type (optional): ‘mmphﬂe -

factor (optional):

dimension (optional): 2|

Figure 3.15: Directive configurations for reshaping array a

(s) Repeat for array b, this time ensuring dimension is set to 1.

(t) Click the C Synthesis button to synthesise the RTL design. The synthesis report will open,

showing that the target Il of 1 has now been met.

- Latency (clock cycles)
= Summary

Latency Interval
min max min max Type
35 35 36 36 none

= Detail
+ Instance
- Loop
Latency Initiation Interval

Loop Mame min max Iteration Latency achieved target Trip Count Pipelined
- Row_Col EE EE 10 1 1 25 YES

Figure 3.16: Synthesis report for solution4

The top-level of the design takes 35 clock cycles for completion, with the Row_Col loop
outputting a sample after an iteration latency of 10. A sample is then read in every cycle (due

to an Il of 1), and after 25 counts all samples have been read in. The 35 clock cycle life of this

Designing With Vivado High www.zyngbook.com 75
Level Synthesis
v1.2, May 2014

Exercise 3B: Design Optimisation in Vivado HLS

design is therefore justified by the 25 counts plus the latency of 10, as 25 + 10 = 35.

The function then proceeds to calculate the next set of data.

(u) The final optimisation in this exercise is to pipeline the function, rather than the loops within
that function for comparison. Create a new solution for the design by either clicking the New
Solution button ﬁE' in the toolbar or the menu option Project > New Solution. Click Finish
to accept the defaults for solution5.

(v) Ensure the source code matrix_mult.cpp is visible in the editor, and open the Directives tab.
First, remove the previously inserted pipeline directive on loop Col. Right-click on the directive
and select Remove Directive.

(w) Right-click on the top level function matrix_mult and select Insert Directive. Select PIPELINE as

the directive type and click OK.
(x) Click the C Synthesis button to synthesise the RTL design.

=}
(y) Vivado HLS provides a tool for comparing synthesis reports. Click the = button or the

menu option Project > Compare Reports.

Solution Selection

Please select the solutions you want to compare

Available solutions: Selected solutions:
solutionl e solution5
solutionZ Add>> solutiond
rolten?

Figure 3.17: Solution selection for comparison

Ensure solution4 and solution5 are added as in Figure 3.17. Click OK.

(z) Figure 3.18 shows the comparison of synthesis report for solution4 (with loop pipelining) and
solution5 (with top level function pipelining). It is observed that pipelining the top level
function results in a design which reaches completion in fewer clocks, requiring only 13 clock

cycles to begin a new transaction, rather than 36 for pipelining the loop.

Designing With Vivado High www.zyngbook.com 76
Level Synthesis
v1.2, May 2014

Exercise 3B: Design Optimisation in Vivado HLS

However, this comes at the cost of increased hardware utilisation due to unrolling of all loops
within the design. A tradeoff is therefore necessary between system performance and the
hardware utilisation of the design, and it is possible that a partially unrolled design may meet

the performance requirements at a reduced hardware cost.

Performance Estimates

= Timing (ns)
Clock solution solutiond
default Target 5.00 5.00
Estimated 3.89 389

= Latency (clock cycles)

solutionS solutiond

Latency min 25 35
max 25 35
Interval min 13 36
max 13 36

Utilization Estimates

solutiond solutiond

BRAM_18K 0]
DSP4SE 125 5
FF 3550 260
LuT 538 90

Figure 3.18: Comparison of solution4 and solution5

(a@a) This completes the exercise. Close the Vivado HLS GUI.

We will now briefly explore the concept of interface synthesis in Vivado HLS, using the matrix multiplier

function of the previous two exercises.

Designing With Vivado High www.zyngbook.com 77
Level Synthesis
v1.2, May 2014

Exercise 3C: Interface Synthesis

(@) Launch the command prompt by navigating to Start > All Programs > Xilinx Design Tools

> Vivado 2014.1 > Vivado HLS > Vivado HLS 2014.1 Command Prompt.

(b) Change the working directory to C:\Zynq_Book\HLS\tut3C. This folder contains the source

and test files for a project, and also the Tcl script required to build the project, run_hls.tcl.

(c) Run the Tcl script using the command:

(d) To open the project in the Vivado HLS GUI enter the following command:

vivado_hls -f run_hls.tcl

vivado_hls -p matrix_mult_prj

And press Enter. This will open the Vivado HLS GUI for the project, which we will utilise in the next

exercise.

(e) Open the source file matrix_mult.cpp from the Source section of the Explorer tab and click the

C Synthesis button to synthesise the RTL design. When the synthesis report opens, scroll to

the Interface section.

Interface

-] Summary
RTL Ports

ap_clk
ap_rst
ap_start
ap_done
ap_idle
ap_ready
a_addressl
a_cel
a_gd
b_address0
b_cel
b_g0
prod_addressi
prod_cel
prod_wel
prod_di

Bits Protocol
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs

ap_memory

ap_memaory
ap_mermory
ap_memory
ap_memaory
ap_memory
ap_memary

ap_memory

e - R R L - B = B e o R R R = =)

ap_memory

=
(=]

ap_memaory

Source Object
matriz_mult
matriz_mult
matriz_mult
matri_mult
matrix_mult
rmatriz_mult

a

a
a
b
b
b
prod
prod

prod
prod

C Type
return value
return value
return value
return value
return value
return value

array
array
array
array
array
array
array
array
array

array

Figure 3.19: Interface summary for solutionl

Designing With Vivado High

Level Synthesis
v1.2, May 2014

www.zyngbook.com

78

Exercise 3C: Interface Synthesis

Note that the input arrays a and b, and the resultant product array prod have been
implemented using the ap_memory protocol. This is inferred from the C++ source code, as the

array type corresponds with the structure of memory.

Input arrays a and b are both 8 -bit signals on ports a_qg0 and b_q0. The output array, prod is
a 16-bit signal on port prod_d0. Each signal has a corresponding 5-bit address port,
designated as a_address0, b_address0 and prod_addressO.

The protocol also requires clock enable signals (a_ce0 and b_ce0), and a write enable

(prod_we0).

Since the design requires more than one clock cycle to complete and is therefore
synchronous, a clock and reset port have been synthesised as ap_clk and ap_rst, and both are

1-bit signals.

A block level control protocol with handshaking, ap_ctrl_hs, has also been implemented

(ap_start, ap_done, ap_idle and ap_ready).

« The ap_start input is asserted, prompting block operation. This produces three output
control signals indicating the stage of operation.

« ap_ready indicates that the block is ready for new inputs.

« ap_idleis an indication that data is currently processing data.

« ap_doneindicates that output data has been processed and is available.

Recalling Exercise 3B, the arrays were partitioned to reduce each into several smaller sections with
expanded ports, control signals and implementation resources. This increased the bandwidth.

This directly influenced the interface synthesis through use of directives.

This concludes this introduction to the design flow of Vivado HLS. This tool will be used further in future

exercises, and synthesised RTL will be implemented as part of a larger functional model.

Designing With Vivado High www.zyngbook.com 79
Level Synthesis
v1.2, May 2014

The Zynq Book Tutorial

IP Creation

v1.2, May 2014

Revision History

Date Version Changes
22/10/2013 1.0 First release for Vivado Design Suite version 2013.3
28/01/2014 11 Updated for changes in Vivado Design Suite version
2013.4
06/05/2014 12 Updated for changes in Vivado Design Suite version
2014.1
IP Creation www.zyngbook.com

v1.2, May 2014

82

Introduction

Introduction

The exercises in this tutorial will guide you through the process of creating custom IP modules, that are
compatible with Vivado IP Integrator, from a variety of different sources. All created IP will be compatible
with the Xilinx supported AXI-Lite interface, and will be connected as slave devices when implemented in

Vivado IP Integrator.
All IP creation methods that are covered here coincide with those covered in the book:

« HDL
o MathWorks HDL Coder
o Xilinx Vivado HLS

The tutorial is split into three exercises, and is organised as follows:

Exercise 4A - In this exercise, HDL will be used to create a controller which will allow the LEDs on the
ZedBoard to be controlled by software running on the PS. The Create and Package IP Wizard will be used to
create an AXI-Lite interface wrapper which the LED control process and interface will be added to. The IP

packaging process will then be used to create an IP block which is compatible with IP Integrator.

Exercise 4B - HDL Coder, the MathWorks HDL generation tool, will be explored in this exercise. A Least
Mean Squares (LMS) adaptive filter will be created and tested in the Simulink workspace. The LMS design
will then be used to generate HDL code by invoking the HDL Coder Workflow Advisor, where the option to
generate a Xilinx IP Core will be selected. The various stages of the workflow will verify the design to ensure

that it is HDL Coder compliant and produce the HDL code in a format that is compatible with IP Integrator.

Exercise 4C - In this final exercise, Vivado HLS will be used to create an IP core for a Numerically Controlled
Oscillator (NCO). An existing C-code algorithm will be simulated for testing, and ran through the various

stages of synthesis in order to create an IP Integrator compatible IP core.

IP Creation www.zyngbook.com 83
v1.2, May 2014

Exercise 4A: Creating IP in HDL

With Zynq devices comprising of both PS and PL parts, most IP that is created to run in PL should
be able to communicate with software running on the PS. This requires that IP should be

packaged with an interface that is compatible with the PS (in this case the AXl interface).

When creating IP in HDL, Vivado provides a set of AXI interface templates which can be created
and customised via the Create and Package IP Wizard. The wizard, as the name suggests, facilitates
two major functions: the creation of AXI4 IP peripherals; and the packaging of existing source files

into an IP package which is compatible with the IP Integrator tool.

In this exercise we will actually be making use of both of these features to firstly create an AXI4-
Lite IP template to which we will add functionality to allow the LEDs on the ZedBoard to be
controlled via a software application running on the Zynq PS. Once the functionality has been
added to the template, the source files will be packaged into an IP Integrator compatible IP block

which will be included in a simple Zynq processor system.
We will start by creating a new Vivado project.

(@) Launch Vivado by double-clicking on the Vivado desktop icon: Lo or by navigating to Start

> All Programs > Xilinx Design Tools > Vivado 2014.1 > Vivado 2014.1
(b) Select Create New Project from the Getting Started screen.
(c) The New Project dialogue will open. Click Next.

(d) Atthe Project Name dialogue, enter led_controller as the Project name and C:/Zynq_Book as
Project location.
Make sure that you select the option to Create project subdirectory. Ensure that all options

match Figure 4.1.

Project name: | led_contraller

Project location: | C:/Zyng_Book| |:|

| Create project subdirectory

Figure 4.1: Vivado Project Name specification - led_controller

Click Next.

IP Creation www.zyngbook.com 84
v1.2, May 2014

Exercise 4A: Creating IP in HDL

(e) Select RTL Project at the Project Type dialogue, and ensure that the option Do not specify

sources at this time is not selected:

g RTL Project
You will be able to add sources, generate IP, run RTL analysis, synthesis,
implementation, design planning and analysis.

Do not spedfy sources at this time

Click Next.
(f) Select VHDL as the Target language in the Add Sources dialogue.
If existing sources, in the form of HDL or netlist files, were to be added to the project they
could be imported at this stage.
As we do not have any sources to add to the project, click Next.
(g) The Add Existing IP (optional) dialogue will open.
If existing IP sources were to be included in the project, they could be added here.

As we do not have any existing IP to add, click Next.

(h) The Add Constraints (optional) dialogue will open.
This is the stage were any physical or timing constraints files could be added to the project.

As we do not have any constraints files to add, click Next.

(i) The Default Part dialog will open. Here we will be selecting the Zynqg part which we are
targeting. In this particular case we will be targeting the Zyng-7020 on the ZedBoard, but if
you have a different development board, it is easy to choose your particular board instead.
Select Boards from the Specify pane, ZedBoard Zynq Evaluation and Development Kit as the
Display Name, and finally select the Board Rev which you have. In Figure 4.2 version C of the

ZedBoard has been selected.

IP Creation www.zyngbook.com 85
v1.2, May 2014

Exercise 4A: Creating IP in HDL

Default Part
Choose a default Xilinx part or board for your project. This can be changed later.

Specify Filter

& Parts Vendar | Al -
Display Mame | ZedBoard Zyng Evaluation and Dev... +
Board Rey | -

Reset All Filters

Search:

Display Name Vendor Board Rev Part

* ZedBoard Zyng Evaluation and Development Kit |em.avnet.com |c

[< Back ” MNext =] Einish

Figure 4.2: Vivado Default Part dialogue

Click Next.

(j) Review the New Project Summary dialogue, and click Finish to create the project.

With the new project created, we can begin the process of creating our HDL-based IP.

(k) From the menu bar, select Tools > Create and Package IP ..., as in Figure 4.3, to launch the

Create and Package IP Wizard.

Tools | Window Layout View Help

Report ¥

& Create and Package IP...

Run Td Script. ..

Property Editor Ctrl+J
Associate ELE Files. ..

L

Compile Simulation Libraries. ..

Figure 4.3: Create and Package IP menu bar selection

IP Creation www.zyngbook.com 86
v1.2, May 2014

Exercise 4A: Creating IP in HDL

() The Create and Package IP Wizard dialogue will launch, as shown in Figure 4.4.

Create and Package IP

This wizard can be used to accomplish two tasks:

Package a new IP for the Vivado IP Catalog

This wizard wil guide you through the process of creating a new Vivado IP using source files and
information from your current project or specified directory.

Create a new AXI4 Peripheral

This wizard will guide you through the process of creating a new AXI4 peripheral which includes
HOL, driver, software test application, IPI BFM simulation and debug demonstration desian.

Click Mext to continue

< Back : : Einish Cancel

Figure 4.4: Create and Package IP Wizard dialogue

Click Next.

The Choose Create Peripheral or Package IP dialogue (Figure 4.5) is where we specify whether to
create a new peripheral template file or to package existing source files into an IP core.

In our case we want to create a new IP template.

(m) Select Create new AXI peripheral, as shown in Figure 4.5.

Choose Create Peripheral or Package IP

Please select one of the following tasks.

Package your current project
Use the project as the source for creating a new IF Definition.
Mote: All sources to be packaged must be located at or below the spedfied directory.

