

The Zynq Book
Tutorials

Louise H. Crockett

Ross A. Elliot

Martin A. Enderwitz

Robert W. Stewart

Department of Electronic and Electrical Engineering

University of Strathclyde

Glasgow, Scotland, UK

v1.2 - September 2014

Acknowledgements

There are a number of people whom we would like to thank specifically for their help and contribution of

feedback with regards to the practical tutorials.

Once again, our sincerest thanks must go to Cathal McCabe of Xilinx University Program, who has not only

provided vital feedback and support in the creation of the tutorial material, but has also coordinated the

distribution of those materials to others. Our thanks must also go to Austin Lesea and Y.C. Wang at Xilinx

for taking the time to attempt the tutorial exercises at an early stage, and for providing us with valuable

feedback and suggestions. We also greatly appreciate the support of our colleagues from University of

Strathclyde, Iain Chalmers, Sarunas Kalade, and David Northcote, who have likewise been a great help in

working through the tutorials and feeding back their experiences.

Louise Crockett, Ross Elliot, Martin Enderwitz, and Bob Stewart.

July 2014.
i

ii

Contents
1. First Designs on Zynq 1
Creating a First IP Integrator Design ..4
Creating a Zynq System in Vivado ... 10
Creating a Software Application in the SDK .. 20

2. Next Steps in Zynq SoC Design 29
Expanding the Basic IP Integrator Design .. 32
Creating a Zynq System with Interrupts in Vivado .. 35
Creating a Software Application in the SDK .. 45
Adding a Further Interrupt Source .. 52

3. Designing With Vivado High Level Synthesis 57
Creating Projects in Vivado HLS ... 60
Design Optimisation in Vivado HLS .. 66
Interface Synthesis .. 78

4. IP Creation 81
Creating IP in HDL ... 84
Creating IP in MathWorks HDL Coder ..103
Creating IP in Vivado HLS ...111

5. Adventures with IP Integrator 119
Importing IP to the Vivado IP Catalog ..122
ZedBoard Audio in Vivado IP Integrator ...129
Creating an Audio Software Application in SDK ..139
iii

iv

The Zynq Book Tutorial 1

First Designs on Zynq

v1.3, April 2014

Revision History

Date Version Changes

14/06/2013 1.0 First release for Vivado Design Suite version 2013.1

19/06/2013 1.1
Updated for changes in Vivado Design Suite version
2013.2

27/01/2014 1.2
Updated for changes in Vivado Design Suite version
2013.4

30/04/2014 1.3
Updated for changes in Vivado Design Suite version
2014.1
First Designs on Zynq
v1.3, April 2014

www.zynqbook.com 2

Introduction
Introduction
This tutorial will guide you through the process of creating a first Zynq design using the Vivado™ Integrated

Development Environment (IDE), and introduce the IP Integrator environment for the generation of a

simple Zynq processor design to be implemented on the ZedBoard. The Software Development Kit (SDK)

will then be used to create a simple software application which will run on the Zynq’s ARM Processing System

(PS) to control the hardware that is implemented in the Programmable Logic (PL).

The tutorial is split into three exercises, and is organised as follows:

Exercise 1A - This exercise will guide you through the process of launching Vivado IDE and creating a

project for the first time. The various stages of the New Project Wizard will be introduced.

Exercise 1B - In this exercise, we will use the project that was created in Exercise 1A to build a simple Zynq

embedded system with the graphical tool, IP Integrator, and incorporating existing IP from the Vivado IP

Catalog. A number of design aids will be used throughout this exercise, such as the Board Automation feature

which automates the customisation of IP modules for a specified device or board; in this case we will be using

the ZedBoard Zynq Evaluation and Development Kit. The Designer Assistance feature, which assists with the

connections between the Zynq PS and the IP modules in the PL will also be demonstrated.

Once the design is finished, a number of stages will be undertaken to complete the hardware system and

generate a bitstream for implementation in the PL. The completed hardware design will then be exported to

the Software Development Kit (SDK) for the development of a simple software application in Exercise 1C.

Exercise 1C - In this short third exercise, the SDK will be introduced, and a short software application will

be created to allow the Zynq processor to interact with the IP implemented in the PL. A connection to the

hardware server that allows the SDK to communicate with the Zynq processors will be established. The

software drivers that are automatically created by the Vivado IDE for IP modules will be explored and

integrated into the software application, before finally building and executing the software application on the

ZedBoard.

NOTE: Throughout all of the practical tutorial exercise we will be using C:\Zynq_Book as the working

directory. If this is not suitable, you can substitute it for a directory of your choice, but you should be aware

that you will be required to make alterations to some source files in order for exercises to complete

successfully.
3First Designs on Zynq
v1.3, April 2014

www.zynqbook.com 3

Exercise 1A: Creating a First IP Integrator Design
Creating a First IP Integrator Design

In this exercise we will create a new project in Vivado IDE by moving through the stages of the

Vivado IDE New Project Wizard.

We will start by launching the Vivado IDE.

(a) Launch Vivado by double-clicking on the Vivado desktop icon: , or by navigating to Start

> All Programs > Xilinx Design Tools > Vivado 2014.1> Vivado 2014.1

(b) When Vivado loads, you will be presented with the Getting Started screen as in Figure 1.1.

Exercise 1A

Figure 1.1: Vivado IDE Getting Started Screen
4First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1A: Creating a First IP Integrator Design
(c) Select the option to Create New Project and the New Project Wizard will open, as in Figure 1.2.

Click Next.

(d) At the Project Name dialogue, enter first_zynq_design as the Project name and C:/

Zynq_Book as Project location.

Make sure that you select the option to Create project subdirectory. All options should be the

same as shown below:

Click Next.

A directory named Zynq_Book will be created on your C drive if it did not already exist.

(e) At the Project Type dialogue, select RTL Project and ensure that the option Do not specify

sources at this time is not selected:

Click Next.

(f) Select VHDL as the Target language in the Add Sources dialogue.

If existing sources, in the form of HDL or netlist files, were to be added to the project they

could be imported at this stage.

As we do not have any sources to add to the project, click Next.

Figure 1.2: New Project Dialogue
5First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1A: Creating a First IP Integrator Design
(g) The Add Existing IP (optional) dialogue will open.

If existing IP sources were to be included in the project, they could be added here.

As we do not have any existing IP to add, click Next.

(h) The Add Constraints (optional) dialogue will open.

This is the stage where any physical or timing constraints files could be added to the project.

As we do not have any constraints files to add, click Next.

(i) From the Default Part dialogue, select Boards from the Specify box and select ZedBoard Zynq

Evaluation and Development Kit from the Display Name list and All from the Board Rev list, as

shown in Figure 1.3. Select the appropriate revision for your board (in this case Rev. C has

been selected).

Click Next.

(j) In the New Project Summary dialogue, review the specified options, and click Finish to create

the project.

Now that we have created our first project in Vivado IDE, we can now move on to creating our first Zynq

embedded system design.

Before doing that, the Vivado IDE tool layout should be introduced. The default Vivado IDE environment

layout is shown in Figure 1.4 (other layouts can be chosen by selecting different perspectives).

Figure 1.3: Default Part Dialogue Options
6First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1A: Creating a First IP Integrator Design
With reference to the numbered labels in Figure 1.4, the main components of the Vivado IDE environment

are:

1. Menu Bar - The main access bar gives access to the Vivado IDE commands.

2. Main Toolbar - The main toolbar provides easy access to the most commonly used Vivado IDE

commands. Tooltips that provide information for each command on the toolbar can be accessed

31 2 4

5 86 7

Figure 1.4: Vivado IDE Environment Layout
7First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1A: Creating a First IP Integrator Design
by hovering the mouse pointer over the corresponding button, as shown in Figure 1.5.

3. Workspace - The workspace provides a larger area for panels which require a greater screen

space and those with a graphical interface, such as:

• Schematic panel

• Device panel

• Package panel

• Text editor panel

4. Project Status Bar - The project status bar displays the status of the currently active design.

5. Flow Navigator - The Flow Navigator provides easy access to the tools and commands that are

necessary to guide your design from start to finish, starting in the Project Manager section with

design entry and ending with bitstream generation in the Program and Debug section. Run

commands are available in the Simulation, Synthesis and Implementation sections to simulate,

synthesise and implement the active design.

6. Data Windows Pane -The Data Windows pane, by default, displays information that relates to

design data and sources, including:

• Properties window - Shows information about selected logic objects or device resources.

• Netlist window - Provides a hierarchical view of the synthesised or elaborated logic design.

• Sources window - Shows IP Sources, Hierarchy, Libraries and Compile Order views.

7. Status Bar - The status bar displays a variety of information, including:

• Detailed information regarding menu bar and toolbar commands will be shown in the lower

left side of the status bar when the command is accessed.

• When hovering over an object in the Schematic window with the mouse pointer, the object

details appear in the status bar.

• During constraint and placement creation in the Device and Package windows, validity and

constraint type will be shown on the left side of the status bar. Site coordinates and type will

Figure 1.5: Toolbar tooltips
8First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1A: Creating a First IP Integrator Design
be shown in the right side.

• The task progress of a running task will be relocated to the right side of the status bar when

the Background button is selected.

8. Results Window Area -The Results Window displays the status and results of commands in a set

of windows grouped in the bottom of the Vivado IDE environment. As commands progress,

messages are generated and log files and reports are created. The related information is shown

here. The default windows are:

• Messages - Displays all messages for the active design.

• Tcl Console - Tcl commands can be entered here an a history of previous commands and

outputs are also available.

• Reports - Quick access is provided to the reports generated throughout the design flow.

• Log -Displays the log files generated by the simulation, synthesis and implementation

processes.

• Design Runs -Manages runs for the current project.

Additional windows that can appear in this area as required are: Find Results window, Timing

Results window and Package Pins window.

With the layout of the Vivado IDE environment introduced, we can now move on to creating the Zynq

system.
9First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
Creating a Zynq System in Vivado

In this exercise we will be create a simple Zynq embedded system which implements a General

Purpose Input/Output (GPIO) controller in the PL of the Zynq device on the ZedBoard. The GPIO

controller will connect to the LEDs. It will also be connected to the Zynq processor via an AXI bus

connection, allowing the LEDs to be controlled by a software application which we will create in

Exercise 1C.

A graphical representation of the Zynq embedded design is provided in Figure 1.6.

We will begin by creating a new Block Design in Vivado IDE.

(a) In the Flow Navigator window, select Create Block Design from the IP Integrator section, as in

Figure 1.7:

Exercise 1B

LEDs

Zynq

PS
AXI GPIO

Zynq PL

Development Board

AXI Connection

Figure 1.6: Zynq Embedded Design for Exercise 1B

Figure 1.7: Creating a new Block Design in Flow Navigator
10First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
The Create Block Design dialogue will open.

(b) Enter first_zynq_system in the Design name box, as in Figure 1.8:

Click OK. The Vivado IP Integrator Diagram canvas will open in the Workspace.

The first block that we will add to our design will be a Zynq Processing System.

(c) In the Vivado IP Integrator Diagram canvas, right-click anywhere and select Add IP, as in Figure

1.9.

Alternatively, select the Add IP option from the information message at the top of the canvas,

shown in Figure 1.10.

Figure 1.8: Create Block Design dialogue

Figure 1.9: Add IP Option

Figure 1.10: Add IP option in IP Integrator canvas information message
11First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
The pop-up IP Catalog window will open, as in Figure 1.11.

(d) Enter zynq in the search field and select the ZYNQ7 Processing System, as shown in Figure

1.12, and press the Enter key on your keyboard.

You should see a similar message to the following in the Tcl Console window to confirm that

the processing system has indeed been configured correctly:

create_bd_cell ‐type ip ‐vlnv xilinx.com:ip:processing_system7:5.4
processing_system7_0

Messages like this will be displayed in the Tcl Console window for all actions carried out on IP

Integrator blocks.

The next step is to connect the DDR and FIXED_IO interface ports on the Zynq PS to the top-level

interface ports on the design.

Figure 1.11: Pop-up IP Catalog Window

Figure 1.12: Adding ZYNQ7 Processing System from IP
12First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
(e) Click the Run Block Automation option from the Designer Assistance message at the top of the

Diagram window and select /processing_system7_0, as shown in Figure 1.13.

You should notice that the selected item, in this case the ZYNQ7 Processing System, is

highlighted in green.

Select OK, to generate the external connections for both the DDR and FIXED_IO interfaces,

ensuring that the option to Apply Board Preset is selected.

Your block diagram should now resemble Figure 1.14.

As we are using the ZedBoard platform, and we specified this when creating the project,

Vivado will configure the Zynq processor block accordingly.

Now that the main Zynq PS has been added to our design and configured, we can now add further

blocks which will be placed in the PL to add functionality to the system. In this case we will only

be adding a single block, AXI GPIO, to allow us to access the LEDs on the ZedBoard.

(f) Right-click in an empty area of the Diagram window and select Add IP. Enter GPIO in the

search field and add an instance of the AXI GPIO IP.

Figure 1.13: Run Block Automation - Processing System

Figure 1.14: ZYNQ7 Processing System External Connections
13First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
We will now use the IP Integrator Designer Assistance tool to automate the connection of the AXI

GPIO block to the ZYNQ7 Processing System.

(g) Click Run Connection Automation from the Designer Assistance message at the top of the

Diagram window and select /axi_gpio_0/S_AXI, as shown Figure 1.15.

This will automate the process of connecting the GPIO to an AXI port, and will automatically

instantiate two further IP blocks:

• Processor System Reset Module - This provides customised resets for an entire

processing system, including the peripherals, interconnect and the processor itself.

• AXI Interconnect - Provides an AXI interconnect for the system, allowing further IP and

peripherals in the PL to communicate with the main processing system.

Leave the option for Clock Connection (for unconnected clks) to Auto, and Click OK.

All connections between the blocks should be made automatically.

One final connection is required to connect the AXI GPIO block to the LEDs on the ZedBoard. This

can also be completed using Designer Assistance.

Figure 1.15: Run Block Automation - GPIO
14First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
(h) Click Run Connection Automation from the Designer Automation message at the top of the

Diagram window and select /axi_gpio_0/GPIO.

The Run Connection Automation dialogue will open, as in Figure 1.16.

Select LEDs_8Bits from the drop-down menu, and click OK.

The gpio interface of the AXI GPIO block will automatically be connected to the LEDs on the

ZedBoard.

(i) Click the Regenerate Layout button to tidy up the design schematic. Your complete

design should resemble Figure 1.17.

The positions of the individual IP blocks in your design may vary slightly from Figure 1.17, but

the blocks and their connections should be the same.

IP Integrator will automatically assign a memory map for all IP that is present in the design. We will

not be changing the memory map in this tutorial, but for future reference we will take a look at

the Address Editor.

Figure 1.16: Run Connection Automation Dialogue - GPIO

Figure 1.17: Zynq Processor System
15First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
(j) Select the Address Editor tab from the top of the Workspace window, as shown in Figure 1.18,

and expand the Data group.

You can see that IP Integrator has already assigned a memory map (the mapping of specific

sections of memory to the memory-mapped registers of the IP blocks in the PL) to the to the

AXI GPIO interface, and that it has a range of 64K.

Now that our system is complete, we must first validate the design before generating the HDL

design files.

(k) Save your design by selecting File > Save Block Design from the Menu Bar.

(l) Validate the design by selecting Tools > Validate Design from the Menu Bar. This will run a

Design-Rule-Check (DRC).