= Package a specified directory
Choose a directory as the source for creating a new IP Definition.

5, iCreate a new AXI4 peripheral
Create an AXI4 IP, driver, software test application, IPT AXI4 BFM simulation and debug demonstration design.

[< Back][Mext =] Einish

Figure 4.5: Choose Create or Package IP dialogue

Click Next.

IP Creation www.zyngbook.com 87
v1.2, May 2014

Exercise 4A: Creating IP in HDL

The Peripheral Details dialogue allows you to specify the Vendor, Library, Name and Version
(VLNV) information, as well as other details, for the new peripheral, leaving the IP Location as the

default.

(n) Fill in the details as shown in Figure 4.6.

Peripheral Details
Specify name, version and description for the new peripheral '

Mame: led_controller
Version: 1.0

Display Mame: |led_controller_v1.0
Description: | led_controller_v1.0

IF Location: C:Eynq_ﬂmkﬁp_repcd

Figure 4.6: Peripheral Details dialogue

Click Next.

The Add Interface dialogue allows you to specify the AX14 interface(s) that will be present in your

custom peripheral. Here you can specify:

« Number of interfaces
« Interface type (AXI-Lite, AXI-Stream or AXI-Full)
- Interface mode (slave or master)

- Interface data width

Features specific to individual interface types will also be available when the corresponding type

is selected.

As our peripheral is a simple controller for the LEDs which only requires single values to be
transferred to it, an AXI-Lite slave interface is sufficient. Only one memory mapped register is
required for our simple controller, but as the minimum number that can be specified in the

dialogue is 4, we will choose that.

IP Creation www.zyngbook.com 88
v1.2, May 2014

(0) Specify the Add Interface dialogue as shown in Figure 4.7.

| Create And Package New

Add Interfaces
Add AXI4 interfaces supported by your peripheral

[7] Enable Interrupt Support g X

= Interfaces

[E=G00_AXI

led controller w10

Figure 4.7: Add Interface dialogue

Click Next.

@

MName S00_AXI
Interface Type Lite
Interface Mode Slave
Data Width (Bits) 32
Memory Size (Bytes) | 64
MNumber of Registers

Exercise 4A: Creating IP in HDL

[< Back

(p) Review the information in the Create Peripheral dialogue, which details the output files which

will be created.

Select the option to Edit IP. This will create the IP peripheral files and create a new Vivado

project where the functionality of the peripheral can be modified in the source HDL code, and

then packaged.

Click Finish to close the Wizard and create the peripheral template.

A new Vivado project, named edit_led_controller_v1_0, will open.

In the Sources pane, you should see two HDL source files:

Sources 5] e
M o i :
A== et R
EI g T Design Sources (2]
! B '-'I_1 4 led_controller_v1_0 - arch_imp (J=d troller_v1_0.vhd) (1]
A -l led_controller w1 0 500 AXI inst - led cnnt’u:-ller '-.-'1 _0_500 M\I arch_imp (Jed_contraller_vi_0_S00_AXI.vhd)

As we specified our target language as VHDL in Step (f) earlier, the template files have been

generated in VHDL. Had we specified Verilog as the target language, Verilog source files would

have been created.

The two source files are:

IP Creation www.zyngbook.com

v1.2, May 2014

89

Exercise 4A: Creating IP in HDL

« led_controller_v1_0.vhd — This file instantiates all AXI-Lite interfaces. In this case, only
one interface is present.

« led_controller v1 0 S00 AXl.vhd — This file contains the AXl4-Lite interface
functionality which handles the interactions between the peripheral in the PL and the

software running on the PS.

The IP Packager pane will also be open in the Workspace:

%, Project Summary ¥ | © Package IP - led_controller x O
IP Packaging Steps & IP Identification more info
+ IP Identification Vendor: xilinz. com
+' 1P Compatibility Library: user
' TP File Groups Mame: led_controller
+" IP Customization Parameters Version: =
« IF Ports and Interfaces Display name: led_controller_v1.0
Description: led_controller_w1.0

+ IP Addressing and Memory

Vendor display name:
+ IP GUI Customization

Company url: |

Review and Package _
Categories: AXI_Peripheral _’
Root directory: c:fZyng_Bookfled_controllerled_controller_1.0
¥ml file name: c:fZyng_Bookfled_controllerled_controller_1.0/compaonent. xml

The information that we specified about our peripheral in Step (n) will be visible.

We can now add the functionality to our led_controller peripheral. We will be adding a new
output port to the peripheral template to allow it to connect to the LED pins on the Zynq device,

as well as assigning the value received from the Zynq PS to the new output port.

(g) Open led_controller_vi1_0_S00_AXI.vhd by double-clicking on it in the Sources pane. The file

will open in the Workspace.
(r) Scroll down until you see the following comment in the entity port declaration:

-- Users to add ports here

and add the following port definition directly below the comment:

LEDs_out : out std_logic_vector(7 downto 0);

This creates a new output port with a width of 8-bits (a single bit to represent each of the LEDs

on the ZedBoard).

IP Creation www.zyngbook.com 90
v1.2, May 2014

Exercise 4A: Creating IP in HDL

(s) Scroll to the bottom of the file. You should see the following comment:

-- Add user logic here

and add the following port/signal assignment:

LEDs_out <= slv_reg@(7 downto 0);

This assigns the value that is received from the Zynq PS (stored in the signal slv_reg0) to the
output port that we created in the previous step.

(t) Save the file by selecting File > Save File from the Menu Bar, or using the keyboard shortcut
Ctrl+S.

(u) Open led_controller_v1_0.vhd by double-clicking on it in the Sources pane. The file will open

in the Workspace.

We must once again create a new output port to the top-level source file, and map it to the

equivalent port that we created in the AXI4-Lite interface file in the previous steps.

(v) Scroll down until you see the following comment in the entity port declaration:

-- Users to add ports here

and add the following port definition directly below the comment:

LEDs_out : out std _logic_vector(7 downto @);

As we added a new port to the AXI4-Lite interface file, we must also add it to the component

declaration in the top-level file.

(w) Scroll down until you see the comment:

-- component declaration

A few lines further down you will see the component port declaration:

port (

Inside the port declaration (below the “port (“line), add the following output port definition:

LEDs_out : out std _logic_vector(7 downto 0);

Finally, we must add a port mapping between the LED output ports of the top-level file and the
AXl4-Lite interface file.

IP Creation www.zyngbook.com 91
v1.2, May 2014

Exercise 4A: Creating IP in HDL

(x) Scroll down until you see the comment:

-- Instantiation of Axi Bus Interface S00 AXI

A few lines further down you will see the component port map:

port map (

Inside the component port map (below “port map (”line), add the following port map:

LEDs_out => LEDs_out,
(y) Save thefile.

Now that we have made the necessary modifications to the peripheral source files, we must

repackage the IP to merge the changes.

(z) Return to IP Packager by selecting the Package IP - led_controller tab in the Workspace:

X Project Summary)i Package i - led controller X

IP Packager will detect the changes to the source files, and the areas which need refreshed will be
highlighted with the following icon: #. You should see that the following two areas need
refreshed:

IP Customization Parameters

IP Ports and Interfaces

(aa) Select IP Customization Parameters in the IP Packager pane.

You should see the following information message at the top of the pane:

'\Q} Merge changes from IP Customization Parameters Wizard

Click Merge changes from IP Customization Parameters Wizard

This will update the IP Packager information to reflect the changes made in the HDL source
files.

NOTE: This process updates IP Packager information for all areas. You should see that the area

of IP Ports no longer needs updated, and the # icon has now been removed.

To verify that IP Packager has updated the IP Ports area, we will open it and check.

IP Creation www.zyngbook.com 92
v1.2, May 2014

Exercise 4A: Creating IP in HDL

(ab)Select IP Ports and Interfaces from the IP Packager pane.
You should notice that the LEDs_out port that we added to the source files has been added

to the IP Ports and Interfaces pane:

Mame Direction Driver Value Size Left Size Left Dependency Size Right Size Right Dependency Type Mame
+J LEDs_out out 7 0 std_logic_vector

The final step in creating our new IP peripheral, is to package the IP.

(ac) Select Review and Package from the IP Packager pane.

(ad)In the After Packaging panel, click edit packaging settings at the bottom:
After Packaging

o An archive will not be generated. Use the settings link below to change your preference

o Project will be removed after completion

I edit packaging settings

(ae) In the Automatic Behaviour panel, enable the option to Create archive of IP:

Automatic Behavior

After Packaging

| Add IP to the IP Catalog of the current project

| Close IP Packager window

This makes a ZIP file archive of the packaged IP.
(af) Click OK to apply the setting.

(ag)Review the information provided in the Review and Package window, and click Re-Package IP.

(ah)The changes made to the IP peripheral will be included in the repackaged IP, and the Vivado

project will close.

We will now return to our original Vivado project, and create a simple Zynq processor block design

to check that the functionality of our LED controller peripheral.

To start, we will create a new Block Design and add the IP peripheral which we just created to the

design.

(ai) In the Flow Navigator window, select Create Block Design from the IP Integrator section.

Enter led_test_system in the Design name box, and click OK to create the blank design.

IP Creation www.zyngbook.com 93
v1.2, May 2014

Exercise 4A: Creating IP in HDL

(aj) Right-click anywhere in the blank canvas, and select Add IP. Alternatively, use the keyboard
shortcut Ctrl+1. This will bring up to pop-up IP Catalog window.
Enter led in the Search box, and double-click led _controller v1_0 to add an instance of the

LED controller IP to the design.

An led_controller_v1_0 block will now be present in the block design, as shown in Figure 4.8.

led_controller_0

||| 4=500_aAx1
s00_axi_adk LEDs_out[7:0]
s00_axi_aresetn

led_controller_v1_0

Figure 4.8: led_controller block

The 8-bit LEDs_out port that we added to the peripheral is present on the right side of the block.

To enable the peripheral to connect to the LEDs on the ZedBoard, we must make the LEDs_out
port external. This allows the output port to be connected to specific physical pins on the Zynq

device, which are connected to the LEDs.

(ak) Hover the mouse pointer over the LEDs_out interface (the little black stub next to the
interface name) on the led_controller block until the cursor changes to a pencil. Right-click
and select Make External. Alternatively, select the interface and use the keyboard shortcut
Ctrl+T.

The block design should now resemble Figure 4.9.

led_controller_0

|||4=500_axt
s00_axi_ack LEDs_out[7:0] LEDs_out[7:0]
s00_axi_aresetn

led confroller_v1_0

Figure 4.9: led_controller block with external port

The next step is to add a Zynq Processing System block to the design and connect the LED

Controller to it.

(al) Add an instance of the Zynq7 Processing System, using the same procedure as in Step (aj).

IP Creation www.zyngbook.com 94
v1.2, May 2014

Exercise 4A: Creating IP in HDL

(@am)The Designer Assistance message at the top of the canvas will appear:

._.;& Designer Assistance available. Run Blodk Automation Run Connection Automation

Click Run Block Automation and select processing_system7_0.
An information message will appear. Ensure that Apply Board Preset is selected, and click OK.
This will make all necessary modifications to the Zynq processing system that relate to the

board preset (in this case the ZedBoard) and make required external connections.

The next step that has to be carried out to the block design, is to connect the LED Controller to the

Zynq Processing System. This step can also be carried out using Designer Assistance.

(@an)In the Designer Assistance message, click Run Connection Automation and select
led_controller_0/500_AXI.
An information message will appear. Click OK.
This will add some additional blocks to the design which are required to connect the LED

Controller to the Zynq Processing System.
Our block design is now complete.

(ao)Validate the design by selecting Tools > Validate Design from the Menu Bar. Alternatively,
select the Validate Design button, 5}, from the Main Toolbar, or use the keyboard shortcut

Fé6.
Dismiss the Validate Design message by clicking OK.

We can now generate the HDL files for the design.

(@ap)In the Sources pane, right-click on the led_test_system block design and select Create HDL
Wrapper.
Select Let Vivado manage wrapper and auto-update and click OK.

This will create the top-level HDL file for the design.

We must now connect the LEDs_out port of the design to the correct pins on the Zynq device. This

is done through the specification of constraints in an XDC file.

(aq)In the Flow Navigator window, select Add Sources from the Project Manager section.
The Add Sources dialogue will open.

Select Add or Create Constraints, and click Next.

IP Creation www.zyngbook.com 95
v1.2, May 2014

(ar) Click Create File...

The Create Constraints File dialogue will open.

Exercise 4A: Creating IP in HDL

Select XDC as the File type and enter led_constraints as the File name.

Click OK.

(as) Click Finish to create the file and close the dialogue.

(at) In the Sources tab, expand the Constraints entry and open the newly created XDC file by

double-clicking on led_constraints.xdc.

The file will open in the Workspace.

(au)Add the following lines to the constraints file. Alternatively, they can be copied from the

source file available at C:\Zynq_Book\sources\led_controller:

set property
set property
set property
set property
set property
set property
set property
set property
set property
set_property
set_property
set_property
set property
set property
set property
set property

PACKAGE_PIN T22
TOSTANDARD LVCMOS33
PACKAGE_PIN T21
TOSTANDARD LVCMOS33
PACKAGE_PIN U22
TOSTANDARD LVCMOS33
PACKAGE_PIN U21
IOSTANDARD LVCMOS33
PACKAGE_PIN V22
TIOSTANDARD LVCMOS33
PACKAGE_PIN W22
TOSTANDARD LVCMOS33
PACKAGE_PIN U19
TOSTANDARD LVCMOS33
PACKAGE_PIN U14
TOSTANDARD LVCMOS33

[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get_ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get_ports
[get_ports
[get_ports
[get_ports

{LEDs_out[@]}]
{LEDs_out[@]}]
{LEDs_out[1]}]
{LEDs_out[1]}]
{LEDs_out[2]}]
{LEDs_out[2]}]
{LEDs_out[3]}]
{LEDs_out[3]}]
{LEDs_out[4]}]
{LEDs_out[4]}]
{LEDs_out[5]}]
{LEDs_out[5]}]
{LEDs_out[6]}]
{LEDs_out[6]}]
{LEDs_out[7]}]
{LEDs_out[7]}]

This connects each individual bit of the LEDs_out port to a specific pin on the Zynq device. The

specific pins are connected to the LEDs on the board.