Alternatively, select the Validate Design button, , from the Main Toolbar, or right-cick

anywhere in the Diagram canvas and select Validate Design.

(m) A Validate Design dialogue should appear to confirm that validation of the design was

successful. Click OK, to dismiss the message.

With the design successfully validated, we can now move on to generating the HDL design files

for the system.

(n) Switch to the Sources Tab by selecting Window > Sources from the Menu Bar.

Figure 1.18: Address Editor Tab
16First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
(o) Still in the Sources window, right-click on the top-level system design, which in this case is

first_zynq_system, and select Create HDL Wrapper, as shown in Figure 1.19.

The Create HDL Wrapper dialogue window will open. Select Let Vivado manage wrapper and

auto-update, and click OK.

This will generate the top level HDL wrapper for our system.

All of the source files for the IP blocks that were used in the IP Integrator block diagram, as well

as any relevant constraints files, will be generated during the synthesis process. As we

specified VHDL as the target language when creating the project in Exercise 1A, all generated

source files will be VHDL.

With all HDL design files generated, the next step in Vivado is to implement our design and

generate a bitstream file.

(p) In Flow Navigator, click Generate Bitstream from the Program and Debug section.

If a dialogue window appears prompting you to save your design, click Save.

(q) A dialogue window will open requesting that you launch synthesis and implementation

before starting the Generate Bitstream process. Click Yes to accept.

The combination of running the synthesis, implementation and bitstream generation

processes back-to-back may take a few minutes, depending on the power of your computer

system.

Figure 1.19: Create HDL Wrapper
17First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
(r) Once the bitstream generation is complete a dialogue window will open to inform you that

the process has been completed successfully, as in Figure 1.20.

Select Open Implemented Design, and click OK.

At this point you will be presented with the Device view, where you can see the PL resources

which are utilised by the design.

With the bitstream generation complete, the building of the hardware image is complete. It must

now be exported to a software environment where we will build a software application to control

and interact with the custom hardware.

The final step in Vivado is to export the design to the SDK, where we will create the software

application that will allow the Zynq PS to control the LEDs on the ZedBoard.

(s) Select File > Export > Export Hardware for SDK... from the Menu Bar.

Figure 1.20: Bitstream Generation Completion Dialogue Window
18First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
(t) The Export Hardware for SDK dialogue window will open. Ensure that the options to Include

bitstream and Launch SDK are selected, as in Figure 1.21, and click OK.

NOTE: For the option to Include bitstream to be enabled, an implemented design must be

active. This is the reason that we opened the implemented design in Step (r).

This concludes the steps that are required in Vivado IDE. All hardware components of the system

have been configured and generated. In the next exercise we will move on to creating a simple

software component which will control the system.

Figure 1.21: Export Hardware for SDK
19First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
Creating a Software Application in the SDK

In this exercise we will create a simple software application which will control the LEDs on the

ZedBoard. The software application will run on the Zynq processing system and communicate

with the AXI GPIO block which is implemented in the PL. We will take a look at the software drivers

that are created by IP Integrator, for each of the IP modules, before building and executing the

software on the ZedBoard.

The SDK should have opened after the conclusion of Exercise 1B. If it did not open, you can open

the SDK by navigating to Start > All Programs > Xilinx Design Tools > Vivado 2014.1 > Xilinx

SDK 2014.1

When launching the SDK from the start menu, you will need to specify the workspace that was

created when the Vivado IP Integrator design was exported in Exercise 1B. It should be:

C:\Zynq_Book\first_zynq_design\first_zynq_design.sdk\SDK\SDK_Export

Enter this in the Workspace field of the Workspace Launcher dialogue window, as shown in Figure

1.22.

With the SDK open, we can begin the creation of our software application.

(a) Select File > New > Application Project from the Menu bar.

Exercise 1C

Figure 1.22: SDK Workspace Launcher Dialogue Window
20First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
(b) The New Project dialogue window will open. Enter LED_test in the Project name field, as shown

in Figure 1.23, keeping all other options with the default settings. Click Next.

(c) At the New Project Templates screen, select Empty Application, as in Figure 1.24, and click

Finish to create the project.

NOTE: the new project should open automatically. If it doesn’t, you may need to close the

Welcome tab in order to view the project.

Figure 1.23: New Application Project Dialogue

Figure 1.24: New Project Template Dialogue
21First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
With the new Application Project created, we can now import some pre-prepared source code for

the application.

(d) In the Project Explorer panel, expand LED_test and highlight the src directory. Right-click and

select Import..., as shown in Figure 1.25.

(e) The Import window will open. Expand the General option and highlight File System, as in

Figure 1.26, and click Next.

Figure 1.25: Import Source Files to Project

Figure 1.26: Import File System
22First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
(f) In the Import File System window, click the Browse... button.

(g) Navigate to the directory: C:\Zynq_Book\sources\first_zynq_design and click OK.

(h) Select the file LED_test_tut_1C.c, as shown in Figure 1.27, and click Finish.

The C source file will be imported and the project should automatically build. You should see

a similar message to Figure 1.28 in the Console window.

Figure 1.27: Import C Source File

Figure 1.28: Build Finished Console Message
23First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
(i) Open the imported source file by expanding the src folder and double-clicking on

LED_test_tut_1C.c, and explore the code.

Note the command XGpio_Initialize(&Gpio, GPIO_DEVICE_ID); This is a function provided

by the GPIO device driver in the file xgpio.h. It initialises the XGpio instance, Gpio, with the

unique ID of the device specified by GPIO_DEVICE_ID.

If you look toward the top of the source file you will see that GPIO_DEVICE_ID is defined as

XPAR_AXI_GPIO_0_DEVICE_ID. The value of XPAR_AXI_GPIO_0_DEVICE_ID can be found by

opening the file, xparameters.h, which is automatically generated by Vivado IDE when

exporting a hardware design to the SDK. It contains definitions of all the hardware parameters

of the system.

The function, XGpio_SetDataDirection(&Gpio, LED_CHANNEL, 0xFF); is also provided by the

GPIO device driver, and sets the direction of the specified GPIO port. As we are specifying the

LEDs in this case, it is specifying an output. Bits set to ‘0’ are output, and bits set to ‘1’ are input.

As there are 8 LEDs, by setting the LED channel direction to a value of 0x00, or 00000000 in

binary, we are setting all 8 LEDs as outputs.

Further information on the peripheral drivers can be found by selecting the system.mss tab.

A list of all the peripherals in the system is provided, along with links to available

documentation and examples, as shown in Figure 1.29.
24First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
The next step is to program the Zynq PL with the bitstream file that we generated in Exercise 1B.

Ensure that the ZedBoard is powered on and that the JTAG port is connected to the PC via the

provided USB-A to USB-B cable.

Figure 1.29: Peripheral Documentation and Drivers in system.mss tab
25First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
(j) Download the bitstream to the Zynq PL by selecting Xilinx Tools > Program FPGA from the

Menu bar. The Program FPGA window will appear. The Bitstream field should already be

populated with the correct bitstream file, as in Figure 1.30.

NOTE: Once the device has successfully been programmed, the DONE LED on the ZedBoard

will turn blue.

With the Zynq PL successfully configured with the bitstream file, we can now launch our software

application on the Zynq PS.

Figure 1.30: Program FPGA dialogue Window
26First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
(k) Select the project LED_test in Project Explorer. Right-click and select Run As > Launch on

Hardware (GDB).

After a few seconds the LEDs on the ZedBoard should begin to flash between the states

highlighted in Figure 1.31.

You have successfully created and executed your first software application on the Zynq

processing system.

State B:

State A:

Figure 1.31: LED Flashing States
27First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
28First Designs on Zynq
v1.3, April 2014

www.zynqbook.com

The Zynq Book Tutorial 2

Next Steps in Zynq SoC Design

v1.2, April 2014

Revision History

Date Version Changes

13/09/2013 1.0 First release for Vivado Design Suite version 2013.2

27/01/2014 1.1
Updated for changes in Vivado Design Suite version
2013.4

30/04/2014 1.2
Updates for changes in Vivado Design Suite version
2014.1
Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com 30

Introduction
Introduction
This tutorial will guide you through the process of creating a Zynq design utilising interrupts. Using the

Vivado™ Integraded Development Environment (IDE) and the IP Integrator environment, a simple Zynq™

processor design, to be implemented on the ZedBoard, will be generated. The Software Development Kit

(SDK) will then be used to create a simple software application which will run on the Zynq’s ARM Processing

System (PS) to control the hardware that is implemented in the Programmable Logic (PL). This tutorial leads

on from the previous one, expanding on the skills acquired in it.

The tutorial is split into four exercises, and is organised as follows:

Exercise 2A — This exercise provides a further guide to the process of launching Vivado IDE and creating a

project using New Project Wizard

Exercise 2B — In this exercise, we will use the project that was created in Exercise 2A to build a Zynq

embedded system utilising interrupts with IP Integrator and incorporating existing IP from the Vivado IP

Catalog. This will expand on previous knowledge gained in creating and connecting a block based system in

IP Integrator. The completed design will have an associated bitstream generated and will be exported to the

Xilinx SDK for creating of a test application.

Exercise 2C — In the Xilinx SDK, a test software application for the generated hardware system will be

created and explained. Running this application on the ZedBoard will demonstrate the function of interrupts

and how the application is coded to utilise them.

Exercise 2D — Finally, we will return to the system from Exercise 2B and include an additional source of

interrupt, making the necessary connections, and generating a bitstream and exporting to the Xilinx SDK.

We will then modify our previous software application to inspect the operation of the altered system.
31Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com 31

Exercise 2A: Expanding the Basic IP Integrator Design
Expanding the Basic IP Integrator Design

In this exercise we will expand upon the previous project in Vivado IDE by adding additional GPIO

and configuring the system to utilise interrupts. For the sake of clarity and understanding, we will

run through the building of a basic system once more. Start by launching the Vivado IDE.

(a) Launch Vivado by double-clicking on the Vivado desktop icon: , or by navigating to Start

> All Programs > Xilinx Design Tools > Vivado 2014.1 > Vivado 2014.1

(b) When Vivado loads, you will be presented with the Getting Started screen as in Figure 2.1.

Exercise 2A

Figure 2.1: Vivado IDE Getting Started screen
32Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2A: Expanding the Basic IP Integrator Design
(c) Select the option to Create New Project as in Figure 2.2

Click Next.

(d) At the Project Name dialogue, enter zynq_interrupts as the Project name and C:/Zynq_Book

as Project location.

Make sure that you select the option to Create project subdirectory. All options should be the

same as shown below:

Click Next.

A directory named Zynq_Book will be created on your C drive if it did not already exist.

(e) At the Project Type dialogue, select RTL Project and ensure that the option Do not specify

sources at this time is not selected:

Click Next.

(f) Select VHDL as the Target language in the Add Sources dialogue.

If existing sources, in the form of HDL or netlist files, were to be added to the project they

could be imported at this stage.

As we do not have any sources to add to the project, click Next.

Figure 2.2: New Project dialogue
33Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2A: Expanding the Basic IP Integrator Design
(g) The Add Existing IP (optional) dialogue will open.

If existing IP sources were to be included in the project, they could be added here.

As we do not have any existing IP to add, click Next.

(h) The Add Constraints (optional) dialogue will open.

This is the stage where any physical or timing constraints files could be added to the project.

As we do not have any constraints files to add, click Next.

(i) From the Default Part dialogue, select Boards from the Specify box and choose ZedBoard

Zynq Evaluation and Development Kit, Board Version c from the list of boards, as shown in

Figure 2.3.

Click Next.

(j) In the New Project Summary dialogue, review the specified options, and click Finish to create

the project.

As in the previous tutorial we will now create the basic Zynq embedded system design before adding and

configuring additional IP to utilise hardware interrupts.

Figure 2.3: Default part dialogue options
34Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
Creating a Zynq System with Interrupts in Vivado

In this exercise we will create a simple Zynq embedded system which implements two General

Purpose Input/Output (GPIO) controllers in the PL of the Zynq device on the ZedBoard, one of

which uses the push buttons to generate interrupts. The other GPIO controller will connect to the

LEDs. Both will also be connected to the Zynq processor via an AXI bus connection, allowing the

LEDs to be controlled by a software application which we will create in Exercise 2C.

(a) In the Flow Navigator window, select Create Block Design from the IP Integrator section, as in

Figure 2.4:

The Create Block Design dialogue will open.

(b) Enter zynq_interrupt_system in the Design name box, as in Figure 2.5:

Click OK. The Vivado IP Integrator Diagram canvas will open in the Workspace.

The first block that we will add to our design will be a Zynq Processing System.

Exercise 2B

Figure 2.4: Creating a new Block Design in Flow Navigator

Figure 2.5: Create Block Design dialogue
35Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
(c) In the Vivado IP Integrator Diagram canvas, right-click anywhere and select Add IP, as in Figure

2.6.

Alternatively, select the Add IP option from the information message at the top of the canvas,

shown in Figure 2.7.

The pop-up IP Catalog window will open, as in Figure 2.8.

Figure 2.6: Add IP option

Figure 2.7: Add IP option in IP Integrator canvas information message
36Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
(d) Enter zynq in the search field and select the ZYNQ7 Processing System, ensuring that you

select the option for Version 5.4, as shown in Figure 2.9, and press the Enter key on your

keyboard.

As in the previous tutorial, the next step is to connect the DDR and FIXED_IO interface ports

on the Zynq PS to the top-level interface ports on the design.

(e) Select the Run Block Automation option from the Designer Assistance message at the top of

the Diagram window. Select OK, ensuring that the option to Apply Board Preset is selected,

to generate the external connections for both the DDR and FIXED_IO interfaces, and apply

the relevant board presets.

Figure 2.8: Pop-up IP Catalog window

Figure 2.9: Adding ZYNQ7 Processing System from IP Catalog
37Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
Your block diagram should now resemble Figure 2.10.

Now that the main Zynq PS has been added to our design and configured, we can now add further

blocks which will be placed in the PL to add functionality to the system. In this case we require an

AXI GPIO block for the LEDs and another for the push buttons.

(f) Right-click in an empty area of the Diagram window and select Add IP. Enter GPIO in the

search field and add an instance of the AXI GPIO IP. Repeat this procedure to add a second

AXI GPIO block to the design.

We will now use the IP Integrator Designer Assistance tool to automate the connection of the AXI

GPIO blocks to the ZYNQ7 Processing System.

(g) Click Run Connection Automation from the Designer Assistance message at the top of the

Diagram window and select /axi_gpio_0/S_AXI, as shown Figure 2.11.

Click OK to ensure automatic clock connection, which adds the Processor System Reset

Module and the AXI Interconnect blocks.

Figure 2.10: ZYNQ7 Processing System external connections

Figure 2.11: Run Block Automation - GPIOinstance 1
38Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
(h) Click Run Connection Automation from the Designer Automation message at the top of the

Diagram window and select /axi_gpio_0/GPIO.

The Run Connection Automation dialogue will open, as in Figure 2.12. Select btns_5bits from

the drop-down menu, and click OK.

(i) Repeat steps (g) and (h) for the second GPIO block, this time selecting leds_8bits for /

axi_gpio_1/GPIO.

You will now have a system that is similar to Figure 2.13. We now need to configure the system to

utilise hardware interrupts from the push buttons to trigger functions in the Zynq PS.