(av) Save the constraints file.

Our simple design is now complete. We can now generate a bitstream.

(aw)In Flow Navigator, select Generate Bitstream from the Program and Debug section.

If a dialogue window appears prompting you to save your design, click Save.

A dialogue window may open requesting that you launch synthesis and implementation

IP Creation

v1.2, May 2014

www.zyngbook.com

96

Exercise 4A: Creating IP in HDL

before starting the Generate Bitstream process. If it does, click Yes to accept.
The combination of running the synthesis, implementation and bitstream generation
processes back-to-back may take a few minutes, depending on the power of your computer
system.

(ax) When bitstream generation is complete a dialogue window will open to inform you that the
process as been completed.

Select Open Implemented Design, and click OK.

With the bitstream generation complete, the final step in Vivado is to export the design to the
SDK, where we will create the software application that will allow the Zynq PS to control the LEDs

on the ZedBoard.

(ay) Select File > Export > Export Hardware for SDK... from the Menu Bar.
The Export Hardware for SDK dialogue window will open. Ensure that the options to Include

bitstream and Launch SDK are selected, and Click OK.

The SDK will launch.

(az) Once the SDK has launched, create a new Application Project by selecting File > New >
Application Project from the Menu Bar.
In the New Project dialogue, enter LED_Controller_test as the Project name.
By default the option to create a new board support package will be selected.

Click Next.

(ba)In the Templates dialogue, select Empty Application, and click Finish.

You should recall that when we created the peripheral in the previous stages of this exercise that
a set of software driver files were generated. We must now point SDK to those driver files. This is

done by adding a new repository to the SDK project.

IP Creation www.zyngbook.com 97
v1.2, May 2014

(bb)Navigate to Xilinx Tools > Repositories in the Menu Bar.

Exercise 4A: Creating IP in HDL

In the Repositories Preferences window, click on New, as shown in Figure 4.10.

type filter text

> General

i Lecal Repositories (available to the current workspace)
s CfC++

Add, remove or change the order of SDK's software repositories.

> Help
> Install/Update
> Remote Systems
> Run/Debug
> Team
Terminal
a Kilink 5DK
Boot Image

Remove

Down

Flash P i
ash Fregramming Global Repositories (available across workspaces)

Hardware Specification
Log Information Level
Repositories

AMD Startup

Remove

SDK Installation Repositories

b,
- \ KilinxProcessorlPLibY,
CAC_drive\ Xilimd SDKM\20 ThirdParty

Rescan Repositories

Mote: Local repository settings take precedence over global repository settings.

Restore Defaults] [

Apply

Figure 4.10: SDK Repository Peripherals window

(bc) Browse to the directory
C:\Zynq_Book\ip_repo\led_controller_1.0, as in
Figure 4.11, and click OK.

(bd)Close the Repository Preferences window by clicking

OK.

Upon closing the preferences window, SDK will
automatically scan the repository and rebuild the project

to include the driver files.

We must now assign the newly imported drivers to the

LED Controller peripheral.

Choose a repository directory. A repository directory
typically contains the 'drivers’, 'bsp’ or 'sw_services'
sub-directories.

4 | ip_repo
4| | led_controller 1.0
, bd
| drivers
. example_designs
J hdl
| Xgui

. led_controller

<« [I

Folder: led_controller_1.0

[Make MNew Folder] [OK

Figure 4.11: led_controller
repository selection

IP Creation
v1.2, May 2014

www.zyngbook.com

98

Exercise 4A: Creating IP in HDL

(be)The system.mss tab should be open in the Workspace. If it is not, open it by expanding

LED_Controller_test_bsp in Project Explorer and double-clicking on system.mss.

(bf) At the top left of the system.mss tab, click Modify this BSP’s Settings.

The Board Support Package Settings window will open, as in Figure 4.12.

Board Support Package Settings

Control various settings of your Board Support Package.

4 |Quenview LED_Controller_test_bsp
standalone
a drivers 05 Type: standalone Standalone is a simple, low-level software layer. It provides access to
psT_cortexad 0 10 - basic processor features such as caches, interrupts and exceptions as
- - 0S Version: well as the basic features of a hosted environment, such as standard
input and output, profiling, abort and exit.

Target Hardware
Hardware Specification: C\C_drive\Zyng_Book\Zyng_Bookl'led_controller\led_controller.sdk\SDK\SDE_Ex

Processor: ps7_cortexad 0

Supported Libraries

Check the box next to the libraries you want included in your Board Support Package.You can configure
the library in the navigator on the left.

MName Version Description
[twipl40 2.0 IwIP TCP/IP Stack library: lwIP v1.4.0, Xilinx adapter v...
[xilffs 2.0 Generic Fat File System Library
[] xilflash 4.0 Kilinx Flash library for Intel/AMD CFI compliant paral...
[xilisf 4.0 Kilinx In-systern and Serial Flash Library
[xilmfs 2.0 Kilinx Memory File System
[] xilrsa 1.0 Kilinx RSA Library
[] xilskey 2.0 Kilinx Secure Key Library

Figure 4.12: Board Support Package Settings window

(bg)Select drivers from the left-hand menu. From the list of components in the Drivers pane,
identify led_controller_0 and select led_controller from the drop-down menu in the Driver

column, as shown in Figure 4.13.

Drrivers

The table below lists all the components found in your hardware system. You can modify
the driver (or its version) assigned for each compenent. If you do not want to assign a
driver to a component or peripheral, please choose 'none’,

Component Compeonent Type Drriver Driver ... il
cpu_cortexad 1013
led_controlle = 1,00.3 I
none 1.00.3 3
generic
led_controller 1003
gENErc 1.00.a

Figure 4.13: LED Controller driver selection
IP Creation www.zyngbook.com 99

v1.2, May 2014

Exercise 4A: Creating IP in HDL

Click OK.
The project will now rebuild.

We can now create a simple C application to control the LEDs. In this instance we will be importing

a pre-written source file.

(bh)In Project Explorer, right-click on LED_Controller_Test and select Import.
In the Import window, expand General and double-click on File System.
Click Browse in the top right corner, and navigate to C:\Zynq_Book\sources\led_controller.
Click OK.

In the right-hand panel, select led_controller_test_tut 4A.c and click Finish.
The project will once again rebuild to include the new source file.
Open led_controller_test_tut_4A.c and examine the functionality.

Before launching the application on the ZedBoard, we must program the Zynq PL and create a

new terminal connection.

(bi) From the Menu Bar, select Xilinx Tools > Program FPGA.
The Bitstream entry should already be populated with the corresponding bitstream that we
exported from Vivado earlier.
Click Program, to program the Zynq PL.
NOTE: Once the device has successfully been programmed, the DONE LED on the ZedBoard

will turn blue.

(bj) Select the Terminal tab from the Console window at the bottom of the workspace, as in Figure

4.14.
(£ Problems | ¢ Tasks | Bl Console | Properties| A& Terminal i3 =0
Mo Connection Selected o =]]: RH | = =
Connect icon Terminal tab
4 [3
Figure 4.14: SDK Terminal tab
IP Creation www.zyngbook.com 100

v1.2, May 2014

(bk)Click the Connect icon (as highlighted in Figure 4.14).

(bl) The Terminal Settings window will open. Configure
the settings as specified in Figure 4.15.
NOTE: The value of the Port entry will vary depending
on which the USB UART cable is connected to.
In order to determine this value on a Windows system,

open the Device Manager and identify the COM port.

(bm)Click OK to initiate the new Terminal connection.

Now that the Zynq PL is programmed, and the Terminal
connection has been created, we can program the Zynq

PS with our software application.

(bn)In Project Explorer, right-click on

LED Controller test and select Run As > Launch on

Hardware (GDB), as shown in Figure 4.16.

L1 Project Explorer &3 = O || &g systemaml

= <3==’D| L @ /* led_test.c[]

Ik, system.mss

4 [hw_platform_0

|= led_test_system_wrapper.bit #include "led_controller.h”

Exercise 4A: Creating IP in HDL

WView Settings:

View Title: Terminal

Encoding: 150-8858-1

Connection Type:
[5eria|

Settings:

Port: COM3

Baud Rate:

(115200

Data Bits: IS

Stop Bits: ll

Parity: lNone

Flow Control: ’None

Timeout (sec): 5

Figure 4.15: Terminal Settings

[led_test.c &2

/* Generated driver function for led_controller IP core */

ps7_init.c #include "xparameters.h”

ps7_inith -]

@ psT_inithtml {/ Define maximum LED value (2°8)-1 = 255
P ?__ 'tlt | #define LED LIMIT 255

= psT_inittc

// Define delay length
#define NELAY 10800008

@ ps7_summary.html

|4 system.xml Mew 3
4 [=5 LED_Controller_tes GoInto mory address of the _ed_ccn-_’.c__e’ IP
. %% Binarics bined from "xparameters.h" */
. . LED_CONTROLLER_@_5@@_ AXI_BASEADDR
>) Includes Open in New Window — _9_abi_Arl_|
> Debu
& g =| Copy Ctrl+C
> (3= src
- [led_test.c Paste Ctrl+V variables for storing current LED va
4 @ LED_Controller_tes 3 Delete Delete
> 1 BSPDocument TanrED v
> = ps]_cortexad_0) Mave ntroller IP test begin.\rin");
_|libgendeg | e
|Z| libgen.options v [
Makefile g1 Import..
system.mss =
Lk, =¥ 3 |Exporte. ?1<—I_.ED_\:I.‘1ET){J L
ht value to terminal */
Build Project intf("LED value: #d\r\n", led_wval);
. jte value to led_controller IP core us
Clean Project TROLLER_mWriteReg(LED_BASE, @, led v
27 Refresh 5 fement LED value */
i 1++;
Close Project a simple delay to allow changes on L
Close Unrelated Projects B3 1<DELAY;i++);
Build Configurations » ED value to zero */
8.
Make Targets v
Index 3
Show in Remote Systems view
Convert To...
Run As 3 anzs 1 Launch on Hardware (GDB)
Debug As v | €] 2Llocal C/C++ Application
Profile As 3 X 3 Remnote ARM Linux Application
3
= Run Cenfigurations...
Carmnare With 13

Figure 4.16: Run Application on hardware

IP Creation
v1.2, May 2014

www.zyngbook.com 101

Exercise 4A: Creating IP in HDL

(bo)Switch to the Terminal tab of the Console window, and confirm that the LED value is being

output, as in Figure 4.17.

{%! Problems | ¥ Tasks | Bl Console | =] Properties | & Terminal &3

Serial: (COM3, 115200, 8, 1, Mone, Mone - CONMECTED] - Encoding: (I50-8859-1)
led_controller IP test begin.

LED
LED
LED
LED
LED
LED
LED
LED
LED

value:
value:
value:
value:
value:
value:
value:
value:
value:

0O =~ O W & k=@

Figure 4.17: Terminal tab displaying LED values

You should also see the LEDs on the ZedBoard displaying the corresponding LED values.

This concludes this exercise on designing Zynq IP in HDL. You should now be familiar with:

IP Creation
v1.2, May 2014

Creating AXl interface templates with the Create and Package IP Wizard.

Adding functionality to HDL IP peripherals in Vivado and IP Packager.

How to connect packaged IP to a Zynq Processing System in IP Integrator.

Creating software applications to control the HDL IP using the generated C software

drivers, and executing them on the ZedBoard.

www.zyngbook.com

102

Exercise 4B: Creating IP in MathWorks HDL Coder

In this exercise, we will be creating an IP core which will perform the function of an LMS noise
cancellation filter. Mathworks HDL Coder will be used to transform an existing Simulink block-

based model into an RTL description which will be packaged for use in the Vivado IP Catalog. The...
We will start by opening the Simulink model in MatLab.

Before starting this exercise, you are required to copy some source files into a new working

directory.

(@) In Windows Explorer, navigate to C:\Zynq_Book\sources\hdl_coder_Ims and copy the
contents of the directory to a new directory called C:\Zynq_Book\hdl_coder_Ims.
(b) Launch MatLab by navigating to Start > All Programs > MATLAB > R2013a > MATLAB

R2013a
Note: This workbook uses version R2013a of MatLab. If you have a different MatLab version

you will need to replace R2013a with your own version (i.e. R2012a/R2012b).

MatLab will open and you will see the main workspace, as shown in Figure 4.18(or a variation

thereof).

r New Variable Analyze Code ul~] @ Preferences "}‘ ("% Community
d o 3 (2 Find Fiies ¥ @ = < = Ly o
17> Open Variable é)—' Run and Time ﬁ Set Path 5) Request Support
New New Open |1 Compare Import Save Simulink Layout Help
Script « - Data Workspace (7 Clear Workspace ~ [Clear Commands ~ Library ~ =7 FParallel = - Add-Ons ~
FILE VARIABLE CODE SIMULINK ENVIRONMENT RESOURGES
<@ HE L ¢ » MATLAB2013a » TR
Current Folder [OM Command Window [OB Workspace @
Name x> Mame Value
appdata -
bin
etc
extern
help

java
lib

licenses

m

mer
notebook
polyspace
resources] T 3
rtw
runtime

Command History @

——3

IEHBEEEEEEEREREEEE®

simulink ~%—— 25/10/2013 14:14

stateflow

Details

Select a file to view details

Ready

Figure 4.18: MatLab workspace environment

IP Creation www.zyngbook.com 103
v1.2, May 2014

Exercise 4B: Creating IP in MathWorks HDL Coder

(c) Enter C:\Zynq_Book\hdl_coder_Ims as the working directory, as highlighted in Figure 4.19.

HOME

Lgn EII:::I L[5 Find Fikes & NE

New MNew Open |iz| Compare Import Save
Script - - Data ‘Workspa

FILE
o At
Figure 4.19: Setting the MatLab working directory

In the Current Folder pane, you should also see four files:

original_speech.wav — A short audio clip of speech.

« setup.m — Performs setup commands to import the audio samples into the MatLab
workspace and set the system sample rate accordingly.