Figure 2.12: Run Connection Automation dialogue — GPIO

Figure 2.13: Zynq processor system
39Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
(j) Double--click on the GPIO block connected to the push buttons, axi_gpio_0, to open the Re-

customize IP window,.

Click the IP Configuration tab and enable interrupts from the push buttons by clicking in the

box highlighted in Figure 2.14 and click OK. This will add an additional output port for the

interrupt request to the GPIO block as in Figure 2.15.

Now we must configure the Zynq PS to accept interrupt requests.

(k) Double-click on the Zynq PS block, processing_system7_0, to open the Re-Customize IP

window.

Figure 2.14: Enabling GPIO interrupts

Figure 2.15: GPIO block with interrupt port
40Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
(l) Select Interrupts from the Page Navigator on the left-hand side and expand the menu on the

right as in Figure 2.16. Since we want to allow interrupts from the programmable logic to the

processing system, tick the box to enable Fabric Interrupts, then click to enable the shared

interrupt port as in Figure 2.16. This means interrupts from the PL can be connected to the

interrupt controller within the Zynq PS. Click OK.

Figure 2.16: Configuring Zynq PS to utilise interrupts
41Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
(m) Make a connection between the interrupt request of the GPIO block and the newly created

interrupt port of the Zynq PS, highlighted in Figure 2.17.

Your final design should resemble Figure 2.18, although the positioning of your blocks may

be different.

(n) Save your design by selecting File > Save Block Design from the Menu Bar.

(o) Validate the design by selecting Tools > Validate Design from the Menu Bar. This will run a

Design-Rule-Check (DRC).

Alternatively, select the Validate Design button, , from the Main Toolbar.

(p) A Validate Design dialogue should appear to confirm that validation of the design was

successful. Click OK, to dismiss the message.

Figure 2.17: Zynq PS with interrupt port

Figure 2.18: Zynq processor system with interrupts
42Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
With the design successfully validated, we can now move on to generating the HDL design files

for the system. The procedure here is identical to the previous tutorial, First Designs on Zynq.

(q) In the Sources window of the Data Windows pane, select the Sources tab.

(r) Right-click on the top-level system design, which in this case is zynq_interrupt_system, and

select Create HDL Wrapper.

The Create HDL Wrapper dialogue window will open. Accept the default option specifying that

VIvado should manage the wrapper and click OK.

With all HDL design files generated, the next step in Vivado is to implement our design and

generate a bitstream file.

(s) In Flow Navigator, click Generate Bitstream from the Program and Debug section.

If a dialogue window appears prompting you to save your design, click Save.

The combination of running the synthesis, implementation and bitstream generation

processes back-to-back may take a few minutes, depending on the power of your computer

system.

(t) Once the bitstream generation is complete a dialogue window will open to inform you that

the process has been completed successfully, as in Figure 2.19.

Select Open Implemented Design, and click OK.

At this point you will be presented with the Device view, where you can see the PL resources

which are utilised by the design.

Figure 2.19: Bitstream Generation completion dialogue window
43Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
With the bitstream generation complete, the final step in Vivado is to export the design to the

SDK, where we will create the software application that will allow the Zynq PS to control the LEDs

on the ZedBoard.

(u) Select File > Export > Export Hardware for SDK... from the Menu Bar.

(v) The Export Hardware for SDK dialogue window will open. Ensure that the options to Include

bitstream and Launch SDK are selected, and Click OK.

This concludes the steps that are required in Vivado IDE. All hardware components of the system

have been configured and generated. In the next exercise we will create the software application

that utilises this hardware system.
44Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2C: Creating a Software Application in the SDK
Creating a Software Application in the SDK

In this exercise a software application will be created that utilises hardware interrupts on the

Zedboard. The push buttons will be used to increment a counter by different values, and the

count will be continuously displayed on the LEDs in binary form, where LED0 corresponds to the

least significant bit (LSB) and LED7 the most significant bit (MSB). This application will run on the

Zynq processing systems, communicating with the AXI GPIO blocks implemented in the PL.

The SDK should have opened after the conclusion of Exercise 2B. If it did not open, you can open

the SDK by navigating to Start > All Programs > Xilinx Design Tools >Vivado 2013.4>SDK>

Xilinx SDK 2013.4 and specifying the workspace as in Exercise 2A.

(a) Select File > New > Application Project from the Menu bar.

(b) The New Project dialogue window will open. Enter interrupt_counter in the Project name field,

as shown in Figure 2.20, keeping all other options with the default settings. Click Next.

Exercise 2C

Figure 2.20: New Application Project dialogue
45Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2C: Creating a Software Application in the SDK
(c) At the New Project Templates screen, select Empty Application, as in Figure 2.21, and click

Finish to create the project.

NOTE: the new project should open automatically. If it doesn’t, you may need to close the

Welcome tab in order to view the project.

With the new Application Project created, we can now import some pre-prepared source code for

the application.

(d) In the Project Explorer panel, expand interrupt_counter and highlight the src directory. Right-

click and select Import..., choosing General > File System as an import source.

(e) In the Import File System window, click the Browse... button.

(f) Navigate to the directory: C:\Zynq_Book\sources\zynq_interrupts and click OK.

Figure 2.21: New Project Template dialogue
46Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2C: Creating a Software Application in the SDK
(g) Select the file interrupt_counter_tut_2B.c, as shown in Figure 2.22, and click Finish.

This file contains C Code that has been written to perform the interrupt triggered counter

operation on the ZedBoard.

(h) Open the imported source file by expanding the src folder and double-clicking on

interrupt_counter_tut_2B.c, and explore the code.

The code has been fully commented, but will be briefly discussed here for clarity. Note that

this file contains several portions of code which have been commented out; these will be

utilised and discussed further in the next exercise and can be ignored for now.

By now, you should be familiar with the use of drivers and parameters in configuring and

operating the GPIO. Remember, detailed information of these drivers can be found in the

system.mss file, explaining the purpose of each function and the parameters passed to it.

Predesignated parameters can also be found in xparameters.h.

The Zynq PS features a built in interrupt controller, initialised here as XScuGic INTCInst. This

handles all incoming interrupt requests passed to the PS and performs the function

associated with each interrupt source. It is also capable of prioritising multiple interrupt

sources to the requirements of the application.

Figure 2.22: Import C source file
47Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2C: Creating a Software Application in the SDK
Of particular note is the inclusion of the function BTN_Intr_Handler(void *InstancePtr);. This

is the interrupt handler function for the push buttons and is called every time an interrupt

request from the push buttons in the PL is received in the PS. This performs a counter

increment on each call and displays the value of the counter on the LEDs in binary.

An initial setup function can be found below the main function. This is

InterruptSystemSetup(XScuGic *XScuGicInstancePtr);. The function initialises and

configures the interrupt controller in the Zynq PS, connecting the interrupt handler to the

interrupt source. It also makes a call to the latter function which enables the interrupt sources

and registers exceptions.

The next step is to program the Zynq PL with the bitstream file that we generated in Exercise 2B.

Ensure that the ZedBoard is powered on and that the JTAG port is connected to the PC via the

provided USB-A to USB-B cable.

(i) Download the bitstream to the Zynq PL by selecting Xilinx Tools > Program FPGA from the

Menu bar. The Program FPGA window will appear. The Bitstream field should already be

populated with the correct bitstream file, as in Figure 2.23.

Figure 2.23: Program FPGA dialogue window
48Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2C: Creating a Software Application in the SDK
If it is not, enter:

zynq_interrupt_system_wrapper.bit

and click Program.

As in the previous tutorial, once the device has successfully been programmed, the DONE LED

on the ZedBoard will turn blue.

With the Zynq PL successfully configured with the bitstream file, we can now launch our software

application on the Zynq PS.
49Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2C: Creating a Software Application in the SDK
(j) Select interrupt_counter in Project Explorer. Right-click and select Run As > Launch on

Hardware.

The counter increments by different values based on the push button which is pressed. The

counter operates as demonstrated in Figure 2.24.

(k) Try pressing different push buttons and observing how the counter increments (or does it

increment at all?) Based on your findings, can you determine the value assigned to each of the

push buttons (BTNU, BTND, BTNL, BTNR and BTNC as noted on the ZedBoard)?

LSB MSB

LED0 LED7

00000000 = 0

00000001 = 1

00000010 = 2

...

01111111 = 254

11111111 = 255

Figure 2.24: LED flashing states
50Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2C: Creating a Software Application in the SDK
You have successfully created and executed a software application utilising interrupts on the

Zynq PS. The next step is to go back and add an additional interrupt source with higher priority to

alter the functionality of the system.
51Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2D: Adding a Further Interrupt Source
Adding a Further Interrupt Source

In this exercise we will add an additional source of interrupt to the project created in Exercise 2B

in the form of an AXI Timer.

(a) Launch Vivado by double-clicking on the Vivado desktop icon: , or by navigating to

Start > All Programs > Xilinx Design Tools > Vivado 2014.1 > Vivado 2014.1

(b) When the program launches, open the previously created project by selecting Open Project.

The previously created project should appear in the list of recent projects as C:/Zynq_Book/

zynq_interrupts/zynq_interrupts.xpr so click on it. If it doesn’t, click Browse Projects... and

navigate to that directory, selecting zynq_interrupts.xpr and clicking open.

(c) Open the block design from the sources panel by expanding the sources and double clicking

on the block design as highlighted in Figure 2.25.

(d) With the block diagram now open we will add an AXI Timer to the design. In the Vivado IP

Integrator Diagram canvas, right-click anywhere and select Add IP. Enter timer in the search

field and add the IP AXI TIMER to the design by either dragging it onto the canvas or selecting

it and pressing ENTER.

Exercise 2D

Figure 2.25: Opening an existing block diagram

Figure 2.26: AXI Timer in the IP Catalog
52Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2D: Adding a Further Interrupt Source
(e) Select Run Connection Automation option from the Designer Assistance message at the top

of the Diagram window and select/axi_timer_0/S_AXI and click OK to connect the timer to

the AXI Interconnect.

(f) Note that in Figure 2.27 the AXI Timer features an interrupt request, which requires

connection to the Zynq PS. However, we already have an interrupt connected to the input of

the PS. This input is a shared interrupt port, and so accepts multiple interrupts via one signal.

We therefore require an additional IP block to concatenate these two interrupt requests into

one signal. In the canvas, right-click anywhere and select Add IP. Enter concat in the search

field and add the IP Concat to the design.

(g) Remove the connection to IRQ_F2P[0:0] on the Zynq PS by clicking it and pressing DELETE.

Connect the output from the Concat block, xlconcat_0 to this instead. Then, connect the

interrupt request from the GPIO to In0[0:0] and the interrupt from the timer to In1[0:0],

creating a shared interrupt signal that is passed to the PS. Your block diagram should be

similar to Figure 2.29.

Figure 2.27: AXI Timer in the block design

Figure 2.28: Concat in the block design
53Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2D: Adding a Further Interrupt Source
We now need to regenerate the output products, update the HDL wrapped and generate a

new bitstream for our altered design.

(h) Right-click on the top-level system design and select Create HDL Wrapper... selecting the

default option as previous. Click OK.

(i) In Flow Navigator, click Generate Bitstream from the Program and Debug section.

If a dialogue window appears prompting you to save your design, click Save.

(j) A dialogue window will open requesting that you launch synthesis and implementation

before starting the Generate Bitstream process. Click Yes to accept.

Again these back-to-back processes may take a few minutes, depending on the power of your

computer system.

(k) When this process is completed click OK.

(l) Select File > Export > Export Hardware for SDK... from the Menu Bar.

(m) The Export Hardware for SDK dialogue window will open. Ensure that the options to Include

bitstream and Launch SDK are selected, and Click OK. A dialog will be presented asking if you

wish to overwrite an exported file, which is the initial system featuring a single interrupt.

Select Yes for this and any further prompts.

(n) Once the SDK opens and builds the project, we will alter our application to make use of the

new interrupt source. Right-click on the project interrupt_counter in the Project Explorer

and select Delete.

Figure 2.29: Complete system with multiple interrupt sources
54Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2D: Adding a Further Interrupt Source
Repeat for the BSP, interrupt_controller_bsp.

Repeat the steps outlined in Exercise 2B (a) to (h) for creating a new application project, BSP

and importing a source file, this time selecting interrupt_counter_tut_2D.c.

Notice the inclusion of a second interrupt handler, TMR_Intr_Handler(void *data); which will

increment the value of the counter after the timer has expired three times, writing the new

value to the LEDs.

Additional code has been included in the main to configure and start the timer, and full details

of these functions can be found in the system.mms. The function IntcInitFunction(u16

DeviceId, XTmrCtr *TmrInstancePtr,XGpio *GpioInstancePtr); also contains additional

code to connect the timer interrupt to the handler and enable it.

In brief, the timer is loaded with a value TMR_LOAD and configured to automatically reload on

each expiration. The interrupt handler keeps track of the number of expirations and after

three expirations performs the required steps, otherwise it simply increments the variable

storing the number of expirations.

Save the file.

(o) Download the bitstream to the Zynq PL by selecting Xilinx Tools > Program FPGA from the

Menu bar.

(p) Once the blue LED signalling successful programming lights, select zynq_interrupts in Project

Explorer. Right-click and select Run As > Launch on Hardware.

Note that the counter will increment by 1 every time the timer expires three times. The

buttons still operate as in the previous exercise.

This completes this tutorial and systems utilising both a single and multiple interrupt sources

have been created and tested.
55Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

Exercise 2D: Adding a Further Interrupt Source
56Next Steps in Zynq SoC Design
v1.2, April 2014

www.zynqbook.com

The Zynq Book Tutorial 3

Designing With Vivado High Level Synthesis

v1.2, May 2014

Revision History

Date Version Changes

30/10/2013 1.0 First release for Vivado Design Suite version 2013.2

28/01/2014 1.1
Updated for changes in Vivado Design Suite version
2013.4

06/5/2014 1.2
Updated for changes in Vivado Design Suite version
2014.1
Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com 58

Introduction
Introduction
This tutorial presents an introduction to High Level Synthesis using the Vivado™ HLS environment. The

creation of projects manually through the GUI, and automatically through scripting will be covered. The

process of simulating, synthesising and analysing a Vivado HLS design will then be explored, with sufficient

design optimisation and solution comparison along the way.

The tutorial is split into three exercises, and is organised as follows:

Exercise 3A — This exercise concerns the creation of projects using both the Vivado HLS GUI and use of Tcl

scripting. It details the inclusion of relevant source and test files and generation of a project for use in the

proceeding exercise.

Exercise 3B — This exercise involves design optimization of a matrix multiplication function through use of

various directives. It presents the Vivado HLS design environment and method of synthesis and analysis of

project solutions.

Exercise 3C — Finally, a more detailed look at how Vivado HLS synthesises interfaces is investigated.
59Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com 59

Exercise 3A: Creating Projects in Vivado HLS
Creating Projects in Vivado HLS

In this exercise we will present the creation of Vivado HLS projects using both the Vivado HLS GUI

and the use of Tcl scripting to expedite the process.

(a) Before we begin it is necessary to copy the files from C:\Zynq_Book\sources\hls to a new

directory, C:\Zynq_Book\hls.

(b) Launch the Vivado HLS GUI by navigating to Start > All Programs > Xilinx Design Tools >

Vivado 2014.1> Vivado HLS > Vivado HLS 2014.1

(c) When the Vivado HLS GUI loads, you will be presented with the Welcome screen as in Figure

3.1.

(d) Select the option to Create New Project in Figure 3.1

(e) At the Project Name dialogue, enter matrix_mult_prj as the Project name and C:/

Zynq_Book/hls/tut3A as Project location.

Click Next.

Exercise 3A

Figure 3.1: Vivado HLS welcome screen
60Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3A: Creating Projects in Vivado HLS
(f) You will now be prompted to add or remove source files for the project. All C-based source

files for this tutorial have been created in advance, as we seek to guide the design flow rather

than the programming itself. Click Add Files... and navigate to C:\Zynq_Book\hls\tut3A

Select the files matrix_mult.cpp and matrix_mult.h and click Open. Set the top function to

matrix_mult as in Figure 3.2.

Click Next.

(g) You will now be prompted to add a testbench file for design testing. Once more, click Add

Files... and navigate to the previous directory this time adding the file matrix_mult_test.cpp

and clicking Next.

(h) The next step is configuring a solution for a specific FPGA technology. In this case, leave the

solution name and clock settings as the default options.

Since we are using the ZedBoard with the Zynq-7020 FPGA click ... in the part selection panel.

Figure 3.2: Adding files to a Vivado HLS project
61Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3A: Creating Projects in Vivado HLS
Under the Specify section select Boards and then select the ZedBoard Zynq Evaluation and

Development Kit before clicking OK as in Figure 3.3.

Click Finish.

(i) The project will be generated and the workspace will open in Synthesis mode for the

generated project and solution as in Figure 3.4.

Expanding the Source and Test Bench sections in the Explorer tab on the left side shows the

inclusion of the source and test files from the previous steps. Double clicking on these files

opens them in the editor view for examination and editing.

The project consists of a matrix multiplier, which multiplies two matrices inA and inB to

produce the output prod. The testbench performs the multiplication of two known matrices

and checks the value of prod against expected values.

Figure 3.3: The device selection dialogue
62Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3A: Creating Projects in Vivado HLS
While the process of getting to this stage of HLS development is relatively straightforward, it

can be quite repetitive and so can be facilitated by use of Tcl scripting. This automates the

process of project naming and adding files. As such, we will now demonstrate the creation of

the same project using the aforementioned scripting approach.

Figure 3.4: Synthesis view in the workspace
63Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3A: Creating Projects in Vivado HLS
(j) First, close the Vivado HLS GUI. We will now open the Vivado HLS Command Prompt.

Launch the command prompt by navigating to Start > All Programs > Xilinx Design Tools

> Vivado 2014.1 > Vivado HLS > Vivado HLS 2041.1 Command Prompt.

(k) It is observed that the default directory for commands is the install directory of Vivado HLS, as

in Figure 3.5. To change this to the working directory for this tutorial, use the following

commands, followed by pressing the Enter key.

• cd.. — This is a change directory command which moves up a

level in the directory. Repeat this until you have reached the level of the C: drive.

• cd Zynq_Book — This changes directory to the Zynq_Book folder.

• cd HLS — This changes directory to Zynq_Book/HLS.

• cd tut3A — This changes directory to Zynq_Book/HLS/tut3A.

The command prompt should now be in the working directory C:\Zynq_Book\HLS\tut3A. This

folder contains the source and test files for a project, and also the Tcl script required to build the

project, run_hls.tcl.

(l) With the correct working directory and the required files present in that directory, we can now

build the project. This is achieved through simply running the Tcl script using the command:

vivado_hls ‐f run_hls.tcl

This will begin the process of creating the project and adding source and test bench files. A HLS

solution is then created before configuring the project for the target device. Finally a C simulation

is run which utilises the test bench to ensure the project operates correctly.

Figure 3.5: Vivado HLS command prompt
64Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3A: Creating Projects in Vivado HLS
The testbench performs identical multiplications using the HLS hardware solution and software,

and compares the results. If these results are identical, a “Test passed!” message is displayed.:

(m) To open the project in the VIvado HLS GUI enter the following command:

vivado_hls ‐p matrix_mult_prj

And press Enter. This will open the Vivado HLS GUI for the project, which we will utilise in the next

exercise.

Using the project generated in the previous exercise, we will now investigate the process of design

optimisation in Vivado HLS. This will also provide an insight into the flow from project creation to C

synthesis and C/RTL cosimulation. We will also discuss the use of the Analysis perspective in analysing a HLS

solution.
65Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
Design Optimisation in Vivado HLS
(a) You should already have the GUI open from the previous exercise, but if you don’t open the

project matrix_mult_prj in the directory C:\Zynq_Book\HLS\tut3A and save in to the \tut3B

directory using File > Save As and selecting the \tut3B directory as the location.

(b) Expand the tabs for Source and Test Bench in the Explorer tab of the Synthesis view. As before,

this shows that the source and test files have been successfully added to the project. Double

clicking on each of these will open them in the editor allowing the code to be inspected and

altered as required.

matrix_mult.cpp contains code that performs the multiplication of two matrices through use

of iterative loops that run through the rows and columns of the matrices to calculate the

product.

matrix_mult.h contains definitions and the prototype function for the matrix multiplication.

matrix_mult_test.cpp is the test bench file which calculates the product of two given

matrixes using both the HLS hardware solution and software, comparing to two to ensure

successful operation.

(c) Click the Run C Simulation button in the toolbar to run a C simulation of the solution.

Leave the options as default (no boxes checked, no input arguments) and click OK. Upon

completion of the simulation, the “Test passed!” message will be displayed in the console in

the bottom of the screen as in Figure 3.6.

(d) The next step is to synthesise the C++ code using HLS. Click the C Synthesis button in

the toolbar. Vivado HLS will begin the process of converting the C++ code into an RTL model

with associated VHDL/Verilog/SystemC code. The console details the steps performed in

achieving this.

Exercise 3B

Figure 3.6: Vivado HLS console detailing successful testing
66Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
Upon completion, a Synthesis Report will open automatically. This details various aspects of

the synthesised design, such as information concerning timing and latency and FPGA

resource utilisation estimates.

The synthesised design has an interval of 687clock cycles. Each input array contains 25

elements (as it used 5x5 matrices) and so this suggests roughly 27 clock cycles per input read.

(e) We can now run a C/RTL cosimulation to ensure that the synthesised RTL behaves exactly the

same as the C++ code under test.

Click the Run C/RTL Cosimulation button . For the RTL selection, ensure VHDL is selected

and click OK. Cosimulation will now begin, with the RTL system being generated using VHDL.

This process make take a short while to complete but progress can be viewed in the console.

Figure 3.7: Synthesis report for the matrix multiplier, solution1
67Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
Upon completion, the Cosimulation Report will be opened as in Figure 3.8

Note the “Pass” message of Figure 3.8 indicating that the RTL behaves the same as the C++

source code.

(f) Create a new solution for the design by either clicking the New Solution button in the

toolbar or the menu option Project > New Solution. Click Finish to accept the defaults for

solution2.

(g) Double click on matrix_mult.cpp in the Source section of the Explorer tab to ensure the code

is visible in the workspace. We will now insert a directive which will pipeline the nested loops

of the matrix multiplication code. This will perform loop flattening, removing the need for

loop transitions.

Open the Directive tab to the right of the workspace. Click on Product and you will observe

the associated portion of code highlighted in the editor, in this instance the multiplication of

array elements to produce the product elements of the resulting matrix. Right click on

Product and select Insert Directive. This will open the Directives Editor. Use the type drop-

Figure 3.8: Cosimulation report for the matrix multiplier, solution1
68Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
down menu to select the option PIPELINE. Click OK to accept the default options. The

directives tab should now resemble Figure 3.9.

(h) Click the C Synthesis button to synthesise the RTL design. The console yields some

information about the process of flattening the Row loop. It also explains that the default

initiation internal (II) target of 1 could not be met for the Product loop. This is due to loop

dependency.

Figure 3.9: Pipelining nested loops in HLS

Figure 3.10: Synthesis report for the matrix multiplier, solution2
69Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
From the synthesis report shown in Figure 3.10 it is observed that the top level loop, Row_Col

has not been pipelined as loop Col was not flattened. It is also observed an II of 2 was achieved

despite the target of 1.

(i) Open the Analysis perspective by clicking on . This will also open the

Performance view showing how the various operations within the code are scheduled as clock

cycles.

(j) Expand the loops Row_Col and Product by clicking on them to obtain the view shown in Figure

3.11.

Note that the highlighted write operation occurs in state C3, node_33(write). Right clicking on

this cell and selecting Goto Source will highlight the associated line of code in the source file.

This is a write operation initialised as a write to a port in the RTL which occurs before any

operations in the loop, Product, can be executed. This prevents the flattening of loop Product

Figure 3.11: Performance view for solution2
70Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
in to Row_Col.

Furthermore, the inability to meet the target of II = 1 can be explained by considering

consecutive iterations of the loop. Consulting the console reveals the following message:

@W [SCHED‐68] Unable to enforce a carried dependency constraint (II =
1, distance = 1) between ‘store’ operation (matrix_mult.cpp:16) of
variable ‘tmp_8’ on array ‘prod’ and ‘load’ operation (‘prod_load’,
matrix_mult.cpp16) on array ‘prod’.

There exists a dependency between iterations of the operation at line 18 of the source code,

which is the operation within the Product loop.

prod[i][j] += a[i][k] * b[k][j];

Due to the presence of the += operator, this line of code contains a read from array prod (the

aforementioned load operation) and a write to array prod (a store operation). With an II of 1, a

succeeding Product loop iteration would occur one clock cycle after the initiation of the first

iteration. This is visualised in Figure 3.12. With II set to 1, the highlighted overlap is observed.

Arrays are mapped to BRAM by default, and since this overlap requires a read and a write operation

to be performed on the same clock cycle, this is simply not possible as both operations cannot
71Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
occur on the BRAM at the same time. Therefore, setting the II to 2 allows the write operation to be

completed before the read operation of the next loop iteration begins.

(k) Return to the Synthesis perspective by clicking on .

We will now create a new solution which pipelines the Col loop, unrolling the Product loop at

to eliminate inter-iteration dependency but at the cost of increased operators and hence

hardware cost.

Figure 3.12: Consecutive iterations of Product loop with II = 1

OVERLAP

Iteration k = 0

Iteration k = 1Iteration Interval (II) = 1
72Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
(l) Create a new solution for the design by either clicking the New Solution button in the

toolbar or the menu option Project > New Solution. From the drop-down menus, ensure

solution1 is selected, as in Figure 3.13, as this contains no existing directives or constraints.

Click Finish to create the solution.

(m) Ensure the source code matrix_mult.cpp is visible in the editor. In the Directives tab, right-click

on loop Col and select Insert Directive. From the drop-down menu, select directive type

PIPELINE and click OK to select the directive with the defaults (II = 1).

(n) Click the C Synthesis button to synthesise the RTL design. Observing the Console will show

that while Product was unrolled and loop Row was flattened the II target of 1 could not be met

for loop Row_Col, this time due to limitations in the resources.

@W [SCHED‐69] Unable to schedule ‘load’ operation (‘b_load_4’,
matrix_mult.cpp:16) on array ‘b’ due to limited memory ports.

(o) Open the Analysis perspective by clicking on . This will open the Performance

view. Switch to the Resource view by clicking the tab at the bottom of the screen.

Figure 3.13: Configuring solution3
73Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
(p) Expand the Memory Ports to view resource sharing on the memory within the system.

Figure 3.14 shows the operations per resource on each clock cycle. In actual fact, the 2 cycle read

operation on b beginning in C3 overlaps with those in C4 so only a single cycle is visible. There are

instances of both a and b being subjected to 3 read operations at once, which you will remember

is not possible for dual-port BRAM. It is therefore necessary to partition these arrays into smaller

sections, allowing modification of the array without altering the source code.

(q) Return to the Synthesis perspective by clicking on .

Create a new solution for the design by either clicking the New Solution button in the

toolbar or the menu option Project > New Solution. Click Finish to accept the defaults for

solution4.

For this solution, we will reshape the input arrays using directives. The Product loop is

accessed via loop index k, therefore arrays a and b should be partitioned along their k

dimension. Inspecting line 16 of matrix_mult.cpp it is observed that for a[i][k] this is dimension

2 and for b[k][j] dimension 1.

Figure 3.14: Resource sharing on memory ports of solution3
74Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
(r) Ensure the source code matrix_mult.cpp is visible in the editor, and open the Directives tab.

Right-click on variable a and select Insert Directive. Ensure the directive is configured as in

Figure 3.15, with ARRAY_RESHAPE selected as directive type and dimension specified as 2.

(s) Repeat for array b, this time ensuring dimension is set to 1.

(t) Click the C Synthesis button to synthesise the RTL design. The synthesis report will open,

showing that the target II of 1 has now been met.

The top-level of the design takes 35 clock cycles for completion, with the Row_Col loop

outputting a sample after an iteration latency of 10. A sample is then read in every cycle (due

to an II of 1), and after 25 counts all samples have been read in. The 35 clock cycle life of this

Figure 3.15: Directive configurations for reshaping array a

Figure 3.16: Synthesis report for solution4
75Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
design is therefore justified by the 25 counts plus the latency of 10, as 25 + 10 = 35.

The function then proceeds to calculate the next set of data.

(u) The final optimisation in this exercise is to pipeline the function, rather than the loops within

that function for comparison. Create a new solution for the design by either clicking the New

Solution button in the toolbar or the menu option Project > New Solution. Click Finish

to accept the defaults for solution5.

(v) Ensure the source code matrix_mult.cpp is visible in the editor, and open the Directives tab.

First, remove the previously inserted pipeline directive on loop Col. Right-click on the directive

and select Remove Directive.

(w) Right-click on the top level function matrix_mult and select Insert Directive. Select PIPELINE as

the directive type and click OK.

(x) Click the C Synthesis button to synthesise the RTL design.

(y) Vivado HLS provides a tool for comparing synthesis reports. Click the button or the

menu option Project > Compare Reports.

Ensure solution4 and solution5 are added as in Figure 3.17. Click OK.

(z) Figure 3.18 shows the comparison of synthesis report for solution4 (with loop pipelining) and

solution5 (with top level function pipelining). It is observed that pipelining the top level

function results in a design which reaches completion in fewer clocks, requiring only 13 clock

cycles to begin a new transaction, rather than 36 for pipelining the loop.

Figure 3.17: Solution selection for comparison
76Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
However, this comes at the cost of increased hardware utilisation due to unrolling of all loops

within the design. A tradeoff is therefore necessary between system performance and the

hardware utilisation of the design, and it is possible that a partially unrolled design may meet

the performance requirements at a reduced hardware cost.

(aa) This completes the exercise. Close the Vivado HLS GUI.

We will now briefly explore the concept of interface synthesis in Vivado HLS, using the matrix multiplier

function of the previous two exercises.

Figure 3.18: Comparison of solution4 and solution5
77Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3C: Interface Synthesis
Interface Synthesis
(a) Launch the command prompt by navigating to Start > All Programs > Xilinx Design Tools

> Vivado 2014.1 > Vivado HLS > Vivado HLS 2014.1 Command Prompt.

(b) Change the working directory to C:\Zynq_Book\HLS\tut3C. This folder contains the source

and test files for a project, and also the Tcl script required to build the project, run_hls.tcl.

(c) Run the Tcl script using the command:

vivado_hls ‐f run_hls.tcl

(d) To open the project in the Vivado HLS GUI enter the following command:

vivado_hls ‐p matrix_mult_prj

And press Enter. This will open the Vivado HLS GUI for the project, which we will utilise in the next

exercise.