« Ims.slx — A simulink model which implements and LMS noise cancellation process.

- playback.m —Can be used to verify the LMS filtering process via audio playback of the

various stages.

The setup commands in setup.m are automatically called when the Simulink simulation is

initialised.

(d) Open the LMS Simulink model by double-clicking on Ims.slx in Current Folder pane.

The model should open and you should see the LMS system, as shown in Figure 4.20.

File Edit WView Display Diagram Simulation Analysis Code Tools Help

m < = <:| HE @ - (& (j-;l |]D- |®) v (samples-1)/fs

——— [

To'Workspace

O i S
L

Data Type Conversion

Sine Wave -+
[susioin Al [_Comer >
Drata Type Conversion2
From Workspace Add Scopel

L——| filtered_audic

To Works pace

FixedStepDiscrete

Figure 4.20: LMS model in Simulink

IP Creation www.zyngbook.com 104
v1.2, May 2014

The model features two sources:

Exercise 4B: Creating IP in MathWorks HDL Coder

« aSine Wave block which generates tonal noise.

+ AFrom Workspace block which imports the audio samples from the MatLabe Workspace.

The tonal noise is then added to the audio samples to create a corrupted audio signal.

In order to generate HDL code for the Simulink LMS model using HDL Coder, the inputs to the

system must be in fixed-point numerical format. Two Data Type Conversion blocks are used to

convert the corrupt audio signal and the tonal noise signal to fixed-point format. The fixed-point

signals are then input to an LMS subsystem, which we will explore in the next step.

At the output of the LMS subsystem, the error signal, e(k), is input to a scope along with the

corrupt audio and tonal noise inputs, for visual inspection of the signals. Two To Workspace

blocks are also present to allow the LMS output and the corrupt audio signals to be output to the

MatLab workspace for audio playback.

(e) Drill down into the LMS subsystem block by double-clicking on it. You will see the system in

Figure 4.21.
Input Outputf—— -]
x(k) LMS Terminator
Desed Erorl——— ()
d(k) e(k)
LMS Filter

Figure 4.21: LMS subsystem

It features a single LMS Filter block. As we are not interested in the Output signal, it is

unconnected.

(f) Open the LMS Filter Block Parameters by double-clicking on the LMS Filter block.

Take a moment to explore the parameters. You should be able to determine that there are 16

adaptive filter coefficients and a step size of 0.1.

(g) Close the Parameters window, and return to the main Simulink model by clicking the Up To

Parent button, ‘f} .

We will be generating HDL code for the LMS subsystem only.

IP Creation www.zyngbook.com 105

v1.2, May 2014

Exercise 4B: Creating IP in MathWorks HDL Coder

Right-click on the LMS subsystem and select HDL Code > HDL Workflow Advisor.

The HDL Workflow Advisor window will open, as in Figure 4.22.
I HDL Workflow Ady E=rEmE)

File Edit Run Settings Help

Find: * <A g3

4 [HDL Workflow Advisor
- I 1. set Target
- IZH 2. Prepare Model For HDL Code Generation
- IZ¥ 3. HDL Code Generation

HDL Workflow Advisor

HOL Workflow Advisor fadlitates RTL code (VHDLVerilog) and testhench
generation from a subsystem, performs synthesis tasks by invoking a
supported third party synthesis tool, and annotates critical path

information back to the system. It also allows you to set a particular

workflow and guides you through the tasks necessary for full deployment.
Each task performs one distinct step of the workflow. The HDL Workflow L
Advisor provides you with a feedback on the results of each task. If the 3
task fails, it provides you with information on how to modify the model to
complete the task.

When you complete the tasks, you have a synthesis result report from one
of the supported synthesis tools, If the result does not meet your
requirement, you may choose to modify the original model, use different
implementations, or use different code generation options to refine and
explore the result,

Legend
Mot Run
Passed
Failed
Warning
Group Folder - run in any order
Procedure Folder - run sequentially

Running this check triggers an Update Diagram.
-=>> "Run to Failure”™ in progress.

Report

Report: o report 184 himl
Date/Time: Mot Applicable
Surmmary: O Pass: 0

€ Fail: 0 &, Warning: 0 [-] NotRun: g

Help

Figure 4.22: HDL Workflow Advisor window

The HDL Workflow Advisor guides you through the steps required to generate RTL code for your

design.

(h) In the left-hand panel, expand Set Target and select 1.1. Set Target Device and Synthesis

Tool.

Here we specify the output format of the RTL and the target platform.

IP Creation
v1.2, May 2014

www.zyngbook.com 106

Exercise 4B: Creating IP in MathWorks HDL Coder

(i) In the Input Parameters pane, select IP Core Generation as the Target workflow, and Generic

Xilinx Platform as the Target platform, as shown in Figure 4.23.

Input Parameters

Target workflow: |IFl Core Generation hd
Target platform: |Generin: ¥ilinx Platform - Launch Board Manager
Synthesis tool: | Mo synthesis tool specified

Family: Device:

Package: Speed:

Project folder: hdl_prj Browse...

Set Target Library (for floating-peint synthesis support]

Run This Task

Figure 4.23: HDL Workflow Advisor Input Parameters

(j) Click Run This Task to apply the settings.

(k) Select Set Target Interface from the left hand panel.
Here we specify the target interface for the HDL code generation.
In the Input Parameters pane, select Coprocessing - blocking as the Processor/FPGA
synchronization. This will automatically infer an AXI4-Lite interface for all ports in the design,
and specify a memory address for each.

() Click Run This Task to apply the settings.

(m) Expand Prepare Model for HDL Code Generation in the left hand panel, and select Check
Global Settings.

Here, model-level settings will be checked to verify if the model is ready for HDL code generation.

(n) Click Run This Task to check the model-level settings.

If this step fails, click Modify All to allow HDL Workflow Advisor to modify the settings.

This step should now pass, and you will be presented with a table of the results.

The next few steps are all checks, and can be performed in batch.

(o) Right-click on Check Sample Times in the left hand pane, and select Run to Selected Task.
This will perform the checks one after another to prevent you from running each individually.

All check should pass.

IP Creation www.zyngbook.com 107
v1.2, May 2014

Exercise 4B: Creating IP in MathWorks HDL Coder

The final steps involve specifying basic settings about the RTL code, such as what language to use
(VHDL/Verilog), and what code generation reports to generate. Finally the HDL code will be

generated.

(p) Expand HDL Code Generation in the left hand pane, and further expand Set Code Generation
Options.
Click on Set Basic Options.
(g) Select VHDL as the Language in the Target pane.
You can also select any of the Code generation reports that you would like.
(r) Select Set Advanced Options in the left hand panel.
Here you can specify more advanced options for the HDL code.
We will be leaving the values as default, but you may wish to explore the settings for future

use.
(s) Right-click on Set Advanced Options, and select Run to Selected Task to apply the settings.
(t) Finally, select Generate RTL Code and IP Core from the left hand panel.

This is the step which will finally generate the HDL code for out LMS IP Core.

Set the IP core name as Ims_pcore and click Run This Task.

Once HDL Coder has finished generating the HDL code, the Code Generation Report window will
open. This provides a summary of the HDL Coder results and provides further information on the

target interface and clocking.

The final stage of creating our LMS IP core is to package it with IP Packager so that we can use itin

IP Integrator designs. To do this we will need to create a new Vivado project.

(u) Launch Vivado and create a new project called Ims_packaging at the following location:
C:\Zynq_Book\hdl_coder_Ims, ensuring that the option to create a project subdirectory is

selected. Also select the VHDL as the target language, and the ZedBoard as the default part.

For more detail on the process of creating a new Vivado project, refer to Step (a) of Exercise
4A.

(v) When the project has been created and opened, select Tools > Create and Package IP from

the menu bar, and Click Next.

(w) Select the option to Package a specified directory, and click Next.

IP Creation www.zyngbook.com 108
v1.2, May 2014

Exercise 4B: Creating IP in MathWorks HDL Coder

(x) Enter C:/Zynq_Book/hdl_coder_Ims/hdl_prj/ipcore/Ims_pcore_v1_00_a as the [P

Location.

(y) Click Next to move to the Edit in IP Packager Project Name dialogue, and click Next to accept

the default Project Name and Project Location.
(z) Atthe Summary window, and click Finish to launch IP Packager.

(aa) In the left hand panel of the IP Packager window, select IP Ports and Interfaces.

The IP Interfaces panel will open, and you should see that IP Packager has identified the

individual AXI ports, but has not inferred an AXl interface.

To infer an AXl interface:

(ab)Right-click on a blank section of the IP Ports and Interfaces pane, and select Auto Infer

Interface...

(ac) The Auto Infer Interface Chooser window will open:

L)| Choose zero or mare interfaces to infer from your IP. If you do not select any interfaces it will try to automatically infer based on your IP's port names.

MName Description Digplay Category

{i} axis AMBA AXI4-Stream Interface AXI

{} dock ¥ilinx Clock Signal Interface Signal

{} data Signal

{} video_frame_sync Video Frame Sync Interface Signal

{i} interrupt Xilimx Interrupt Signal Interface Signal

{l} dockenable Signal

{} video_frame_ptr Video Frame Pointer Interface Signal

{ib reset ¥ilinx Reset Signal Interface Signal

{l} transceiver_debug 7-series and Ultrascale transceiver debug ports for Aurara IP Advanced

{l} pcie2_ext_pipe PCIe Gen2 core Pipe simulation Only Interface Advanced -
{il_transceiver_debug Transceiver Debug Interface Advanced (=]

Select aximm from the list, as shown, and click OK.
The individual AXI ports in our design will be mapped to an AXILite interface.
(ad)Select IP Addressing and Memory from the left hand panel. Here, IP Packager has incorrectly
specified an address Range of 4294967296. Click on the Range, and change the value to 32.
(ae) Finally, select Review and Package from the left hand menu.

Review the information provided, and click Package IP.

This completes the generation of an LMS component from Mathworks HDL Coder. You should

now be familiar with:

« Using the Simulink block-based design environment for the design and simulation of IP.

« Using the HDL Workflow Advisor to guide you through the steps of generating RTL code

IP Creation www.zyngbook.com 109
v1.2, May 2014

Exercise 4B: Creating IP in MathWorks HDL Coder

and IP cores for existing Simulink designs.
« Packaging HDL Coder generated IP blocks in IP Packager for use in Vivado IP Integrator

designs.

IP Creation www.zyngbook.com 110
v1.2, May 2014

Exercise 4C: Creating IP in Vivado HLS

In this final exercise, we will creating an IP core that will implement the functionality of an NCO.
The tool that we will be using is Vivado HLS, and we shall explore some of the features which allow
us to specify arbitrary precision fixed-point data types, as well as the directives required to export

IP with an AXI-Lite slave interface, to allow the IP core to interface with the Zynq processor.

We will start by creating a new project in Vivado HLS.

7]

(@) Launch Vivado HLS by double-clicking on the Vivado HLS desktop icon: wswa=, or by
navigating to Start > All Programs > Xilinx Design Tools > Vivado 2014.1 > Vivado HLS >
Vivado HLS 2014.1

(b) When Vivado HLS loads, you will be presented with the Getting Started screen, as in Figure
4.24.,

File Edit Project Solution Window Help

¢ EVi\rado HLS Welcome Page &2

VIVADO! ...

High-Level Synthesis

Quick Start Recent Projects

Create New Project Open Project Open Example Project

Documentation

m W

Tutorials User Guide Release Motes Guide

Figure 4.24: Vivado HLS Getting Started screen

IP Creation www.zyngbook.com 111
v1.2, May 2014

Exercise 4C: Creating IP in Vivado HLS

(c) Select the option to Create New Project and the New Vivado HLS Project Wizard will open, as

in Figure 4.25.

Project Configuration

Create Vivado HLS project of selected type

Project name: hls_nco

Location: ChZyng_Book

Figure 4.25: Vivado HLS New Project Wizard

Enter hls_nco as the Project name, and C:\Zynq_Book as Location.
Ensure that the options match those in Figure 4.25, and click Next.
(d) The Add/Remove Files dialogue will appear. This is where existing C-based source files can be
added to the project, or new files created.
Enter nco as the Top Function and click Add Files...
Navigate to C:\Zynq_Book\sources\hls_nco and select nco.cpp. Click Open.

The dialogue should now resemble Figure 4.26.

Add/Remove Files

Add/remove C-based source files (design specification)

Top Function: nce

Design Files

Mame Add Files...
e

Edit CFLAGS...

Remove

Figure 4.26: Vivado HLS New Project Wizard (Add/Remove Files)

Click Next.

IP Creation www.zyngbook.com 112
v1.2, May 2014

Exercise 4C: Creating IP in Vivado HLS

(e) A second Add/Remove Files dialogue will appear. This is where C-based testbench files can be
added to the project, or new files created.
Click AddFiles... and navigate to C:\Zynq_Book\sources\hls_nco. Select nco_tb.cpp and click
Open to add the testbench file to the project.
Click Next.

(f) The Solution Configuration dialogue will open. Here we will be selecting the part which we will
be targeting. In this particular case we will be targeting the Zyng-7020 on the ZedBoard, but
if you have a different development board, it is easy to choose your particular board instead.
Click the selection button, E in the Part Selection pane.

The Device Selection Dialog will open.
As we are targeting the ZedBoard, select Boards in the Specify pane and choose ZedBoard

Zynq Evaluation and Development Kit, as in Figure 4.27.