(e) Open the source file matrix_mult.cpp from the Source section of the Explorer tab and click the

C Synthesis button to synthesise the RTL design. When the synthesis report opens, scroll to

the Interface section.

Exercise 3C

Figure 3.19: Interface summary for solution1
78Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

Exercise 3C: Interface Synthesis
Note that the input arrays a and b, and the resultant product array prod have been

implemented using the ap_memory protocol. This is inferred from the C++ source code, as the

array type corresponds with the structure of memory.

Input arrays a and b are both 8 -bit signals on ports a_q0 and b_q0. The output array, prod is

a 16-bit signal on port prod_d0. Each signal has a corresponding 5-bit address port,

designated as a_address0, b_address0 and prod_address0.

The protocol also requires clock enable signals (a_ce0 and b_ce0), and a write enable

(prod_we0).

Since the design requires more than one clock cycle to complete and is therefore

synchronous, a clock and reset port have been synthesised as ap_clk and ap_rst, and both are

1-bit signals.

A block level control protocol with handshaking, ap_ctrl_hs, has also been implemented

(ap_start, ap_done, ap_idle and ap_ready).

• The ap_start input is asserted, prompting block operation. This produces three output

control signals indicating the stage of operation.

• ap_ready indicates that the block is ready for new inputs.

• ap_idle is an indication that data is currently processing data.

• ap_done indicates that output data has been processed and is available.

Recalling Exercise 3B, the arrays were partitioned to reduce each into several smaller sections with

expanded ports, control signals and implementation resources. This increased the bandwidth.

This directly influenced the interface synthesis through use of directives.

This concludes this introduction to the design flow of Vivado HLS. This tool will be used further in future

exercises, and synthesised RTL will be implemented as part of a larger functional model.
79Designing With Vivado High
Level Synthesis
v1.2, May 2014

www.zynqbook.com

The Zynq Book Tutorial 4

IP Creation

v1.2, May 2014

Revision History

Date Version Changes

22/10/2013 1.0 First release for Vivado Design Suite version 2013.3

28/01/2014 1.1
Updated for changes in Vivado Design Suite version
2013.4

06/05/2014 1.2
Updated for changes in Vivado Design Suite version
2014.1
IP Creation
v1.2, May 2014

www.zynqbook.com 82

Introduction
Introduction
The exercises in this tutorial will guide you through the process of creating custom IP modules, that are

compatible with Vivado IP Integrator, from a variety of different sources. All created IP will be compatible

with the Xilinx supported AXI-Lite interface, and will be connected as slave devices when implemented in

Vivado IP Integrator.

All IP creation methods that are covered here coincide with those covered in the book:

• HDL

• MathWorks HDL Coder

• Xilinx Vivado HLS

The tutorial is split into three exercises, and is organised as follows:

Exercise 4A - In this exercise, HDL will be used to create a controller which will allow the LEDs on the

ZedBoard to be controlled by software running on the PS. The Create and Package IP Wizard will be used to

create an AXI-Lite interface wrapper which the LED control process and interface will be added to. The IP

packaging process will then be used to create an IP block which is compatible with IP Integrator.

Exercise 4B - HDL Coder, the MathWorks HDL generation tool, will be explored in this exercise. A Least

Mean Squares (LMS) adaptive filter will be created and tested in the Simulink workspace. The LMS design

will then be used to generate HDL code by invoking the HDL Coder Workflow Advisor, where the option to

generate a Xilinx IP Core will be selected. The various stages of the workflow will verify the design to ensure

that it is HDL Coder compliant and produce the HDL code in a format that is compatible with IP Integrator.

Exercise 4C - In this final exercise, Vivado HLS will be used to create an IP core for a Numerically Controlled

Oscillator (NCO). An existing C-code algorithm will be simulated for testing, and ran through the various

stages of synthesis in order to create an IP Integrator compatible IP core.
83IP Creation
v1.2, May 2014

www.zynqbook.com 83

Exercise 4A: Creating IP in HDL
Creating IP in HDL

With Zynq devices comprising of both PS and PL parts, most IP that is created to run in PL should

be able to communicate with software running on the PS. This requires that IP should be

packaged with an interface that is compatible with the PS (in this case the AXI interface).

When creating IP in HDL, Vivado provides a set of AXI interface templates which can be created

and customised via the Create and Package IP Wizard. The wizard, as the name suggests, facilitates

two major functions: the creation of AXI4 IP peripherals; and the packaging of existing source files

into an IP package which is compatible with the IP Integrator tool.

In this exercise we will actually be making use of both of these features to firstly create an AXI4-

Lite IP template to which we will add functionality to allow the LEDs on the ZedBoard to be

controlled via a software application running on the Zynq PS. Once the functionality has been

added to the template, the source files will be packaged into an IP Integrator compatible IP block

which will be included in a simple Zynq processor system.

We will start by creating a new Vivado project.

(a) Launch Vivado by double-clicking on the Vivado desktop icon: , or by navigating to Start

> All Programs > Xilinx Design Tools > Vivado 2014.1 > Vivado 2014.1

(b) Select Create New Project from the Getting Started screen.

(c) The New Project dialogue will open. Click Next.

(d) At the Project Name dialogue, enter led_controller as the Project name and C:/Zynq_Book as

Project location.

Make sure that you select the option to Create project subdirectory. Ensure that all options

match Figure 4.1.

Click Next.

Exercise 4A

Figure 4.1: Vivado Project Name specification - led_controller
84IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL
(e) Select RTL Project at the Project Type dialogue, and ensure that the option Do not specify

sources at this time is not selected:

Click Next.

(f) Select VHDL as the Target language in the Add Sources dialogue.

If existing sources, in the form of HDL or netlist files, were to be added to the project they

could be imported at this stage.

As we do not have any sources to add to the project, click Next.

(g) The Add Existing IP (optional) dialogue will open.

If existing IP sources were to be included in the project, they could be added here.

As we do not have any existing IP to add, click Next.

(h) The Add Constraints (optional) dialogue will open.

This is the stage were any physical or timing constraints files could be added to the project.

As we do not have any constraints files to add, click Next.

(i) The Default Part dialog will open. Here we will be selecting the Zynq part which we are

targeting. In this particular case we will be targeting the Zynq-7020 on the ZedBoard, but if

you have a different development board, it is easy to choose your particular board instead.

Select Boards from the Specify pane, ZedBoard Zynq Evaluation and Development Kit as the

Display Name, and finally select the Board Rev which you have. In Figure 4.2 version C of the

ZedBoard has been selected.
85IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL

Click Next.

(j) Review the New Project Summary dialogue, and click Finish to create the project.

With the new project created, we can begin the process of creating our HDL-based IP.

(k) From the menu bar, select Tools > Create and Package IP ..., as in Figure 4.3, to launch the

Create and Package IP Wizard.

Figure 4.2: Vivado Default Part dialogue

Figure 4.3: Create and Package IP menu bar selection
86IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL
(l) The Create and Package IP Wizard dialogue will launch, as shown in Figure 4.4.

Click Next.

The Choose Create Peripheral or Package IP dialogue (Figure 4.5) is where we specify whether to

create a new peripheral template file or to package existing source files into an IP core.

In our case we want to create a new IP template.

(m) Select Create new AXI peripheral, as shown in Figure 4.5.

Click Next.

Figure 4.4: Create and Package IP Wizard dialogue

Figure 4.5: Choose Create or Package IP dialogue
87IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL
The Peripheral Details dialogue allows you to specify the Vendor, Library, Name and Version

(VLNV) information, as well as other details, for the new peripheral, leaving the IP Location as the

default.

(n) Fill in the details as shown in Figure 4.6.

Click Next.

The Add Interface dialogue allows you to specify the AXI4 interface(s) that will be present in your

custom peripheral. Here you can specify:

• Number of interfaces

• Interface type (AXI-Lite, AXI-Stream or AXI-Full)

• Interface mode (slave or master)

• Interface data width

Features specific to individual interface types will also be available when the corresponding type

is selected.

As our peripheral is a simple controller for the LEDs which only requires single values to be

transferred to it, an AXI-Lite slave interface is sufficient. Only one memory mapped register is

required for our simple controller, but as the minimum number that can be specified in the

dialogue is 4, we will choose that.

Figure 4.6: Peripheral Details dialogue
88IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL
(o) Specify the Add Interface dialogue as shown in Figure 4.7.

Click Next.

(p) Review the information in the Create Peripheral dialogue, which details the output files which

will be created.

Select the option to Edit IP. This will create the IP peripheral files and create a new Vivado

project where the functionality of the peripheral can be modified in the source HDL code, and

then packaged.

Click Finish to close the Wizard and create the peripheral template.

A new Vivado project, named edit_led_controller_v1_0, will open.

In the Sources pane, you should see two HDL source files:

As we specified our target language as VHDL in Step (f) earlier, the template files have been

generated in VHDL. Had we specified Verilog as the target language, Verilog source files would

have been created.

The two source files are:

Figure 4.7: Add Interface dialogue
89IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL
• led_controller_v1_0.vhd — This file instantiates all AXI-Lite interfaces. In this case, only

one interface is present.

• led_controller_v1_0_S00_AXI.vhd — This file contains the AXI4-Lite interface

functionality which handles the interactions between the peripheral in the PL and the

software running on the PS.

The IP Packager pane will also be open in the Workspace:

The information that we specified about our peripheral in Step (n) will be visible.

We can now add the functionality to our led_controller peripheral. We will be adding a new

output port to the peripheral template to allow it to connect to the LED pins on the Zynq device,

as well as assigning the value received from the Zynq PS to the new output port.

(q) Open led_controller_v1_0_S00_AXI.vhd by double-clicking on it in the Sources pane. The file

will open in the Workspace.

(r) Scroll down until you see the following comment in the entity port declaration:

and add the following port definition directly below the comment:

This creates a new output port with a width of 8-bits (a single bit to represent each of the LEDs

on the ZedBoard).

‐‐ Users to add ports here

LEDs_out : out std_logic_vector(7 downto 0);
90IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL
(s) Scroll to the bottom of the file. You should see the following comment:

and add the following port/signal assignment:

This assigns the value that is received from the Zynq PS (stored in the signal slv_reg0) to the

output port that we created in the previous step.

(t) Save the file by selecting File > Save File from the Menu Bar, or using the keyboard shortcut

Ctrl+S.

(u) Open led_controller_v1_0.vhd by double-clicking on it in the Sources pane. The file will open

in the Workspace.

We must once again create a new output port to the top-level source file, and map it to the

equivalent port that we created in the AXI4-Lite interface file in the previous steps.

(v) Scroll down until you see the following comment in the entity port declaration:

and add the following port definition directly below the comment:

As we added a new port to the AXI4-Lite interface file, we must also add it to the component

declaration in the top-level file.

(w) Scroll down until you see the comment:

A few lines further down you will see the component port declaration:

Inside the port declaration (below the “port (“line), add the following output port definition:

Finally, we must add a port mapping between the LED output ports of the top-level file and the

AXI4-Lite interface file.

‐‐ Add user logic here

LEDs_out <= slv_reg0(7 downto 0);

‐‐ Users to add ports here

LEDs_out : out std_logic_vector(7 downto 0);

‐‐ component declaration

port (

LEDs_out : out std_logic_vector(7 downto 0);
91IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL
(x) Scroll down until you see the comment:

A few lines further down you will see the component port map:

Inside the component port map (below “port map (“ line), add the following port map:

(y) Save the file.

Now that we have made the necessary modifications to the peripheral source files, we must

repackage the IP to merge the changes.

(z) Return to IP Packager by selecting the Package IP - led_controller tab in the Workspace:

IP Packager will detect the changes to the source files, and the areas which need refreshed will be

highlighted with the following icon: . You should see that the following two areas need

refreshed:

(aa) Select IP Customization Parameters in the IP Packager pane.

You should see the following information message at the top of the pane:

Click Merge changes from IP Customization Parameters Wizard

This will update the IP Packager information to reflect the changes made in the HDL source

files.

NOTE: This process updates IP Packager information for all areas. You should see that the area

of IP Ports no longer needs updated, and the icon has now been removed.

To verify that IP Packager has updated the IP Ports area, we will open it and check.

‐‐ Instantiation of Axi Bus Interface S00_AXI

port map (

LEDs_out => LEDs_out,
92IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL
(ab)Select IP Ports and Interfaces from the IP Packager pane.

You should notice that the LEDs_out port that we added to the source files has been added

to the IP Ports and Interfaces pane:

The final step in creating our new IP peripheral, is to package the IP.

(ac) Select Review and Package from the IP Packager pane.

(ad)In the After Packaging panel, click edit packaging settings at the bottom:

(ae) In the Automatic Behaviour panel, enable the option to Create archive of IP:

This makes a ZIP file archive of the packaged IP.

(af) Click OK to apply the setting.

(ag)Review the information provided in the Review and Package window, and click Re-Package IP.

(ah)The changes made to the IP peripheral will be included in the repackaged IP, and the Vivado

project will close.

We will now return to our original Vivado project, and create a simple Zynq processor block design

to check that the functionality of our LED controller peripheral.

To start, we will create a new Block Design and add the IP peripheral which we just created to the

design.

(ai) In the Flow Navigator window, select Create Block Design from the IP Integrator section.

Enter led_test_system in the Design name box, and click OK to create the blank design.
93IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL
(aj) Right-click anywhere in the blank canvas, and select Add IP. Alternatively, use the keyboard

shortcut Ctrl+I. This will bring up to pop-up IP Catalog window.

Enter led in the Search box, and double-click led_controller_v1_0 to add an instance of the

LED controller IP to the design.

An led_controller_v1_0 block will now be present in the block design, as shown in Figure 4.8.

The 8-bit LEDs_out port that we added to the peripheral is present on the right side of the block.

To enable the peripheral to connect to the LEDs on the ZedBoard, we must make the LEDs_out

port external. This allows the output port to be connected to specific physical pins on the Zynq

device, which are connected to the LEDs.

(ak) Hover the mouse pointer over the LEDs_out interface (the little black stub next to the

interface name) on the led_controller block until the cursor changes to a pencil. Right-click

and select Make External. Alternatively, select the interface and use the keyboard shortcut

Ctrl+T.

The block design should now resemble Figure 4.9.

The next step is to add a Zynq Processing System block to the design and connect the LED

Controller to it.

(al) Add an instance of the Zynq7 Processing System, using the same procedure as in Step (aj).

Figure 4.8: led_controller block

Figure 4.9: led_controller block with external port
94IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL
(am)The Designer Assistance message at the top of the canvas will appear:

Click Run Block Automation and select processing_system7_0.

An information message will appear. Ensure that Apply Board Preset is selected, and click OK.

This will make all necessary modifications to the Zynq processing system that relate to the

board preset (in this case the ZedBoard) and make required external connections.

The next step that has to be carried out to the block design, is to connect the LED Controller to the

Zynq Processing System. This step can also be carried out using Designer Assistance.

(an)In the Designer Assistance message, click Run Connection Automation and select

led_controller_0/S00_AXI.

An information message will appear. Click OK.

This will add some additional blocks to the design which are required to connect the LED

Controller to the Zynq Processing System.

Our block design is now complete.

(ao)Validate the design by selecting Tools > Validate Design from the Menu Bar. Alternatively,

select the Validate Design button, , from the Main Toolbar, or use the keyboard shortcut

F6.

Dismiss the Validate Design message by clicking OK.

We can now generate the HDL files for the design.