Support for devices prior to series 7 and Zynq requires an additional license.
Please contact your Xilinx representative for more details,
RTL Tool Specify Filter
e - 5 Part Family: All -
Package: All -
Speed Grade: | All -
Search: +
Board ‘ Part Family Package Spee
ﬁ Artix-7 ACT01 Evaluation Platform xc7a200tfbgb76-2 artixd fbgb76 -2
ﬂ Kintex-7 KC705 Evaluation Platform xcTk325tffg300-2 kintex7 ffg00 -2
ﬂ MicroZed Board xc72010clg400-1 zZyng clg400 -1
m Virtex-7 VC707 Evaluation Platform wcTvdB5tffgl761-2 virtex? ffgl761 -2
: irtex-7 VC709 Evaluation Platform xc?\r)igﬂtffql?ﬁl-E virtg(? ffgl761 -2
edBoard Zyng Evaluation and Development Kit xc72020clgdi4-1 Zyng clgd48d =l
yng ZC702 Evaluation Platform xc72020clgd84-1 zZyng clg48d -1
N Zyng ZC706 Evaluation Platform xc72045ffg900-2 zZyng ffg00 -2
4 1 ¢
[oK] [Cancel
Figure 4.27: Vivado HLS Device Selection Dialog
Click OK to close the dialogue and return to the New Project Wizard.
(g) Click Finish to close the New Project Wizard and to create the project.
The Vivado HLS workspace will open.
IP Creation www.zyngbook.com 113

v1.2, May 2014

Exercise 4C: Creating IP in Vivado HLS

(h) In the Explorer panel, expand the Source and Test Bench

{7 Explorer 7 wn = O
headings. You should see the source files that we specified in 4 25 his_nco
the New Project Wizard, as in Figure 4.28. il Includes
4| = Source
(i) Open nco.cpp and examine the contents of the file. L€ nco.cpp

fi= Test Bench
¢ nco_th.cpp

[

You should notice the inclusion of the header file ap_fixed.h 4 & solution?
4 8 constraints
on the first line. This is the arbitrary precision fixed-point o directives.tcl

o script.tel

Figure 4.28: Vivado HLS
Explorer panel

library which adds support for the use of fixed-point data
types in C++.

The next thing that you should see is the global declaration of a 2 12 = 4096 value array:

const ap_fixed<16,2> sine_ lut[4096] ...

This forms the sinewave lookup table. It is defined as an array of type ap_fixed<16,2>, which
means that all values are16-bit, signed fixed-point (2 integer bits and 14 fractions bits).
Further information on fixed-point data types in Vivado HLS can be found in Chapter15 -
Vivado HLS: A Closer Look of the Zynq Book.

The functionality of the NCO is contained in the function:

void nco (ap_fixed<16,2> *sine_sample, ap ufixed<16,12> step_size)

It takes two arguments:
« *sine_sample — A pointer to a 16-bit, signed fixed-point variable which forms the
output sample of the NCO.
« step_size — 16-bit, unsigned fixed-point value which provides the step size input for
the NCO.
(j) Explore the nco function, ensuring that you understand it all.
Open nco_tb.cpp. This is the testbench file which is used to ensure that the functionality of

the C-based source file is correct.
Explore the code in the file, ensuring that you understand the functionality.

This is a simple file which opens a text file in write-mode, to allow you to output the sinusoidal

samples. It then calls the nco function from within a for-loop in order to generate a finite

IP Creation www.zyngbook.com 114
v1.2, May 2014

Exercise 4C: Creating IP in Vivado HLS

number of sinusoidal samples, which are then output to the text file.
The text file is formatted in a way which easily allows you to import the samples into MatLab
for analysis.

Note: The location of the output file is determined by the following line in the testbench file:

char *outfile = "E:\\nco_sine.m";

You should change the output file path accordingly to a location on your local machine.
We will now run a C simulation.

(k) Click the Run C Simulation button, =, from the Main Toolbar.
The C Simulation Dialog window will open. Click OK to run the simulation with the default

settings.

The C simulation will run, and you should see the following output in the Console window:

El Console 2 & Errors| & Wamings

Vivado HLS Console
File open for writing.

Sample output to file complete.

@I [5IM-1] CSim done with @ errors.
@I [LIC-181] Checked in feature [HLS]

The sine wave samples that were generated by the NCO will have been output to the location
which you specified in the previous step.

If you wish, you can import the sine wave samples into MATLAB using the output file to verify that
the NCO has correctly generated a sine wave. This should be done at your own discretion, and will

not be covered in this exercise.

The process of HLS has been covered previously in The Zynq Book Tutorial: Designing With
Vivado High Level Synthesis, and you should refer to it for more detailed information on the
various steps involved. For the purposes of this exercise, it is presumed that you have a reasonable

knowledge of the Vivado HLS tool.

As we want to allow our NCO peripheral to be controlled by a Zynq PS, it is necessary to give it an

AXl interface. This is done in Vivado HLS through the use of directives.

IP Creation www.zyngbook.com 115
v1.2, May 2014

Exercise 4C: Creating IP in Vivado HLS

() Ensurethatnco.cpp is the active source file, and select the Directive tab in the right-hand side

of the Vivado HLS workspace, as shown in Figure 4.29.

5= Qutline | (14 Directive &3 = B8

#[1 =ine_lut
(3 temp
a| D nco
& sine_sample
& step_size

Figure 4.29: Vivado HLS Directive tab

First, we will define the interface of the NCO as an AXI-Lite slave.

(m) Right-click on nco in the Directive tab, and select Insert Directive.
As the Directive Type, select RESOURCE.
and select AXI4LiteS [adapter] as the core, from the pop-up list.

Leave Destination as Directive File, and click OK.

We will now define the NCO as having a ap_ctrl_none interface, to remove unneeded control

signals.

(n) Right-click on nco in the Directive tab, and select Insert Directive.
As the Directive Type, select INTERFACE.
and select ap_ctrl_none as the mode, from the drop-down list.

Leave Destination as Directive File, and click OK.

Finally, we will be defining the two variables, sine_sample and step_size, as ports on the AXI-Llte

slave interface.

(o) Right-click on sine_sample in the Directive tab, and select Insert Directive.
As the Directive Type, select RESOURCE.
and select AXI4LiteS [adapter] as the core, from the pop-up list.

Leave Destination as Directive File, and click OK.

(p) Repeat the previous step for the step_size variable in the Directive tab.

IP Creation www.zyngbook.com 116
v1.2, May 2014

Exercise 4C: Creating IP in Vivado HLS

On completion, the Directive tab should look like Figure 4.30.

EE Cutline | 14 Directive &3

#¥[1 sine_|ut
3 termp
@ nco
O HLS INTERFACE ap_ctrl_none port=return
0% HLS RESOURCE variable=return core= AXI4LiteS
& sine_sample
0% HLS RESOURCE variable=sine_sample core=AxI4LiteS
& step_size
O HLS RESOURCE variable=step_size core=AXI4LiteS

Figure 4.30: Complete Directive tab

We can now run HLS.

(9) Run C Synthesis by clicking the Run C Synthesis button, =, from the Main Toolbar.
(r) Click the Export RTL button, £, from the Main Toolbar.

The Export RTL Dialog window will open, as shown in Figure 4.31.

/| Export RTL Dialog S
B

Export RTL

Format Selection

’IP Catalog v] ’Configuration...

Options

[7] Do not show this dialog box again.

[ok || cancel |

Figure 4.31: Vivado HLS Export RTL Dialog Window

(s) Select IP Catalog as the Format Selection.
If you choose, you can edit the IP Identification data by clicking the Configuration button.

(t) Click OK to generate the IP core.

IP Creation www.zyngbook.com 117

v1.2, May 2014

Exercise 4C: Creating IP in Vivado HLS

When RTL Generation has completed, a directory named impl will

o) [Explorer 23 %
be visible in the Explorer panel E his.nco
This directory contains the ip subdirectory which contains the il Includes
= Source
generated IP package. @ nco.cpp
Take a moment to explore the contents of the ip directory. i Test Bench

lg nco_th.cpp
= solution

With the IP generated, the next step would be to include it in an & constraints

IP Integrator design (which will be covered in the next tutorial). W directives.tc]
o script.icl

For future reference, however, it is worth briefly describing how = impl

this would be done. & drivers
= 1p

In order to include HLS generated IP in IP Integrator, it must first (= verilog

. . = vhal
be added to the Vivado IP Catalog. To do this you must add the - jﬂv

output from HLS to an IP repository. This can be achieved by
either adding the HLS generated output directory to an existing IUP repository directory, or by

creating a new repository. In either case, the directory is the same. In this case:
C:\Zynq_Book\hls_nco\solutionT\impl\ip

We have now completed the generation of the NCO component as an IP Integrator compatible

AXI-Lite block. You should now be familiar with:

« Specifying directives in Vivado HLS designs which define the control interface of the
exported RTL.

« The process of specifying and AXI4 interface for a design, to enable a Vivado HLS system
to be easily connected to the Zynq PS.

« Exporting a Vivado HLS design as an IP core that is compatible with the Vivado IP Catalog

and IP Integrator.

IP Creation www.zyngbook.com 118
v1.2, May 2014

The Zynq Book Tutorial

Adventures with IP Integrator

v1.2.1, September 2014

Revision History

Date Version Changes
22/10/2013 1.0 First release for Vivado Design Suite version 2013.3
28/01/2014 11 Updated for changes in Vivado Design Suite version
2013.4
06/05/2014 12 Updated for changes in Vivado Design Suite version
2014 .1
10/09/2014 1.2.1 Minor corrections.

Adventures with IP Integrator

v1.2.1, September 2014

www.zyngbook.com

120

Introduction

Introduction

In this tutorial you will bring together all of the custom IP modules that you created in the previous set of
practical exercises, along with other IP from the Vivado IP Catalog, to create a DSP system for
implementation on the ZedBoard. IP for the control of the control of the audio codec on the ZedBoard will
be introduced and all modifications to the IP Integrator design will be carried out. A software application will
be developed in the SDK which will configure all of the IP modules and control the interactions between them

and the PS.
The tutorial is split into three exercises as follows:

Exercise 5A - This exercise focuses on importing all of the custom IP modules into the Vivado IP Catalog for
inclusion in an IP Integrator DSP design. The individual IP blocks will be explored, along with their

customisable parameters.

Exercise 5B - The Analog Devices ADAU1761 audio codec on the ZedBoard will be introduced in this
exercise, with the inclusion of some prepackaged IP. This IP implements the I?S serial communication for
sending and receiving audio samples to/from the audio codec. The audio samples are transfered between the
PL and the PS via a standard AXI-Lite connection. In order to use the audio codec, a variety of modifications
must be made to the Zynq PS, such as the inclusion of second fabric clock to drive the codec, and the enabling

of a I2C interface for the communication of control signals between the PS and the codec.

In order to map the external interfaces in the design to physical pins on the Zynq device, a Xilinx Design
Constraints (XDC) file must be created and included in the design. This informs the synthesis and
implementation processes in Vivado where to route the external interface signals. The format of the XDC file

will be explored before generating the hardware for the finalised design.

Exercise 5C - In this final exercise, the finalised design from Exercise 5B will be exported to the SDK for
software development. Here, the application which will control the interactions between the various custom
IP modules, the PS and the audio codec will be created. The various software driver files will also be explored

before building and running the application on the ZedBoard for testing.

NOTE: Exercise 5C requires you to be able to send keyboard commands to the Zynq PS via the UART
terminal. To do this, it is necessary to use third-party terminal program. In this tutorial, we shall be using
PuTTY which can be downloaded for free from the following link:
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

You can download PuTTY as a standalone executable file so that no installation is required. To download the

standalone executable, select the putty.exe download from the Binaries section.

Adventures with IP Integrator www.zyngbook.com 121
v1.2.1, September 2014

Exercise 5A: Importing IP to the Vivado IP Catalog

In this exercise we will be concentrating on importing existing custom IP into the Vivado IP
Catalog. We will be importing the various IP blocks which we created in The Zynq Book Tutorial

IP Creation.
We will start by creating a new Vivado Project.

(@) Launch Vivado 2014.1 and create a new project called adventures_with_ip in the
C:\Zynq_Book directory, ensuring that the option to Create project subdirectory is selected.

Select VHDL as the Target language and the ZedBoard as the Default Part.

(b) From Flow Navigator, select IP Catalog from the Project Manager section.

The IP Catalog will open in the Workspace, as seen in Figure 5.1.

. Project Summary X | £F IP Catalog X
*[| search:
== —
e2a (| Name
=) = :
= || -2 Automotive & Industrial
: +-[= AXI Infrastructure
& + BaselP
3.% + Basic Elements
+ Communication & Netwarking
+ Debug & Verification
+ Digital Signal Processing
+ Embedded Processing
IP Settings + FPGA Featl_.lres and Design
+-[= Math Functions
\ + Memories & Storage Elements
+-[= Standard Bus Interfaces
E +-[= Video & Image Processing

Figure 5.1: Vivado IP Catalog
In order to import our custom IP into the IP Catalog, we must add a new software repository to the
IP Catalog. We will create a new directory to act as our IP repository and all of our IP sources to it.

(c) In Windows Explorer, navigate to the location: C:\Zynq_Book\ip_repo. This is the IP

repository that we created in Tutorial 4.

We must now add each of the IP sources which we created in The Zynq Book Tutorial IP

Creation to our repository.

Adventures with IP Integrator www.zyngbook.com 122
v1.2.1, September 2014

Exercise 5A: Importing IP to the Vivado IP Catalog

As the LED controller IP is already present in the IP repository, we do not need to import it.

(d) In Windows Explorer, navigate to
C:\Zynq_Book\hdl_coder_Ims\hdl_prj\ipcore\lms_pcore_v1_00_a and copy the archived
IP ZIP file, xilinx.com_user_Ims_pcore_1.0.zip to the ip_repo directory.

(e) In Windows Explorer, navigate to C:\Zynq_Book\hls_nco\solution1\impl\ip and copy the

archived IP ZIP file, xilinx_com_hls_nco_1_0.zip to the ip_repo directory.

That completes the copying of our custom made IP sources to our newly created IP repository. We
will now add one more IP source to our repository — an existing IP block which controls the audio

codec on the ZedBoard.

(f) In Windows Explorer, navigate to
C:\Zynq_Book\sources\adventures_with_ip_integrator\ip and copy the archived IP ZIP

file, zed_audio_ctrl.zip to the ip_repo directory that we located in Step (c).

If you have not completed the previous tutorial, a master set of the IP sources is contained in
C:\Zynq_Book\sources\adventures_with_ip_integrator\ip which you can copy into the

repository for use in this tutorial.

Now that we have created the IP repository and added all of our existing IP sources, we can now

add the repository to the IP Catalog.

(g9) Inthe Vivado IP Catalog tab, click the IP Settings button, 3, as highlighted in Figure 5.1.

Adventures with IP Integrator www.zyngbook.com 123
v1.2.1, September 2014

Exercise 5A: Importing IP to the Vivado IP Catalog

The IP Settings window will open, as shown in Figure 5.2.

F ™
g Project Settings M
o »
@ Repository Manager Eackager
General] ; . - -
= Add directories to the list of repositories, You may then add additional IP to a selected
/'u.ll repository. If an IP is disabled then a tool-tip will alert you to the reason.
IP Repositories
Simulation
Synthesis
[) L
Implementation
. ¥
1010
o001
Bitstream
ﬂ: Add Repository...] [& Refresh All...
F
IP in Selected Repository
Click 'Add Repaository' to add an IP Repaository. x
B AddIP... & Refresh Reposito
ook ’ Cancel App
k.

Figure 5.2: IP Settings Window

(h) Click Add Repository in the IP Repositories panel, and browse to

C:\Zynq_Book\ip_repo.

Click Select to add the repository to the IP Catalog.

You should see that the LED Controller IP is already present in the IP in Selected Repository pane

as itis in un-archived format.

We must now add the other IP sources to the repository by un-archiving them.

Adventures with IP Integrator
v1.2.1, September 2014

www.zyngbook.com 124

Exercise 5A: Importing IP to the Vivado IP Catalog

(i) InthelPin Selected Repository panel, shown in Figure 5.2, click Add IP.

The Select IP TO Add To Repository window will open:

Look in: . . ip_repo 7 ;] ‘_} = e g*‘_

3 xilinx.com_user_led_controller 1.0 zip Recent Directories

&Ey 1) silinx.com_user_lms_pcore_1.0.zip 1 C:/2ynq_Bookfip_repo
RecentItems (=3 xilinx_com_hls_nco_1_0.zip

'—T_LJ zed_audio_ctrl.zip File Preview

Select a file fo preview.

Computer

(‘h\ File name: |

Metwark Files of type: | 1p packages (.xmil, zip)

Figure 5.3: Select IP to Add to Repository

Select xilinx.com_user_led_controller_1.0.zip and click OK. This will extract the archived IP
sources into a usable format in the repository.

(j) Repeat this procedure for the remaining IP sources:

o xilinx.com_user_Ims_pcore_1.0.zip

o xilinx_com_hls_nco_1_0.zip

« zed_audio_ctrl.zip

The resulting IP in Selected Repository panel is shown in Figure 5.4.

IF in Selected Repository
led_controller _w1_0 (xilinx. com:user:led_contr

Ims_pcore_v1 0 (xilinx. comiuser:ims_pcor)
Moo (xilinx. com:hls:nco: 1.0) h
zed_audio_cirl (xiliny, com:user:zed_audio_ctrl: 1.0]

[£ Add IP....] [& Refresh Repository...]

Figure 5.4: All IP sources added to IP Catalog
Click OK.

With all of our IP now imported into the IP Catalog, we can now create an IP Integrator block

design which incorporates all of the IP blocks.

(k) In Flow Navigator, select Create Block Design.

(I) Inthe Create Block Design window, set the Design name as ip_design, and click OK.

Adventures with IP Integrator www.zyngbook.com 125
v1.2.1, September 2014

Exercise 5A: Importing IP to the Vivado IP Catalog

(m) In the block design canvas, right-click and select Add IP.
In the Search box, enter led controller and double-click led controller v1_0 to add an

instance of the LED controller IP to the design.
(n) Repeat Step (m) searching for:

« nco and double-clicking Nco

+ Ims and double-clicking Ims_pcore_v1_0

We have now added all of the custom IP that we created in the previous tutorial. At this point we

will avoid adding the audio controller IP, as it is the focus of the next exercise.

In order to connect and control all of the IP, we must now add an instance of a Zynq Processor.

(0) Inthe block design canvas, right-click and select Add IP.
In the Search box, enter zynq and double-click ZYNQZ7 Processing System.

At this stage, Designer Assistance should be available:

L.;& Designer Assistance available. Run Block Automation Run Connection Automation

(p) Click Run Block Automation for processing_system7_0 and click OK to complete
configuration.
(g) Run Connection Automation for each of the three IP blocks, to connect them to the Zynq7

Processing System block, via and AXI Interconnect block.

You may recall that to allow the LED Controller block to control the LEDs on the board, the

LEDs_out port must be made external.

(r) Hover the mouse pointer over the LEDs_out interface on the led_controller block until the
cursor changes to a pencil. Right-click and select Make External. Alternatively, select the

interface and use the keyboard shortcut Ctri+T.

Adventures with IP Integrator www.zyngbook.com 126
v1.2.1, September 2014

Exercise 5A: Importing IP to the Vivado IP Catalog

Notice that the Ims_pcore_0 block has two unconnected input ports, as highlighted in Figure 5.5.

Ims_pcore_0

|| L AXT_Lite
~[IPCORE_CLK
=(PCORE_RESETN

AXI Lite ACLK
AXI_Lite_ARESETN

Ims_pcore_v1_0

Figure 5.5: LMS IP block

These are the CLK and reset ports of the IP, and must be connected in order for the IP to be

functional.

(s) Hover the mouse pointer over the IPCORE_CLK interface on the Ims_pcore_0 block until the
cursor changes to a pencil. Click and drag the mouse pointer until it is hovering over the wire
that connects to the AXI_Lite_ACLK interface and the wire is highlighted, as shown in Figure

5.6, and release the mouse button to create the connection.

Ims_pcore_0

IPCORE_CLK
i = IPCORE_RESETN
AXIL Lite_ACLK
AXI Lita ADECETNI

.___|Connect from TPCORE_CLK' port to
Im '‘processing_systemn7 _0_fclk_clk0' nei

Figure 5.6: Manually connecting the LMS IP CLK

You should also see a pop-up message notifying you of the net which you are connecting to.
(t) Repeat the procedure of the previous step to, this time, connect the IPCORE_RESETN
interface to the wire which connects to the AXI_Lite_ ARESETN interface.

At this stage we must now add and configure the audio controller IP, and so we will conclude this

first exercise on importing custom IP to the Vivado IP Catalog. You should now be familiar with:

« Adding an IP repository to the Vivado IP Catalog.
« Importing and adding archived IP files to a custom IP repository.

« Adding custom IP to a Vivado IP Integrator block design.

Adventures with IP Integrator www.zyngbook.com 127
v1.2.1, September 2014

Exercise 5A: Importing IP to the Vivado IP Catalog

Note: Do not close the current Vivado project as we will be using it again in the next exercise.

Adventures with IP Integrator www.zyngbook.com 128
v1.2.1, September 2014

Exercise 5B: ZedBoard Audio in Vivado IP Integrator

In this exercise we will be focusing on adding an audio controller IP instance to an existing Vivado
IP Integrator design, and the modifications which must be made to the Zynq Processor block in
order to use the ADAU1761 audio codec on the ZedBoard. Such modifications include the
addition of a second PL fabric clock and the enabling of the I°C interface for the communication

of control signals between the Zynq PS and the codec.
We will begin by adding an instance of the audio controller IP to the block design.

(@) Inthe Vivado IP Integrator block design canvas, right-click and select Add IP.

Search for audio and double-click on zed_audio_ctrl, to add an instance to the block design.

The zed_audio_ctrl block should now be visible on the canvas, as shown in Figure 5.7.
zed_audio_ctrl_0

255 AXI
l|<&s- BCLK
SDATA_I
LRCLK
S_AXI_ACLK
SDATA_O
S_AXI_ARESETN

zed_audio_ctrl

Figure 5.7: ZedBoard Audio Controller block

(b) Make the initial connection between the Zynq PS and the zed_audio_ctrl block by clicking

Run Connection Automation.

You should notice that there are still four unconnected ports. These are required to be made

external to connect to the physical pins of the ZedBoard’s audio codec.

(c) Hover the mouse pointer over each of the unconnected interfaces on the zed_audio_ctrl
block until the cursor changes to a pencil. Right-click and select Make External. Alternatively,

select the interface and use the keyboard shortcut Ctrl+T.

The next step is to make the necessary modifications to the Zynq7 PS block.

Adventures with IP Integrator www.zyngbook.com 129
v1.2.1, September 2014

Exercise 5B: ZedBoard Audio in Vivado IP Integrator

(d) Double-click on the Zynq7 Processing System block to open the Re-customize IP window, as

shown in Figure 5.8.

7 Re-customize s

ZYNQ7 Processing System (5.4) ‘

Iiffd Documentation 45 Presets [IP Location #43 Import ¥PS Settings

Page MNavigator < | | Zyng Block Design Summary Report
Zynq Blodk Design

~—Til MO Peripherals

PS-PL Configuration 380 Apnlcation Pmoessar Unit (4PU)
3011

12C0
Peripheral I/Q Pins e 2C 1

CAMD
) CAM 1
MIO Configuration T
USRT1
Clock Configuration GPI i Sncep Contml unit |

300 il
301 m| 512 KB L2 Cache #nd Confroller |

DDR. Configuration T

UsE 1 EHE

SMC Timing Calculation EMETO L
EMET |

ARN Corten A9
fe=1T]

Interrupts hnd FLASH Memory
Inberfaces
SRAMNOR__
HAND
QuAD EP1_ W

m
Calouktion
T | | Processing Syskem({PS)
:!‘EbGP

Cbr.k
Resets J &mﬂm

el 2l |£|‘_|£|_3|

Extended
IO (EMID)

High Peformamece
PS.PL AR 30 b Sl

Clock Poris lﬁ!h Poris

Pors

Programmable Logic(PL)

oK] [Cancel

Figure 5.8: Re-customize IP window for Zynq PS

This view allows you to make changes to the configuration of the Zynq PS. As IP Integrator is board
aware, all of the basic settings that apply to the ZedBoard have been made for us. There are a few

changes, however, that must be made when using the audio codec.

First we will add a second PL fabric clock as a separate 10 MHz clock is required for the MCLK pin

on the audio codec.

Adventures with IP Integrator www.zyngbook.com 130
v1.2.1, September 2014

Exercise 5B: ZedBoard Audio in Vivado IP Integrator

(e) Click on Clock Configuration in the Page Navigator panel on the left hand side of the window.

Expand PL Fabric clocks in the Clock Configuration panel, and enable FCLK_CLK1.

Change the Requested Frequency of FCLK_CLK1 to 10 MHz, as shown in Figure 5.9.

Clock Configuration

Summary Report |

4= | Input Frequency (MHz) 33.333333

Search:

CPU Clock Ratio| 6:2:1 -

Component

[+~ ProcessorMemory Clocks
[10 Peripheral Clocks
EJ- PL Fabric Clocks

FCLK_CLKD

wi | 9B B[P

[Fowk clkz

[[] FCLK_CLK3

[System Debug Clocks
G Timers

Clock Source Requested Frequency(MHz) Actual Frequency(M... Range(MHz)

.IO PLL = 100.000000 100.000000 0.100000 : 250.000000

g oo bowo oo

50.000000 50.000000 0.100000 : 250.000000

| 0P
0 PLL

IO PLL 50 50.000000 0.100000 : 250.000000

Figure 5.9: Adding a 10 MHz fabric clock

Next, we must enable one of the Zynq PS’s I°C communication interfaces to allow the PS to

communicate with the audio codec.

(f) Select MIO Configuration from the Page Navigator panel.

This configuration view allows us to enable/disable the PS peripherals. These peripherals can be

routed through the dedicated Multiplexed 1/0s (MIO) on the device, or through the Extended
Multiplexed 1/0s (EMIOs) which route to the PL fabric.

As we want to communicate with the audio codec (which is connected to fabric pins of the Zynq

device) we will be routing the 1°C signals through the EMIOs.

Adventures with IP Integrator
v1.2.1, September 2014

www.zyngbook.com 131

Exercise 5B: ZedBoard Audio in Vivado IP Integrator

(g) Enable the I2C 1 peripheral in the MIO Configuration panel. EMIO should automatically be

selected for 10, as shown in Figure 5.10.

Search:

Bank 0 IO Voltage| LyCMOS 3.3V I

Bank 110 Vaoltage |LYCMOS 1.8V ~

Peripheral

-
[
28

EEEEEEEO

| oy O g IR ey (R - NN o
e R

No more changes to the Zynq PS are required.

[Memory Interfaces
= 1/O Peripherals

EMET 0
EMET 1
USEQ
USE 1
500
5D 1
UART O
UART 1
I12C0

10

MIO 15 ..
MIO 28 ..

MIO 40 ..

MIO 48 ..

27

39

45

Signal

.EMID

10 Type

Figure 5.10: Configuring the I2C interface

(h) Close the Re-customize IP window and apply the changes to the PS by clicking OK.

The IP Integrator canvas should update, and the Zynq7 Processing System block should now look

like Figure 5.10.

processing_system?7_0

paasr o ZYNQ

oor 4 ||l-
FIXED_10 4 [[|=
[ic 13 1] |

usainp_o=+[]]
M_AXI_GPO 3= [||—
TTCO_WAVED_OUT -~
TTOO_WAVEL_OUTE
TTOO_ WAVEZ_OUT =
FOLK_CLKDf—
I FOLK CLK1L 3
FOLK_RESETO_N f=—

ZYNQ7? Processing System

Figure 5.11: Zynq7 Processing System block

You should note the addition of the two new interfaces, IIC_1 and FCLK_CLK1. As these will be

driving signals on the audio codec, which is situated on the board (external to the Zynq device),

we must make these external.

Adventures with IP Integrator

v1.2.1, September 2014

www.zyngbook.com

132

Exercise 5B: ZedBoard Audio in Vivado IP Integrator

(i) Hover the mouse pointer over each of the IIC_1 and FCLK_CLK1 interfaces on the
processing_system1_0 block until the cursor changes to a pencil. Right-click and select Make

External. Alternatively, select the interface and use the keyboard shortcut Ctrl+T.
The final addition to the Block design that we need to make, is to add two GPIO instances:

« Single-channel GPIO with a width of 2-bits to connect to the audio codec’s ADDR pins.
+ Dual-channel GPIO with a width of 32-bits to connect to the push buttons and slide

switches on the ZedBoard, for user input.
First we will add the GPIO to connect to the codec’s ADDR pins.