(ap)In the Sources pane, right-click on the led_test_system block design and select Create HDL

Wrapper.

Select Let Vivado manage wrapper and auto-update and click OK.

This will create the top-level HDL file for the design.

We must now connect the LEDs_out port of the design to the correct pins on the Zynq device. This

is done through the specification of constraints in an XDC file.

(aq)In the Flow Navigator window, select Add Sources from the Project Manager section.

The Add Sources dialogue will open.

Select Add or Create Constraints, and click Next.
95IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL
(ar) Click Create File...

The Create Constraints File dialogue will open.

Select XDC as the File type and enter led_constraints as the File name.

Click OK.

(as) Click Finish to create the file and close the dialogue.

(at) In the Sources tab, expand the Constraints entry and open the newly created XDC file by

double-clicking on led_constraints.xdc.

The file will open in the Workspace.

(au)Add the following lines to the constraints file. Alternatively, they can be copied from the

source file available at C:\Zynq_Book\sources\led_controller:

This connects each individual bit of the LEDs_out port to a specific pin on the Zynq device. The

specific pins are connected to the LEDs on the board.

(av) Save the constraints file.

Our simple design is now complete. We can now generate a bitstream.

(aw)In Flow Navigator, select Generate Bitstream from the Program and Debug section.

If a dialogue window appears prompting you to save your design, click Save.

A dialogue window may open requesting that you launch synthesis and implementation

set_property PACKAGE_PIN T22 [get_ports {LEDs_out[0]}]

set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[0]}]

set_property PACKAGE_PIN T21 [get_ports {LEDs_out[1]}]

set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[1]}]

set_property PACKAGE_PIN U22 [get_ports {LEDs_out[2]}]

set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[2]}]

set_property PACKAGE_PIN U21 [get_ports {LEDs_out[3]}]

set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[3]}]

set_property PACKAGE_PIN V22 [get_ports {LEDs_out[4]}]

set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[4]}]

set_property PACKAGE_PIN W22 [get_ports {LEDs_out[5]}]

set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[5]}]

set_property PACKAGE_PIN U19 [get_ports {LEDs_out[6]}]

set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[6]}]

set_property PACKAGE_PIN U14 [get_ports {LEDs_out[7]}]

set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[7]}]
96IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL
before starting the Generate Bitstream process. If it does, click Yes to accept.

The combination of running the synthesis, implementation and bitstream generation

processes back-to-back may take a few minutes, depending on the power of your computer

system.

(ax) When bitstream generation is complete a dialogue window will open to inform you that the

process as been completed.

Select Open Implemented Design, and click OK.

With the bitstream generation complete, the final step in Vivado is to export the design to the

SDK, where we will create the software application that will allow the Zynq PS to control the LEDs

on the ZedBoard.

(ay) Select File > Export > Export Hardware for SDK... from the Menu Bar.

The Export Hardware for SDK dialogue window will open. Ensure that the options to Include

bitstream and Launch SDK are selected, and Click OK.

The SDK will launch.

(az) Once the SDK has launched, create a new Application Project by selecting File > New >

Application Project from the Menu Bar.

In the New Project dialogue, enter LED_Controller_test as the Project name.

By default the option to create a new board support package will be selected.

Click Next.

(ba)In the Templates dialogue, select Empty Application, and click Finish.

You should recall that when we created the peripheral in the previous stages of this exercise that

a set of software driver files were generated. We must now point SDK to those driver files. This is

done by adding a new repository to the SDK project.
97IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL
(bb)Navigate to Xilinx Tools > Repositories in the Menu Bar.

In the Repositories Preferences window, click on New, as shown in Figure 4.10.

(bc)Browse to the directory

C:\Zynq_Book\ip_repo\led_controller_1.0, as in

Figure 4.11, and click OK.

(bd)Close the Repository Preferences window by clicking

OK.

Upon closing the preferences window, SDK will

automatically scan the repository and rebuild the project

to include the driver files.

We must now assign the newly imported drivers to the

LED Controller peripheral.

Figure 4.10: SDK Repository Peripherals window

Figure 4.11: led_controller
repository selection
98IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL
(be)The system.mss tab should be open in the Workspace. If it is not, open it by expanding

LED_Controller_test_bsp in Project Explorer and double-clicking on system.mss.

(bf) At the top left of the system.mss tab, click Modify this BSP’s Settings.

The Board Support Package Settings window will open, as in Figure 4.12.

(bg)Select drivers from the left-hand menu. From the list of components in the Drivers pane,

identify led_controller_0 and select led_controller from the drop-down menu in the Driver

column, as shown in Figure 4.13.

Figure 4.12: Board Support Package Settings window

Figure 4.13: LED Controller driver selection
99IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL
Click OK.

The project will now rebuild.

We can now create a simple C application to control the LEDs. In this instance we will be importing

a pre-written source file.

(bh)In Project Explorer, right-click on LED_Controller_Test and select Import.

In the Import window, expand General and double-click on File System.

Click Browse in the top right corner, and navigate to C:\Zynq_Book\sources\led_controller.

Click OK.

In the right-hand panel, select led_controller_test_tut_4A.c and click Finish.

The project will once again rebuild to include the new source file.

Open led_controller_test_tut_4A.c and examine the functionality.

Before launching the application on the ZedBoard, we must program the Zynq PL and create a

new terminal connection.

(bi) From the Menu Bar, select Xilinx Tools > Program FPGA.

The Bitstream entry should already be populated with the corresponding bitstream that we

exported from Vivado earlier.

Click Program, to program the Zynq PL.

NOTE: Once the device has successfully been programmed, the DONE LED on the ZedBoard

will turn blue.

(bj) Select the Terminal tab from the Console window at the bottom of the workspace, as in Figure

4.14.

Figure 4.14: SDK Terminal tab

Connect icon Terminal tab
100IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL
(bk)Click the Connect icon (as highlighted in Figure 4.14).

(bl) The Terminal Settings window will open. Configure

the settings as specified in Figure 4.15.

NOTE: The value of the Port entry will vary depending

on which the USB UART cable is connected to.

In order to determine this value on a Windows system,

open the Device Manager and identify the COM port.

(bm)Click OK to initiate the new Terminal connection.

Now that the Zynq PL is programmed, and the Terminal

connection has been created, we can program the Zynq

PS with our software application.

(bn)In Project Explorer, right-click on

LED_Controller_test and select Run As > Launch on

Hardware (GDB), as shown in Figure 4.16.
Figure 4.15: Terminal Settings

Figure 4.16: Run Application on hardware
101IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4A: Creating IP in HDL
(bo)Switch to the Terminal tab of the Console window, and confirm that the LED value is being

output, as in Figure 4.17.

You should also see the LEDs on the ZedBoard displaying the corresponding LED values.

This concludes this exercise on designing Zynq IP in HDL. You should now be familiar with:

• Creating AXI interface templates with the Create and Package IP Wizard.

• Adding functionality to HDL IP peripherals in Vivado and IP Packager.

• How to connect packaged IP to a Zynq Processing System in IP Integrator.

• Creating software applications to control the HDL IP using the generated C software

drivers, and executing them on the ZedBoard.

Figure 4.17: Terminal tab displaying LED values
102IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
Creating IP in MathWorks HDL Coder

In this exercise, we will be creating an IP core which will perform the function of an LMS noise

cancellation filter. Mathworks HDL Coder will be used to transform an existing Simulink block-

based model into an RTL description which will be packaged for use in the Vivado IP Catalog. The...

We will start by opening the Simulink model in MatLab.

Before starting this exercise, you are required to copy some source files into a new working

directory.

(a) In Windows Explorer, navigate to C:\Zynq_Book\sources\hdl_coder_lms and copy the

contents of the directory to a new directory called C:\Zynq_Book\hdl_coder_lms.

(b) Launch MatLab by navigating to Start > All Programs > MATLAB > R2013a > MATLAB

R2013a

Note: This workbook uses version R2013a of MatLab. If you have a different MatLab version

you will need to replace R2013a with your own version (i.e. R2012a/R2012b).

MatLab will open and you will see the main workspace, as shown in Figure 4.18(or a variation

thereof).

Exercise 4B

Figure 4.18: MatLab workspace environment
103IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
(c) Enter C:\Zynq_Book\hdl_coder_lms as the working directory, as highlighted in Figure 4.19.

In the Current Folder pane, you should also see four files:

• original_speech.wav — A short audio clip of speech.

• setup.m — Performs setup commands to import the audio samples into the MatLab

workspace and set the system sample rate accordingly.

• lms.slx — A simulink model which implements and LMS noise cancellation process.

• playback.m —Can be used to verify the LMS filtering process via audio playback of the

various stages.

The setup commands in setup.m are automatically called when the Simulink simulation is

initialised.

(d) Open the LMS Simulink model by double-clicking on lms.slx in Current Folder pane.

The model should open and you should see the LMS system, as shown in Figure 4.20.

Figure 4.19: Setting the MatLab working directory

Figure 4.20: LMS model in Simulink
104IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
The model features two sources:

• a Sine Wave block which generates tonal noise.

• A From Workspace block which imports the audio samples from the MatLabe Workspace.

The tonal noise is then added to the audio samples to create a corrupted audio signal.

In order to generate HDL code for the Simulink LMS model using HDL Coder, the inputs to the

system must be in fixed-point numerical format. Two Data Type Conversion blocks are used to

convert the corrupt audio signal and the tonal noise signal to fixed-point format. The fixed-point

signals are then input to an LMS subsystem, which we will explore in the next step.

At the output of the LMS subsystem, the error signal, e(k), is input to a scope along with the

corrupt audio and tonal noise inputs, for visual inspection of the signals. Two To Workspace

blocks are also present to allow the LMS output and the corrupt audio signals to be output to the

MatLab workspace for audio playback.

(e) Drill down into the LMS subsystem block by double-clicking on it. You will see the system in

Figure 4.21.

It features a single LMS Filter block. As we are not interested in the Output signal, it is

unconnected.

(f) Open the LMS Filter Block Parameters by double-clicking on the LMS Filter block.

Take a moment to explore the parameters. You should be able to determine that there are 16

adaptive filter coefficients and a step size of 0.1.

(g) Close the Parameters window, and return to the main Simulink model by clicking the Up To

Parent button, .

We will be generating HDL code for the LMS subsystem only.

Figure 4.21: LMS subsystem
105IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
Right-click on the LMS subsystem and select HDL Code > HDL Workflow Advisor.

The HDL Workflow Advisor window will open, as in Figure 4.22.

The HDL Workflow Advisor guides you through the steps required to generate RTL code for your

design.

(h) In the left-hand panel, expand Set Target and select 1.1. Set Target Device and Synthesis

Tool.

Here we specify the output format of the RTL and the target platform.

Figure 4.22: HDL Workflow Advisor window
106IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
(i) In the Input Parameters pane, select IP Core Generation as the Target workflow, and Generic

Xilinx Platform as the Target platform, as shown in Figure 4.23.

(j) Click Run This Task to apply the settings.

(k) Select Set Target Interface from the left hand panel.

Here we specify the target interface for the HDL code generation.

In the Input Parameters pane, select Coprocessing - blocking as the Processor/FPGA

synchronization. This will automatically infer an AXI4-Lite interface for all ports in the design,

and specify a memory address for each.

(l) Click Run This Task to apply the settings.

(m) Expand Prepare Model for HDL Code Generation in the left hand panel, and select Check

Global Settings.

Here, model-level settings will be checked to verify if the model is ready for HDL code generation.

(n) Click Run This Task to check the model-level settings.

If this step fails, click Modify All to allow HDL Workflow Advisor to modify the settings.

This step should now pass, and you will be presented with a table of the results.

The next few steps are all checks, and can be performed in batch.

(o) Right-click on Check Sample Times in the left hand pane, and select Run to Selected Task.

This will perform the checks one after another to prevent you from running each individually.

All check should pass.

Figure 4.23: HDL Workflow Advisor Input Parameters
107IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
The final steps involve specifying basic settings about the RTL code, such as what language to use

(VHDL/Verilog), and what code generation reports to generate. Finally the HDL code will be

generated.

(p) Expand HDL Code Generation in the left hand pane, and further expand Set Code Generation

Options.

Click on Set Basic Options.

(q) Select VHDL as the Language in the Target pane.

You can also select any of the Code generation reports that you would like.

(r) Select Set Advanced Options in the left hand panel.

Here you can specify more advanced options for the HDL code.

We will be leaving the values as default, but you may wish to explore the settings for future

use.

(s) Right-click on Set Advanced Options, and select Run to Selected Task to apply the settings.

(t) Finally, select Generate RTL Code and IP Core from the left hand panel.

This is the step which will finally generate the HDL code for out LMS IP Core.

Set the IP core name as lms_pcore and click Run This Task.

Once HDL Coder has finished generating the HDL code, the Code Generation Report window will

open. This provides a summary of the HDL Coder results and provides further information on the

target interface and clocking.

The final stage of creating our LMS IP core is to package it with IP Packager so that we can use it in

IP Integrator designs. To do this we will need to create a new Vivado project.

(u) Launch Vivado and create a new project called lms_packaging at the following location:

C:\Zynq_Book\hdl_coder_lms, ensuring that the option to create a project subdirectory is

selected. Also select the VHDL as the target language, and the ZedBoard as the default part.

For more detail on the process of creating a new Vivado project, refer to Step (a) of Exercise

4A.

(v) When the project has been created and opened, select Tools > Create and Package IP from

the menu bar, and Click Next.

(w) Select the option to Package a specified directory, and click Next.
108IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
(x) Enter C:/Zynq_Book/hdl_coder_lms/hdl_prj/ipcore/lms_pcore_v1_00_a as the IP

Location.

(y) Click Next to move to the Edit in IP Packager Project Name dialogue, and click Next to accept

the default Project Name and Project Location.

(z) At the Summary window, and click Finish to launch IP Packager.

(aa) In the left hand panel of the IP Packager window, select IP Ports and Interfaces.

The IP Interfaces panel will open, and you should see that IP Packager has identified the

individual AXI ports, but has not inferred an AXI interface.

To infer an AXI interface:

(ab)Right-click on a blank section of the IP Ports and Interfaces pane, and select Auto Infer

Interface ...

(ac) The Auto Infer Interface Chooser window will open:

Select aximm from the list, as shown, and click OK.

The individual AXI ports in our design will be mapped to an AXILite interface.

(ad)Select IP Addressing and Memory from the left hand panel. Here, IP Packager has incorrectly

specified an address Range of 4294967296. Click on the Range, and change the value to 32.

(ae) Finally, select Review and Package from the left hand menu.

Review the information provided, and click Package IP.

This completes the generation of an LMS component from Mathworks HDL Coder. You should

now be familiar with:

• Using the Simulink block-based design environment for the design and simulation of IP.

• Using the HDL Workflow Advisor to guide you through the steps of generating RTL code
109IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
and IP cores for existing Simulink designs.

• Packaging HDL Coder generated IP blocks in IP Packager for use in Vivado IP Integrator

designs.
110IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4C: Creating IP in Vivado HLS
Creating IP in Vivado HLS

In this final exercise, we will creating an IP core that will implement the functionality of an NCO.

The tool that we will be using is Vivado HLS, and we shall explore some of the features which allow

us to specify arbitrary precision fixed-point data types, as well as the directives required to export

IP with an AXI-Lite slave interface, to allow the IP core to interface with the Zynq processor.