(j) Inthe Vivado IP Integrator block design canvas, right-click and select Add IP.
Search for gpio and double-click on AXI_GPIO, to add an instance to the block design.
(k) Run Connection Automation for the axi_gpio_0/S_AXI interface, to connect the GPIO

controller to the Zynq PS via the AXI Interconnect.

(I) Open the Re-customize IP window by double-clicking on the axi_gpio_0 block. The window,

as shown in Figure 5.12, will open.

|| Re-customize I =S
AXI GPIO (2.0) P
ﬁ'ﬂ Documentation || IP Location
Show disabled ports Component Name ip_design_axi_gpio_0_0
- Board | IF Configuration
Generate Board based 10 Constraints

Asgodate IP interface with EM.AVMET.COM:ZYNQ:ZED:C Board interface

1P Interface Board Interface

GPIO Custom

GP102 Custom

v - Enable Interrupt

Figure 5.12: Re-customize IP window (GPIO)

(m) Select the IP Configuration tab.

Enter 2 as the GPIO Width, as shown in Figure 5.13, and close the window by clicking OK.

Board- IP Configuration

GFIO

All Inputs

All Cutputs

GPIO Width 2 [1..32]
Default Output Value | 0x00000000 [0%00000000, 0xFFFFFFFF]
Default Tri State Value | 0xFFFFFFFF [0%00000000, 0xFFFFFFFF]

Figure 5.13: GPIO width setting

Adventures with IP Integrator www.zyngbook.com 133
v1.2.1, September 2014

Exercise 5B: ZedBoard Audio in Vivado IP Integrator

(n) Make the GPIO interface of the axi_gpio_0 block external.
Next we will add a second instance of the AXI GPIO Controller.

(0) Add an instance of the AXI_GPIO IP to the block design and Run Connection Automation for
the axi_gpio_1/S_AXI interface, to connect the GPIO controller to the Zynq PS via the AXI

Interconnect.

(p) Double-click on the axi_gpio_1 block to open the Re-customize IP window.

In the IP Configuration tab, select the option to Enable Dual Channel, and click OK.

You should see that the axi_gpio_1 block now has two output ports, 1 each to connect to the
push buttons and the slide switches on the ZedBoard:

axi_gpio_1

=l[3s.ma
_axi_adk
_axi_anesetn

crio:]
croz |||

AXI GPIO

(q) Run Connection Automation for /axi_gpio_1/GPIO and select BTNs_5Bits as the option for
Select Board Interface.
Click OK.

(r) Run Connection Automation for /axi_gpio_2/GPIO1 and select SWs_8Bits as the option for
Select Board Interface.
Click OK.

(s) Select the Address Editor tab from the Block Design window, as highlighted in Figure 5.14.

Expand All button K——Address Editor tab

Interface Pin Base Mame Offset Address Range High Address
—I-{F processing_system7_0
Py =I- Bl Data (32 address bits : 1G]
—= == &xi_gpio_D 5_AXI Reg 0x41200000 54 ~ 0x4120FFFF
g == axi_gpio_1 5_AXI Reg 0x41210000 64 ~ 0x4121FFFF
-~ = led_controller_D S00_AXI S00_AXI_reg 0x43C00000 4~ 0x43COOFFF
= |ms_pcore_0 AXI_Lite regQ 0x43C10000 64 + 0x43C1FFFF
== nco_D S_AXI_AXIHLITES Reg 0x43C08000 32 + 0x43COFFFF
‘- um zed_audio_ctrl_0 5_AXI reql 0x43C04000 16K + 0x43CO7FFF
Figure 5.14: Address Editor tab
(t) Click the Expand All button, as highlighted in Figure 5.14.
Check the assigned Offset Address and Range for each of the peripheral Cells.
Adventures with IP Integrator www.zyngbook.com 134

v1.2.1, September 2014

Exercise 5B: ZedBoard Audio in Vivado IP Integrator

If they do not match those in Figure 5.14, you must reassign the addresses by following the

procedure in this step. If they match those in Figure 5.14, you can skip this step and move on

to Step (u).

« Highlight all of the peripheral Cells by holding the Ctrl key on the keyboard while clicking

on each cell in turn.

« Right-click on any of the selected Cells and select Unmap Segment. This will unmap the

addresses for all of the peripherals

« Expand the Unmapped Slaves section and highlight all of the Cells.

« Right-click on any of the Cells and select Assign Address.

« The Offset Address and Range for each peripheral Cell should now match those in Figure

5.14.1f they don't, you can edit the Offset Address and Range values manually.

(u) Return to the block design by selecting the Diagram tab in the IP Integrator window.

(v) Click the Regenerate Layout button, 3%/, to regenerate the layout of the various IP blocks and

make the block design easier to follow. Your complete block design should be similar to

Figure 5.15.

processing _system7_0

FOLK_RESETD_NE-—

M_AXI_GPO_ACLK ZYNQ‘ TTO0_WAVEQ_OUT

TTOD_WAVEL OUT =
TTOD_WAVE2_OUT =

bR - [[——3 DDR
FIXED_10 || e T FIXED_1O

1C_i | IC_1
USBIND 0.},
M_AXI_GPO

FOLK_CLKD pm—r
FOLK_CLKL

[FOLK_CLKL

ZYNQ7 Processing Systes

-

rst_processing_system?7_0_100M

mb_resst

siowest_sync_ck

reset_in bus_struct _reset{0: 0]
—fau:_reset_in peripheral_resed]0:0]
—{mb_debug_sys_rst interconnect_aresemniD: 0]

processing_system7_0_axi_periph
A e

o+ —
Lii|_1is00_axt

—{dom_ocked penipheral_aresetn]0:0] |>—

g ——S00_ACLK

Processor System Reset

axi_gpio_0

1| LS _AXT

axi_ack GHIO 3
axi_aresstn

AN GPIO

axi_gpia_1

GFIO

LEDs_out{7:0]

| —— L5 0]

I} [BTNs_SBits

1| LS _AXT
axi

GPIO2 3

AN GPIO

Ims_pcore_0

| LAXT Libe
CORE_CLK

CORE_RESETN

AXI Lite ACLK

X[_Lite_ARESETN

ms_pcore_v1_0

."—D SWs_8Bits

2ed_audio_ctrl_0

| -s_ma
ISDATA I

SDATA_I[C:

e SDATA,
AXI_ARESETN

zed_audio_ctr

nco_0

Figure 5.15: Completed block design

Adventures with IP Integrator
v1.2.1, September 2014

www.zyngbook.com

BOLK——————— [= BOLK
LRCLK——————————J 3 IRCLK

Of————— [SDATA O

135

Exercise 5B: ZedBoard Audio in Vivado IP Integrator

(w) Save the block design.

Before we can run synthesis and implementation for our design, we must generate the RTL files

for our block design.

(x) Generate a top-level HDL wrapper file, by right-clicking on ip_design in the Sources tab and
selecting Create HDL Wrapper.
In the Create HDL Wrapper window, select Let Vivado manage wrapper and auto-update,

and click OK.

The next task that we have to do in Vivado before we can synthesis and implementation of the
design, is to add a constraints file which will map the external interfaces of our design to specific

pins on the Zynq device.

(y) Select Add Sources form the Project Manager section of Flow Navigator.
In the Add Sources window, select Add or Create Constraints, and click Next.
In the Add or Create Constraints window, select Add Files.
Navigate to C:/Zynq_Book/sources/adventures_with_ip_integrator/constraints, select
adventures_with_ip.xdc, and click OK.

Click Finish to close the Add Sources window, and import the constraints file.

(z) Open the constraints file by expanding the Constraints section of Sources tab, and double-

clicking on adventures_with_ip.xdc.

The top section of the file contains the constraints which map the individual bits of the LEDs_out
interface to the corresponding pins on the Zynq device, and you will have seen these before in the

first exercise of the previous tutorial.

Adventures with IP Integrator www.zyngbook.com 136
v1.2.1, September 2014

Exercise 5B: ZedBoard Audio in Vivado IP Integrator

The bottom section of the file, as shown in Figure 5.16, contains the constraints which map the
various external ports of the design which relate to the audio codec, to their corresponding pins

on the Zynq device.

ZedBoard Audio Codec Constraints

set property
set_property

set_property
set property

set property
set_property

set property
set property

#MCLK
set property
set_property

set_property
set property

set property
set property

set property
set property

set property
set_property

PACKAGE_PIN AA6 [get ports BCLK]
IOSTANDARD LVCMOS33 [get ports BCLK]

PACKAGE_PIN Y6 [get ports LRCLK]
IOSTANDARD LVCMOS33 [get ports LRCLK]

PACKAGE_PIN AA7 [get ports SDATA I]
IOSTANDARD LVCMOS33 [get ports SDATA_I]

PACKAGE_PIN Y8 [get ports SDATA O]
IOSTANDARD LVCMOS33 [get ports SDATA_O]
PACKAGE_PIN AB2 [get ports FCLK_CLK1]

IOSTANDARD LVCMOS33 [get ports FCLK_CLK1]

PACKAGE_PIN AB4 [get ports IIC_1_scl _io]
TIOSTANDARD LVCMOS33 [get ports IIC_1 scl io]

PACKAGE_PIN AB5 [get ports IIC 1 sda_io]
IOSTANDARD LVCMOS33 [get ports IIC_1 sda_io]

PACKAGE_PIN AB1 [get ports {GPIO tri_io[@]}]
IOSTANDARD LVCMOS33 [get ports {GPIO tri_io[0]}]

PACKAGE_PIN Y5 [get ports {GPIO_ tri_io[1]}]
IOSTANDARD LVCMOS33 [get ports {GPIO_tri_io[1]}]

Figure 5.16: ZedBoard audio codec constraints

Next, we will create a bitstream so that we can program the PL of the Zynq device with our design.

Adventures with IP Integrator 137

v1.2.1, September 2014

www.zyngbook.com

Exercise 5B: ZedBoard Audio in Vivado IP Integrator

(aa) In Flow Navigator, select Generate Bitstream from the Program and Debug section.
At the No Implementation Results Available window, click Yes to launch synthesis and
implementation.
When bitstream generation is complete, select Open Implemented Design in the Bitstream

Generation Completed window, and click OK.

Finally, we can export the hardware to the SDK, where we will create a software application to

control the system in the next exercise.

(ab)Select File > Export > Export Hardware for SDK from the Menu Bar.

Ensure that the options to Include Bitstream and Launch SDK are selected, and click OK.
This concludes this exercise on audio of the ZedBoard. You should now be familiar with:

« Making the required changes to the Zynq PS in order to use the audio codec on the
ZedBoard.

« Making the required external connections to allow the Zynq PL to be connected to the
audio codec via the external Zynq device pins.

« Using a constraints file to map the external interfaces of the design which relate to the

audio codec, to the corresponding pins on the Zynq device.

Adventures with IP Integrator www.zyngbook.com 138
v1.2.1, September 2014

Exercise 5C: Creating an Audio Software Application in SDK

In this final exercise we will be creating a software application which ties together all of the IP

modules which we have created, to create a DSP-oriented system. The procedure of setting up the

ZedBoard audio codec via the hardware registers will also be introduced.

Once the SDK has launched from the previous exercise, we can start by creating a new application.

(@) Select File > New > Application Project from the Menu Bar.

In the New Project dialogue, enter adventures_with_ip as the Project name.

By default the option to create a new Board Support Package will be selected.

Click Next.

(b) Inthe Templates dialogue, select Empty Application, and click Finish.

You should recall that when we created the custom IP peripherals in the previous tutorial that a

set of software driver files were generated for each. We must now point SDK to those driver files.

This is done by adding a new repositories to the SDK project.

(c) Navigate to Xilinx Tools > Repositories in the Menu Bar.

In the Repositories Preferences window, click on New, as shown in Figure 5.17.

type filter text

General

C/Cr+

Help

Install/Update

Remote Systems

Run/Debug

Team

Terminal

a Kilinx SDK

Boot Image
Flash Pragramming
Hardware Specification
Log Information Level
Repositaries
XMD Startup

Add, remove or change the order of SDK's software repositories.

Local Repositories {available to the current workspace)

Relative
Global Repositories (available scross workspaces)

New..

X XilinsProcessorPLib)
reh\Xilimad\SDIC ThirdParty
Rescan Repositories
Note: Local repasitory settings take precedence over global repasitory settings.
Restore Defaults Apply

Figure 5.17: SDK Repository Peripherals window

Adventures with IP Integrator

v1.2.1, September 2014

www.zyngbook.com

139

Exercise 5C: Creating an Audio Software Application in SDK

(d) Add the LED Controller drivers by browsing to the directory:
C:\Zynq_Book\ip_repo\led_controller_1.0 and clicking OK.
(e) Click New.
Add the NCO drivers by browsing to the directory:
C:\Zynq_Book\ip_repo\xilinx_com_hls_nco_1_0
and clicking OK.

Upon closing the preferences window, SDK will automatically scan the repository and rebuild the

project to include the driver files.
We must now assign the newly imported drivers to their corresponding peripherals.

(f) The system.mss tab should be open in the Workspace. If it is not, open it by expanding

adventures_with_ip_bsp in Project Explorer and double-clicking on system.mss.

(g) Atthe top left of the system.mss tab, click Modify this BSP’s Settings.
The Board Support Package Settings window will open.

(h) Select drivers from the left-hand menu and assign the led_controller driver to the
led_controller_0 component and the nco_top driver to the nco_0 component, as
highlighted in Figure 5.18.

I led_controller 1.00.a I
generic 1.00.a
I nco_top 1.00.a I

Figure 5.18: Driver assignment

Click OK.
The project will now rebuild.

The LMS IP core that we created with Mathworks HDL Coder and the audio codec IP also have
software drivers, but due to their directory structure, we must import their drivers to the

workspace rather than use a repository.

(i) In the Project Explorer panel, expand adventures_with_ip, right-click on src and select
Import.
In the Import window, expand General and double-click on File System.