We will start by creating a new project in Vivado HLS.

(a) Launch Vivado HLS by double-clicking on the Vivado HLS desktop icon: , or by

navigating to Start > All Programs > Xilinx Design Tools > Vivado 2014.1 > Vivado HLS >

Vivado HLS 2014.1

(b) When Vivado HLS loads, you will be presented with the Getting Started screen, as in Figure

4.24.

Exercise 4C

Figure 4.24: Vivado HLS Getting Started screen
111IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4C: Creating IP in Vivado HLS
(c) Select the option to Create New Project and the New Vivado HLS Project Wizard will open, as

in Figure 4.25.

Enter hls_nco as the Project name, and C:\Zynq_Book as Location.

Ensure that the options match those in Figure 4.25, and click Next.

(d) The Add/Remove Files dialogue will appear. This is where existing C-based source files can be

added to the project, or new files created.

Enter nco as the Top Function and click Add Files...

Navigate to C:\Zynq_Book\sources\hls_nco and select nco.cpp. Click Open.

The dialogue should now resemble Figure 4.26.

Click Next.

Figure 4.25: Vivado HLS New Project Wizard

Figure 4.26: Vivado HLS New Project Wizard (Add/Remove Files)
112IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4C: Creating IP in Vivado HLS
(e) A second Add/Remove Files dialogue will appear. This is where C-based testbench files can be

added to the project, or new files created.

Click Add Files... and navigate to C:\Zynq_Book\sources\hls_nco. Select nco_tb.cpp and click

Open to add the testbench file to the project.

Click Next.

(f) The Solution Configuration dialogue will open. Here we will be selecting the part which we will

be targeting. In this particular case we will be targeting the Zynq-7020 on the ZedBoard, but

if you have a different development board, it is easy to choose your particular board instead.

Click the selection button, , in the Part Selection pane.

The Device Selection Dialog will open.

As we are targeting the ZedBoard, select Boards in the Specify pane and choose ZedBoard

Zynq Evaluation and Development Kit, as in Figure 4.27.

Click OK to close the dialogue and return to the New Project Wizard.

(g) Click Finish to close the New Project Wizard and to create the project.

The Vivado HLS workspace will open.

Figure 4.27: Vivado HLS Device Selection Dialog
113IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4C: Creating IP in Vivado HLS
(h) In the Explorer panel, expand the Source and Test Bench

headings. You should see the source files that we specified in

the New Project Wizard, as in Figure 4.28.

(i) Open nco.cpp and examine the contents of the file.

You should notice the inclusion of the header file ap_fixed.h

on the first line. This is the arbitrary precision fixed-point

library which adds support for the use of fixed-point data

types in C++.

The next thing that you should see is the global declaration of a = 4096 value array:

This forms the sinewave lookup table. It is defined as an array of type ap_fixed<16,2>, which

means that all values are16-bit, signed fixed-point (2 integer bits and 14 fractions bits).

Further information on fixed-point data types in Vivado HLS can be found in Chapter15 -

Vivado HLS: A Closer Look of the Zynq Book.

The functionality of the NCO is contained in the function:

It takes two arguments:

• *sine_sample — A pointer to a 16-bit, signed fixed-point variable which forms the

output sample of the NCO.

• step_size — 16-bit, unsigned fixed-point value which provides the step size input for

the NCO.

(j) Explore the nco function, ensuring that you understand it all.

Open nco_tb.cpp. This is the testbench file which is used to ensure that the functionality of

the C-based source file is correct.

Explore the code in the file, ensuring that you understand the functionality.

This is a simple file which opens a text file in write-mode, to allow you to output the sinusoidal

samples. It then calls the nco function from within a for-loop in order to generate a finite

Figure 4.28: Vivado HLS
Explorer panel

212

const ap_fixed<16,2> sine_lut[4096] ...

void nco (ap_fixed<16,2> *sine_sample, ap_ufixed<16,12> step_size)
114IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4C: Creating IP in Vivado HLS
number of sinusoidal samples, which are then output to the text file.

The text file is formatted in a way which easily allows you to import the samples into MatLab

for analysis.

Note: The location of the output file is determined by the following line in the testbench file:

You should change the output file path accordingly to a location on your local machine.

We will now run a C simulation.

(k) Click the Run C Simulation button, , from the Main Toolbar.

The C Simulation Dialog window will open. Click OK to run the simulation with the default

settings.

The C simulation will run, and you should see the following output in the Console window:

The sine wave samples that were generated by the NCO will have been output to the location

which you specified in the previous step.

If you wish, you can import the sine wave samples into MATLAB using the output file to verify that

the NCO has correctly generated a sine wave. This should be done at your own discretion, and will

not be covered in this exercise.

The process of HLS has been covered previously in The Zynq Book Tutorial: Designing With

Vivado High Level Synthesis, and you should refer to it for more detailed information on the

various steps involved. For the purposes of this exercise, it is presumed that you have a reasonable

knowledge of the Vivado HLS tool.

As we want to allow our NCO peripheral to be controlled by a Zynq PS, it is necessary to give it an

AXI interface. This is done in Vivado HLS through the use of directives.

char *outfile = "E:\\nco_sine.m";
115IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4C: Creating IP in Vivado HLS
(l) Ensure that nco.cpp is the active source file, and select the Directive tab in the right-hand side

of the Vivado HLS workspace, as shown in Figure 4.29.

First, we will define the interface of the NCO as an AXI-Lite slave.

(m) Right-click on nco in the Directive tab, and select Insert Directive.

As the Directive Type, select RESOURCE.

and select AXI4LiteS [adapter] as the core, from the pop-up list.

Leave Destination as Directive File, and click OK.

We will now define the NCO as having a ap_ctrl_none interface, to remove unneeded control

signals.

(n) Right-click on nco in the Directive tab, and select Insert Directive.

As the Directive Type, select INTERFACE.

and select ap_ctrl_none as the mode, from the drop-down list.

Leave Destination as Directive File, and click OK.

Finally, we will be defining the two variables, sine_sample and step_size, as ports on the AXI-LIte

slave interface.

(o) Right-click on sine_sample in the Directive tab, and select Insert Directive.

As the Directive Type, select RESOURCE.

and select AXI4LiteS [adapter] as the core, from the pop-up list.

Leave Destination as Directive File, and click OK.

(p) Repeat the previous step for the step_size variable in the Directive tab.

Figure 4.29: Vivado HLS Directive tab
116IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4C: Creating IP in Vivado HLS
On completion, the Directive tab should look like Figure 4.30.

We can now run HLS.

(q) Run C Synthesis by clicking the Run C Synthesis button, , from the Main Toolbar.

(r) Click the Export RTL button, , from the Main Toolbar.

The Export RTL Dialog window will open, as shown in Figure 4.31.

(s) Select IP Catalog as the Format Selection.

If you choose, you can edit the IP Identification data by clicking the Configuration button.

(t) Click OK to generate the IP core.

Figure 4.30: Complete Directive tab

Figure 4.31: Vivado HLS Export RTL Dialog Window
117IP Creation
v1.2, May 2014

www.zynqbook.com

Exercise 4C: Creating IP in Vivado HLS
When RTL Generation has completed, a directory named impl will

be visible in the Explorer panel

This directory contains the ip subdirectory which contains the

generated IP package.

Take a moment to explore the contents of the ip directory.

With the IP generated, the next step would be to include it in an

IP Integrator design (which will be covered in the next tutorial).

For future reference, however, it is worth briefly describing how

this would be done.

In order to include HLS generated IP in IP Integrator, it must first

be added to the Vivado IP Catalog. To do this you must add the

output from HLS to an IP repository. This can be achieved by

either adding the HLS generated output directory to an existing IUP repository directory, or by

creating a new repository. In either case, the directory is the same. In this case:

C:\Zynq_Book\hls_nco\solution1\impl\ip

We have now completed the generation of the NCO component as an IP Integrator compatible

AXI-Lite block. You should now be familiar with:

• Specifying directives in Vivado HLS designs which define the control interface of the

exported RTL.

• The process of specifying and AXI4 interface for a design, to enable a Vivado HLS system

to be easily connected to the Zynq PS.

• Exporting a Vivado HLS design as an IP core that is compatible with the Vivado IP Catalog

and IP Integrator.
118IP Creation
v1.2, May 2014

www.zynqbook.com

The Zynq Book Tutorial 5

Adventures with IP Integrator

v1.2.1, September 2014

Revision History

Date Version Changes

22/10/2013 1.0 First release for Vivado Design Suite version 2013.3

28/01/2014 1.1
Updated for changes in Vivado Design Suite version
2013.4

06/05/2014 1.2
Updated for changes in Vivado Design Suite version
2014.1

10/09/2014 1.2.1 Minor corrections.
Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com 120

Introduction
Introduction
In this tutorial you will bring together all of the custom IP modules that you created in the previous set of

practical exercises, along with other IP from the Vivado IP Catalog, to create a DSP system for

implementation on the ZedBoard. IP for the control of the control of the audio codec on the ZedBoard will

be introduced and all modifications to the IP Integrator design will be carried out. A software application will

be developed in the SDK which will configure all of the IP modules and control the interactions between them

and the PS.

The tutorial is split into three exercises as follows:

Exercise 5A - This exercise focuses on importing all of the custom IP modules into the Vivado IP Catalog for

inclusion in an IP Integrator DSP design. The individual IP blocks will be explored, along with their

customisable parameters.

Exercise 5B - The Analog Devices ADAU1761 audio codec on the ZedBoard will be introduced in this

exercise, with the inclusion of some prepackaged IP. This IP implements the I2S serial communication for

sending and receiving audio samples to/from the audio codec. The audio samples are transfered between the

PL and the PS via a standard AXI-Lite connection. In order to use the audio codec, a variety of modifications

must be made to the Zynq PS, such as the inclusion of second fabric clock to drive the codec, and the enabling

of a I2C interface for the communication of control signals between the PS and the codec.

In order to map the external interfaces in the design to physical pins on the Zynq device, a Xilinx Design

Constraints (XDC) file must be created and included in the design. This informs the synthesis and

implementation processes in Vivado where to route the external interface signals. The format of the XDC file

will be explored before generating the hardware for the finalised design.

Exercise 5C - In this final exercise, the finalised design from Exercise 5B will be exported to the SDK for

software development. Here, the application which will control the interactions between the various custom

IP modules, the PS and the audio codec will be created. The various software driver files will also be explored

before building and running the application on the ZedBoard for testing.

NOTE: Exercise 5C requires you to be able to send keyboard commands to the Zynq PS via the UART

terminal. To do this, it is necessary to use third-party terminal program. In this tutorial, we shall be using

PuTTY which can be downloaded for free from the following link:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

You can download PuTTY as a standalone executable file so that no installation is required. To download the

standalone executable, select the putty.exe download from the Binaries section.
121Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com 121

Exercise 5A: Importing IP to the Vivado IP Catalog
Importing IP to the Vivado IP Catalog

In this exercise we will be concentrating on importing existing custom IP into the Vivado IP

Catalog. We will be importing the various IP blocks which we created in The Zynq Book Tutorial

IP Creation.

We will start by creating a new Vivado Project.

(a) Launch Vivado 2014.1 and create a new project called adventures_with_ip in the

C:\Zynq_Book directory, ensuring that the option to Create project subdirectory is selected.

Select VHDL as the Target language and the ZedBoard as the Default Part.

(b) From Flow Navigator, select IP Catalog from the Project Manager section.

The IP Catalog will open in the Workspace, as seen in Figure 5.1.

In order to import our custom IP into the IP Catalog, we must add a new software repository to the

IP Catalog. We will create a new directory to act as our IP repository and all of our IP sources to it.

(c) In Windows Explorer, navigate to the location: C:\Zynq_Book\ip_repo. This is the IP

repository that we created in Tutorial 4.

We must now add each of the IP sources which we created in The Zynq Book Tutorial IP

Creation to our repository.

Exercise 5A

Figure 5.1: Vivado IP Catalog

IP Settings
122Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5A: Importing IP to the Vivado IP Catalog
As the LED controller IP is already present in the IP repository, we do not need to import it.

(d) In Windows Explorer, navigate to

C:\Zynq_Book\hdl_coder_lms\hdl_prj\ipcore\lms_pcore_v1_00_a and copy the archived

IP ZIP file, xilinx.com_user_lms_pcore_1.0.zip to the ip_repo directory.

(e) In Windows Explorer, navigate to C:\Zynq_Book\hls_nco\solution1\impl\ip and copy the

archived IP ZIP file, xilinx_com_hls_nco_1_0.zip to the ip_repo directory.

That completes the copying of our custom made IP sources to our newly created IP repository. We

will now add one more IP source to our repository — an existing IP block which controls the audio

codec on the ZedBoard.

(f) In Windows Explorer, navigate to

C:\Zynq_Book\sources\adventures_with_ip_integrator\ip and copy the archived IP ZIP

file, zed_audio_ctrl.zip to the ip_repo directory that we located in Step (c).

If you have not completed the previous tutorial, a master set of the IP sources is contained in

C:\Zynq_Book\sources\adventures_with_ip_integrator\ip which you can copy into the

repository for use in this tutorial.

Now that we have created the IP repository and added all of our existing IP sources, we can now

add the repository to the IP Catalog.

(g) In the Vivado IP Catalog tab, click the IP Settings button, , as highlighted in Figure 5.1.
123Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5A: Importing IP to the Vivado IP Catalog
The IP Settings window will open, as shown in Figure 5.2.

(h) Click Add Repository in the IP Repositories panel, and browse to

C:\Zynq_Book\ip_repo.

Click Select to add the repository to the IP Catalog.

You should see that the LED Controller IP is already present in the IP in Selected Repository pane

as it is in un-archived format.

We must now add the other IP sources to the repository by un-archiving them.

Figure 5.2: IP Settings Window
124Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5A: Importing IP to the Vivado IP Catalog
(i) In the IP in Selected Repository panel, shown in Figure 5.2, click Add IP.

The Select IP TO Add To Repository window will open:

Select xilinx.com_user_led_controller_1.0.zip and click OK. This will extract the archived IP

sources into a usable format in the repository.

(j) Repeat this procedure for the remaining IP sources:

• xilinx.com_user_lms_pcore_1.0.zip

• xilinx_com_hls_nco_1_0.zip

• zed_audio_ctrl.zip

The resulting IP in Selected Repository panel is shown in Figure 5.4.

Click OK.

With all of our IP now imported into the IP Catalog, we can now create an IP Integrator block

design which incorporates all of the IP blocks.

(k) In Flow Navigator, select Create Block Design.

(l) In the Create Block Design window, set the Design name as ip_design, and click OK.

Figure 5.3: Select IP to Add to Repository

Figure 5.4: All IP sources added to IP Catalog
125Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5A: Importing IP to the Vivado IP Catalog
(m) In the block design canvas, right-click and select Add IP.

In the Search box, enter led_controller and double-click led_controller_v1_0 to add an

instance of the LED controller IP to the design.

(n) Repeat Step (m) searching for:

• nco and double-clicking Nco

• lms and double-clicking lms_pcore_v1_0

We have now added all of the custom IP that we created in the previous tutorial. At this point we

will avoid adding the audio controller IP, as it is the focus of the next exercise.

In order to connect and control all of the IP, we must now add an instance of a Zynq Processor.

(o) In the block design canvas, right-click and select Add IP.

In the Search box, enter zynq and double-click ZYNQ7 Processing System.