Click Browse in the top right corner, and navigate to

Adventures with IP Integrator www.zyngbook.com 140
v1.2.1, September 2014

Exercise 5C: Creating an Audio Software Application in SDK

C:\Zynq_Book\hdl_coder_Ims\hdl_prj\ipcore\lms_pcore_v1_00_a\include.
Click OK, to import the LMS IP driver.
In the right-hand panel, select Ims_pcore_addr.h and click Finish.
Note: This directory will only be available if you have completed Exercise 4B of Tutorial 4.
If you have not completed this exercise, you can obtain Ims_pcore_addr.h from the source
directory C:\Zynq_Book\sources\adventures_with_ip_integrator\drivers.
(j) Similarly, import the audio controller IP driver, audio.h, from the directory

C:\Zynq_Book\sources\adventures_with_ip_integrator\drivers.
With all the driver files for the IP imported, we can import the source files for our application.

(k) Follow the same procedure as in Step (i) to import the following files from the
C:\Zynq_Book\sources\adventures_with_ip_integrator\software
directory:

« adventures_with_ip.h
« adventures_with_ip.c
« audio.c

« ip_functions.c
The source files will be imported and the application should build.
(I) Open the header file adventures_with_ip.h by double-clicking on it in Project Explorer.

This is the main header file for the software application. At the top of the file you should see a list
of included header files, which define a variety of functions which are used in the software

application.

Further down the file you should see the inclusion of the custom IP header files which we

imported earlier:

/* __ k3
* Custom IP Header Files *
K o e e e e e e e e e e e e e e e e e e e ——————— - */

t#tinclude "audio.h"
#include "lms_pcore_addr.h"
#tinclude "xnco.h"

Adventures with IP Integrator www.zyngbook.com 141
v1.2.1, September 2014

Exercise 5C: Creating an Audio Software Application in SDK

As an example of one of the header files that was created during the IP creation process, we will

open the header for the LMS IP core.

(m) In the Outline tab on the right hand side of the SDK window, double click on

Ims_pcore_addr.h.

In the LMS header file, you should see the following definitions:

#define IPCore_Reset_lms_pcore Ox0 //write Ox1 to bit © to reset IP core

#tdefine 1IPCore Enable 1lms pcore ©x4 //enabled (by default) when bit © is @x1
#define 1IPCore_Strobe_lms_pcore ©0x8 //write 1 to bit © after write all input data
#define IPCore_Ready_lms_pcore OxC //wait until bit @ is 1 before read output data

#define x_k__Data_lms_pcore 0x100 //data register for port x(k)
#define d_k__Data_lms_pcore 0x104 //data register for port d(k)
#define e_k__Data_lms_pcore 0x108 //data register for port e(k)

These define the memory-mapped address offsets of the various signals of the LMS peripheral.
Data can be transferred between the peripheral in the PL and the software in the PS by writing to,
or reading from the these offset addresses. The actual address that would be used to access these

signals would be BASE ADDRESS + OFFSET.

Each IP peripheral that we added to our block design in IP Integrator is automatically assigned a
base address in memory. These addresses can be determined from a Xilinx parameters C header
file which is automatically created when exporting an IP Integrator design which contains a Zynq

Processing System. The header file is called xparameters.h.
We shall now explore the Xilinx parameters header file.
(n) Switch back to the adventures_with_ip.h tab in the Editor window.

xparameters.h is included in this main header file, and is therefore accessible from the Outline

tab.
(0) Open xparameters.h by double-clicking on it in the Outline tab.

Here you should see a list of memory base address definitions, along with a number of other

parameters.

As we were previously looking at the LMS header file, we will look at the definition of the base

address for the LMS peripheral.

Adventures with IP Integrator www.zyngbook.com 142
v1.2.1, September 2014

Exercise 5C: Creating an Audio Software Application in SDK

(p) Scroll down the file until you see the following lines:

/* Definitions for peripheral LMS PCORE_© */
#define XPAR_LMS_PCORE_O_BASEADDR 0x43C10000
#define XPAR_LMS_PCORE_O© HIGHADDR ©x43C1FFFF

Here we see the definitions of both the base and high addresses in memory for the LMS
peripheral. As the difference between the high address and the base address is @xFFFF, the LMS
peripheral has an addressable range of 65536 bits, or 64 Bytes.

Referring back to the memory address offsets for the LMS block in Step (m), if we, for example,
wanted to write data to the input port x(k), we would do this by writing the desired value to the
BASE ADDRESS + OFFSET, which in this case would be:

XPAR_LMS_PCORE_© BASEADDR + x_k__Data_lms_pcore = 0x43C10000 + 0x100
Giving a unique address of 9x43C10100.

We will now take a look at the main software application file.

(g) Open the source file adventures_with_ip.c by double-clicking on it in Project Explorer.

This file contains the main function, and another function which implements an interactive menu

that allows the user to control the system using keyboard commands via the terminal.
Take a moment to look over the file and note the function calls which are made.

In the main() function, the first set of functions are called to setup and configure the audio

coded. These functions are defined in audio.c, which we will look at next.
(r) Open audio.c.

Here we have the functions which are called to initialise the audio codec and the required 1°C

interface in the Zynq PS.

We don’t want to go into great detail about the functionality contained here, but in basic terms
the purpose of these functions is to configure the audio codec by writing to the codec’s control

registers.

Adventures with IP Integrator www.zyngbook.com 143
v1.2.1, September 2014

Exercise 5C: Creating an Audio Software Application in SDK

Each control register has a unique address which can be accessed via the 12C serial interface.

The control register addresses are defined in the audio.h header file.
(s) Open audio.h.

This file contains a number of definitions relating to the audio codec and the 12C interface, as well

as some prototype function definitions.

You should see an enumerated type which lists all of the audio codec’s control register addresses,

which were mentioned in the previous step.

More information on the audio codec can be found in the data sheet:

http://www.analog.com/static/imported-files/data_sheets/ADAU1761.pdf

Next we will have a look at the functions which control the custom IP peripherals in the PL.
(t) Open ip_functions.c.

This file contains the functions which control the IP peripherals, as well as some functions to

initialise drivers for the GPIO and NCO.
The three functions of interest are:

+ audio_stream() — Implements stereo audio loopback between the input and output
ports of the audio codec. Left and right audio samples are read in from the audio
controller peripheral’s I2S receive register and are then written back out to the controller’s
1S transmit register.

« tonal_noise() — This function builds upon the audio loopback in audio_stream(). A
step size value is input via the slide switches on the board. The corresponding value is
then output to the LEDs on the board by writing to the memory-mapped register of the
LED controller peripheral. The step size value is also output to the NCO peripheral using
the XNco_SetStep_size_v() function defined by the NCO driver file. A sinusoidal
sample created by the NCO peripheral is the read in by the XNco_GetSine_sample_v()
NCO driver function and, as in the previous audio streaming function, left and right audio
samples are received from the audio codec. The sinusoidal noise component is then
added to the left and right audio samples before being written to the audio controller for

output to the codec.

Adventures with IP Integrator www.zyngbook.com 144
v1.2.1, September 2014

Exercise 5C: Creating an Audio Software Application in SDK

« 1lms_filter() — This function combines the functionality of the NCO and the LMS
peripherals to create system which add tonal noise to an audio signal, before using an
LMS adaptive filter for noise cancellation to remove the added noise. As in the
tonal_noise() function, sinusoidal samples are generated from the NCO peripheral
and added to the left and right audio samples from the audio controller. The sinusoidal
sample is then input to the LMS as the input sample x(k) and the sample with added
tonal noise is input as the desired signal d(k). The resulting output of the LMS peripheral
is only read if the user presses any of the push buttons on the board, otherwise the
corrupted audio sample is retained. This allows the user to verify that the LMS filter

peripheral is removing the noise.

Now that we have had a look at the functions and definitions contained in the various source and

header files, we can move on to actually implementing the system on the ZedBoard.

To begin, we will program the Zynq PL with the bitstream that we generated in the previous

exercise.

Note: At this stage ensure that the ZedBoard is powered on and both the PROG and UART USB
ports are connected to your host computer.

You should also ensure that the board is configured to boot from JTAG.

Adventures with IP Integrator www.zyngbook.com 145
v1.2.1, September 2014

Exercise 5C: Creating an Audio Software Application in SDK

(u) Select Xilinx Tools > Program FPGA from the Menu Bar. The Program FPGA window should be

configured as in Figure 5.19.

Program FPGA
Specify the bitstream and the ELF files that reside in BRAM memory

Hardware Configuration

Hardware Platform: lhw_platform_ﬂ v]

Connection: lLocaI v” MNew]

Device: Auto Detect
Bitstream: ip_design_wrapper.bit

BMM/MMI File:

Software Configuration
Processor ELF File to Initialize in Block RAM

4 1

Run reset_zynqpl

'ﬁ:‘ [Program l I Cancel

Figure 5.19: Program FPGA window

Click Program.
The Zyng PL on the board will be configured with the bitstream and the DONE LED should

turn blue.

At this stage we must invoke PUTTY — the terminal program which you should have downloaded

at the beginning of this tutorial.

(v) At the location which you downloaded PuTTY, double-click PuTTY.exe. As you downloaded
the executable file, Windows may present a security warning. Accept the warning by clicking

Run.

Adventures with IP Integrator www.zyngbook.com 146
v1.2.1, September 2014

Exercise 5C: Creating an Audio Software Application in SDK

(w) PuTTY Configuration should open, as shown in Figure 5.20.

=]~ Session Basic options for your PuTTY session

Specify the destination you want to connect to
Host Name (or IP address) Port

= Teminal

- Keyboard
- Bell

- Features Connection type:

- Window “VRaw () Telnet) Rlogin @ 5SH|) Seral |
- Appearance

- Behaviour
- Translation Saved Sessions

Load, save or delete & stored session

- Selection

- Colours Default Settings
- Connection zed

Close window on ext:
) Mlways) Never @ Only on clean exit

Figure 5.20: PuTTY

(x) Select Serial as Connection type (highlighted in Figure 5.20) and configure the settings as
specified in Figure 5.21.

Specify the destination you want to connect to

Seral line Speed
COM3 115200
Connection type:

JRaw () Telnet () Rlogin) 55H @ Seral

Figure 5.21: PuTTY configuration

NOTE: The value of the Serial line entry will vary depending on which the USB UART cable is
connected to.

In order to determine this value on a Windows system, open the Device Manager and identify
the COM port.

(y) Click Open, to open the terminal connection. The PuTTY terminal window will open.
With the terminal connection open, the final step is the run the software on the Zynq PS.

(z) Right-click on adventures_with_ip in Project explorer and select Run As > Launch on

Hardware (GDB).

Adventures with IP Integrator www.zyngbook.com 147
v1.2.1, September 2014

Exercise 5C: Creating an Audio Software Application in SDK

In the PUTTY terminal you should see the following output:
e v =S

Note: At this point you should attach an audio patch cable between the PC speaker output and
the board’s Line IN input. Also, connect headphones to the board’s Line OUT input. These

connections are highlighted in Figure 5.22.

L. =5 v S .L

LINE IN * " JLINE OUT HPH OUT
Figure 5.22: ZedBoard audio jacks

(aa) Open the audio file
C:\Zynq_Book\sources\adventures_with_ip_integrator\original_speech.wav
in an audio player, and begin playback.
Note: It may be useful to turn on the repeat setting in the audio player for continuous
playback.

(ab)In the PUTTY terminal window, press the ‘s” key on your keyboard.
This will prompt the software application to enter the audio_stream() function which we
looked at earlier.
You should be able to hear audio of speech via the headphone connection.

(ac) Press the ‘g’ key on the keyboard to return to the menu.

(ad)Press the ‘n” key on the keyboard. This will prompt the application to enter the
tonal_noise() function.
Initially you should hear the same audio signal.
You should note that currently there is no step size being input to the NCO.

Push slide switch SWO0 into the on position. You should now be able to hear a sinusoidal tone

Adventures with IP Integrator www.zyngbook.com 148
v1.2.1, September 2014

Exercise 5C: Creating an Audio Software Application in SDK

which has been added to the audio signal. LED 0 should also be lit.
Experiment with different step size values by varying the on/off values of slide switches SW1
and SW2. This will vary the frequency of the tonal noise.

(ae) Press the ‘qg” key on the keyboard to return to the menu.

(af) Pressthe “f key on the keyboard. This will prompt the application to enter the Ims_filter()
function. The basic functionality here is the same as in the previous NCO function, and you can
add tonal noise to the audio signal using the slide switches.

With tonal noise being added to the audio signal, press any of the push buttons on the board.

The sinusoidal tone will be adaptively filtered by the LMS, and the tonal noise removed.

This concludes this exercise on the creation of an audio application in the SDK. You should now

be familiar with:

« The automatically generated xparameters.h header file, and its contents.

« Identifying memory-mapped base addresses and offsets for communication between
software running on the Zynq PS and peripherals in the PL.

« The procedure of configuring the ZedBoard’s ADAU1761 audio codec via the control
register addresses.

+ Receiving and sending audio samples to/from the audio codec via an audio controller
block in the PL.

« The process of communicating with custom peripherals in the PL via generated software

drivers.

Adventures with IP Integrator www.zyngbook.com 149
v1.2.1, September 2014

Exercise 5C: Creating an Audio Software Application in SDK

Adventures with IP Integrator www.zyngbook.com 150
v1.2.1, September 2014

	Contents
	First Designs on Zynq
	Creating a First IP Integrator Design
	Creating a Zynq System in Vivado
	Creating a Software Application in the SDK

	Next Steps in Zynq SoC Design
	Expanding the Basic IP Integrator Design
	Creating a Zynq System with Interrupts in Vivado
	Creating a Software Application in the SDK
	Adding a Further Interrupt Source

	Designing With Vivado High Level Synthesis
	Creating Projects in Vivado HLS
	Design Optimisation in Vivado HLS
	Interface Synthesis

	IP Creation
	Creating IP in HDL
	Creating IP in MathWorks HDL Coder
	Creating IP in Vivado HLS

	Adventures with IP Integrator
	Importing IP to the Vivado IP Catalog
	ZedBoard Audio in Vivado IP Integrator
	Creating an Audio Software Application in SDK