At this stage, Designer Assistance should be available:

(p) Click Run Block Automation for processing_system7_0 and click OK to complete

configuration.

(q) Run Connection Automation for each of the three IP blocks, to connect them to the Zynq7

Processing System block, via and AXI Interconnect block.

You may recall that to allow the LED Controller block to control the LEDs on the board, the

LEDs_out port must be made external.

(r) Hover the mouse pointer over the LEDs_out interface on the led_controller block until the

cursor changes to a pencil. Right-click and select Make External. Alternatively, select the

interface and use the keyboard shortcut Ctrl+T.
126Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5A: Importing IP to the Vivado IP Catalog
Notice that the lms_pcore_0 block has two unconnected input ports, as highlighted in Figure 5.5.

These are the CLK and reset ports of the IP, and must be connected in order for the IP to be

functional.

(s) Hover the mouse pointer over the IPCORE_CLK interface on the lms_pcore_0 block until the

cursor changes to a pencil. Click and drag the mouse pointer until it is hovering over the wire

that connects to the AXI_Lite_ACLK interface and the wire is highlighted, as shown in Figure

5.6, and release the mouse button to create the connection.

You should also see a pop-up message notifying you of the net which you are connecting to.

(t) Repeat the procedure of the previous step to, this time, connect the IPCORE_RESETN

interface to the wire which connects to the AXI_Lite_ARESETN interface.

At this stage we must now add and configure the audio controller IP, and so we will conclude this

first exercise on importing custom IP to the Vivado IP Catalog. You should now be familiar with:

• Adding an IP repository to the Vivado IP Catalog.

• Importing and adding archived IP files to a custom IP repository.

• Adding custom IP to a Vivado IP Integrator block design.

Figure 5.5: LMS IP block

Figure 5.6: Manually connecting the LMS IP CLK
127Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5A: Importing IP to the Vivado IP Catalog
Note: Do not close the current Vivado project as we will be using it again in the next exercise.
128Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5B: ZedBoard Audio in Vivado IP Integrator
ZedBoard Audio in Vivado IP Integrator

In this exercise we will be focusing on adding an audio controller IP instance to an existing Vivado

IP Integrator design, and the modifications which must be made to the Zynq Processor block in

order to use the ADAU1761 audio codec on the ZedBoard. Such modifications include the

addition of a second PL fabric clock and the enabling of the I2C interface for the communication

of control signals between the Zynq PS and the codec.

We will begin by adding an instance of the audio controller IP to the block design.

(a) In the Vivado IP Integrator block design canvas, right-click and select Add IP.

Search for audio and double-click on zed_audio_ctrl, to add an instance to the block design.

The zed_audio_ctrl block should now be visible on the canvas, as shown in Figure 5.7.

(b) Make the initial connection between the Zynq PS and the zed_audio_ctrl block by clicking

Run Connection Automation.

You should notice that there are still four unconnected ports. These are required to be made

external to connect to the physical pins of the ZedBoard’s audio codec.

(c) Hover the mouse pointer over each of the unconnected interfaces on the zed_audio_ctrl

block until the cursor changes to a pencil. Right-click and select Make External. Alternatively,

select the interface and use the keyboard shortcut Ctrl+T.

The next step is to make the necessary modifications to the Zynq7 PS block.

Exercise 5B

Figure 5.7: ZedBoard Audio Controller block
129Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5B: ZedBoard Audio in Vivado IP Integrator
(d) Double-click on the Zynq7 Processing System block to open the Re-customize IP window, as

shown in Figure 5.8.

This view allows you to make changes to the configuration of the Zynq PS. As IP Integrator is board

aware, all of the basic settings that apply to the ZedBoard have been made for us. There are a few

changes, however, that must be made when using the audio codec.

First we will add a second PL fabric clock as a separate 10 MHz clock is required for the MCLK pin

on the audio codec.

Figure 5.8: Re-customize IP window for Zynq PS
130Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5B: ZedBoard Audio in Vivado IP Integrator
(e) Click on Clock Configuration in the Page Navigator panel on the left hand side of the window.

Expand PL Fabric clocks in the Clock Configuration panel, and enable FCLK_CLK1.

Change the Requested Frequency of FCLK_CLK1 to 10 MHz, as shown in Figure 5.9.

Next, we must enable one of the Zynq PS’s I2C communication interfaces to allow the PS to

communicate with the audio codec.

(f) Select MIO Configuration from the Page Navigator panel.

This configuration view allows us to enable/disable the PS peripherals. These peripherals can be

routed through the dedicated Multiplexed I/Os (MIO) on the device, or through the Extended

Multiplexed I/Os (EMIOs) which route to the PL fabric.

As we want to communicate with the audio codec (which is connected to fabric pins of the Zynq

device) we will be routing the I2C signals through the EMIOs.

Figure 5.9: Adding a 10 MHz fabric clock
131Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5B: ZedBoard Audio in Vivado IP Integrator
(g) Enable the I2C 1 peripheral in the MIO Configuration panel. EMIO should automatically be

selected for IO, as shown in Figure 5.10.

No more changes to the Zynq PS are required.

(h) Close the Re-customize IP window and apply the changes to the PS by clicking OK.

The IP Integrator canvas should update, and the Zynq7 Processing System block should now look

like Figure 5.10.

You should note the addition of the two new interfaces, IIC_1 and FCLK_CLK1. As these will be

driving signals on the audio codec, which is situated on the board (external to the Zynq device),

we must make these external.

Figure 5.10: Configuring the I2C interface

Figure 5.11: Zynq7 Processing System block
132Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5B: ZedBoard Audio in Vivado IP Integrator
(i) Hover the mouse pointer over each of the IIC_1 and FCLK_CLK1 interfaces on the

processing_system1_0 block until the cursor changes to a pencil. Right-click and select Make

External. Alternatively, select the interface and use the keyboard shortcut Ctrl+T.

The final addition to the Block design that we need to make, is to add two GPIO instances:

• Single-channel GPIO with a width of 2-bits to connect to the audio codec’s ADDR pins.

• Dual-channel GPIO with a width of 32-bits to connect to the push buttons and slide

switches on the ZedBoard, for user input.

First we will add the GPIO to connect to the codec’s ADDR pins.

(j) In the Vivado IP Integrator block design canvas, right-click and select Add IP.

Search for gpio and double-click on AXI_GPIO, to add an instance to the block design.

(k) Run Connection Automation for the axi_gpio_0/S_AXI interface, to connect the GPIO

controller to the Zynq PS via the AXI Interconnect.

(l) Open the Re-customize IP window by double-clicking on the axi_gpio_0 block. The window,

as shown in Figure 5.12, will open.

(m) Select the IP Configuration tab.

Enter 2 as the GPIO Width, as shown in Figure 5.13, and close the window by clicking OK.

Figure 5.12: Re-customize IP window (GPIO)

Figure 5.13: GPIO width setting
133Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5B: ZedBoard Audio in Vivado IP Integrator
(n) Make the GPIO interface of the axi_gpio_0 block external.

Next we will add a second instance of the AXI GPIO Controller.

(o) Add an instance of the AXI_GPIO IP to the block design and Run Connection Automation for

the axi_gpio_1/S_AXI interface, to connect the GPIO controller to the Zynq PS via the AXI

Interconnect.

(p) Double-click on the axi_gpio_1 block to open the Re-customize IP window.

In the IP Configuration tab, select the option to Enable Dual Channel, and click OK.

You should see that the axi_gpio_1 block now has two output ports, 1 each to connect to the

push buttons and the slide switches on the ZedBoard:

(q) Run Connection Automation for /axi_gpio_1/GPIO and select BTNs_5Bits as the option for

Select Board Interface.

Click OK.

(r) Run Connection Automation for /axi_gpio_2/GPIO1 and select SWs_8Bits as the option for

Select Board Interface.

Click OK.

(s) Select the Address Editor tab from the Block Design window, as highlighted in Figure 5.14.

(t) Click the Expand All button, as highlighted in Figure 5.14.

Check the assigned Offset Address and Range for each of the peripheral Cells.

Figure 5.14: Address Editor tab

Address Editor tabExpand All button
134Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5B: ZedBoard Audio in Vivado IP Integrator
If they do not match those in Figure 5.14, you must reassign the addresses by following the

procedure in this step. If they match those in Figure 5.14, you can skip this step and move on

to Step (u).

• Highlight all of the peripheral Cells by holding the Ctrl key on the keyboard while clicking

on each cell in turn.

• Right-click on any of the selected Cells and select Unmap Segment. This will unmap the

addresses for all of the peripherals

• Expand the Unmapped Slaves section and highlight all of the Cells.

• Right-click on any of the Cells and select Assign Address.

• The Offset Address and Range for each peripheral Cell should now match those in Figure

5.14. If they don’t, you can edit the Offset Address and Range values manually.

(u) Return to the block design by selecting the Diagram tab in the IP Integrator window.

(v) Click the Regenerate Layout button, , to regenerate the layout of the various IP blocks and

make the block design easier to follow. Your complete block design should be similar to

Figure 5.15.

Figure 5.15: Completed block design
135Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5B: ZedBoard Audio in Vivado IP Integrator
(w) Save the block design.

Before we can run synthesis and implementation for our design, we must generate the RTL files

for our block design.

(x) Generate a top-level HDL wrapper file, by right-clicking on ip_design in the Sources tab and

selecting Create HDL Wrapper.

In the Create HDL Wrapper window, select Let Vivado manage wrapper and auto-update,

and click OK.

The next task that we have to do in Vivado before we can synthesis and implementation of the

design, is to add a constraints file which will map the external interfaces of our design to specific

pins on the Zynq device.

(y) Select Add Sources form the Project Manager section of Flow Navigator.

In the Add Sources window, select Add or Create Constraints, and click Next.

In the Add or Create Constraints window, select Add Files.

Navigate to C:/Zynq_Book/sources/adventures_with_ip_integrator/constraints, select

adventures_with_ip.xdc, and click OK.

Click Finish to close the Add Sources window, and import the constraints file.

(z) Open the constraints file by expanding the Constraints section of Sources tab, and double-

clicking on adventures_with_ip.xdc.

The top section of the file contains the constraints which map the individual bits of the LEDs_out

interface to the corresponding pins on the Zynq device, and you will have seen these before in the

first exercise of the previous tutorial.
136Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5B: ZedBoard Audio in Vivado IP Integrator
The bottom section of the file, as shown in Figure 5.16, contains the constraints which map the

various external ports of the design which relate to the audio codec, to their corresponding pins

on the Zynq device.

Next, we will create a bitstream so that we can program the PL of the Zynq device with our design.

ZedBoard Audio Codec Constraints

set_property PACKAGE_PIN AA6 [get_ports BCLK]

set_property IOSTANDARD LVCMOS33 [get_ports BCLK]

set_property PACKAGE_PIN Y6 [get_ports LRCLK]

set_property IOSTANDARD LVCMOS33 [get_ports LRCLK]

set_property PACKAGE_PIN AA7 [get_ports SDATA_I]

set_property IOSTANDARD LVCMOS33 [get_ports SDATA_I]

set_property PACKAGE_PIN Y8 [get_ports SDATA_O]

set_property IOSTANDARD LVCMOS33 [get_ports SDATA_O]

#MCLK

set_property PACKAGE_PIN AB2 [get_ports FCLK_CLK1]

set_property IOSTANDARD LVCMOS33 [get_ports FCLK_CLK1]

set_property PACKAGE_PIN AB4 [get_ports IIC_1_scl_io]

set_property IOSTANDARD LVCMOS33 [get_ports IIC_1_scl_io]

set_property PACKAGE_PIN AB5 [get_ports IIC_1_sda_io]

set_property IOSTANDARD LVCMOS33 [get_ports IIC_1_sda_io]

set_property PACKAGE_PIN AB1 [get_ports {GPIO_tri_io[0]}]

set_property IOSTANDARD LVCMOS33 [get_ports {GPIO_tri_io[0]}]

set_property PACKAGE_PIN Y5 [get_ports {GPIO_tri_io[1]}]

set_property IOSTANDARD LVCMOS33 [get_ports {GPIO_tri_io[1]}]

Figure 5.16: ZedBoard audio codec constraints
137Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5B: ZedBoard Audio in Vivado IP Integrator
(aa) In Flow Navigator, select Generate Bitstream from the Program and Debug section.

At the No Implementation Results Available window, click Yes to launch synthesis and

implementation.

When bitstream generation is complete, select Open Implemented Design in the Bitstream

Generation Completed window, and click OK.

Finally, we can export the hardware to the SDK, where we will create a software application to

control the system in the next exercise.

(ab)Select File > Export > Export Hardware for SDK from the Menu Bar.

Ensure that the options to Include Bitstream and Launch SDK are selected, and click OK.

This concludes this exercise on audio of the ZedBoard. You should now be familiar with:

• Making the required changes to the Zynq PS in order to use the audio codec on the

ZedBoard.

• Making the required external connections to allow the Zynq PL to be connected to the

audio codec via the external Zynq device pins.

• Using a constraints file to map the external interfaces of the design which relate to the

audio codec, to the corresponding pins on the Zynq device.
138Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
Creating an Audio Software Application in SDK

In this final exercise we will be creating a software application which ties together all of the IP

modules which we have created, to create a DSP-oriented system. The procedure of setting up the

ZedBoard audio codec via the hardware registers will also be introduced.

Once the SDK has launched from the previous exercise, we can start by creating a new application.

(a) Select File > New > Application Project from the Menu Bar.

In the New Project dialogue, enter adventures_with_ip as the Project name.

By default the option to create a new Board Support Package will be selected.

Click Next.

(b) In the Templates dialogue, select Empty Application, and click Finish.

You should recall that when we created the custom IP peripherals in the previous tutorial that a

set of software driver files were generated for each. We must now point SDK to those driver files.

This is done by adding a new repositories to the SDK project.

(c) Navigate to Xilinx Tools > Repositories in the Menu Bar.

In the Repositories Preferences window, click on New, as shown in Figure 5.17.

Exercise 5C

Figure 5.17: SDK Repository Peripherals window
139Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
(d) Add the LED Controller drivers by browsing to the directory:

C:\Zynq_Book\ip_repo\led_controller_1.0 and clicking OK.

(e) Click New.

Add the NCO drivers by browsing to the directory:

C:\Zynq_Book\ip_repo\xilinx_com_hls_nco_1_0

and clicking OK.

Upon closing the preferences window, SDK will automatically scan the repository and rebuild the

project to include the driver files.

We must now assign the newly imported drivers to their corresponding peripherals.

(f) The system.mss tab should be open in the Workspace. If it is not, open it by expanding

adventures_with_ip_bsp in Project Explorer and double-clicking on system.mss.

(g) At the top left of the system.mss tab, click Modify this BSP’s Settings.

The Board Support Package Settings window will open.

(h) Select drivers from the left-hand menu and assign the led_controller driver to the

led_controller_0 component and the nco_top driver to the nco_0 component, as

highlighted in Figure 5.18.

Click OK.

The project will now rebuild.

The LMS IP core that we created with Mathworks HDL Coder and the audio codec IP also have

software drivers, but due to their directory structure, we must import their drivers to the

workspace rather than use a repository.

(i) In the Project Explorer panel, expand adventures_with_ip, right-click on src and select

Import.

In the Import window, expand General and double-click on File System.

Click Browse in the top right corner, and navigate to

Figure 5.18: Driver assignment
140Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
C:\Zynq_Book\hdl_coder_lms\hdl_prj\ipcore\lms_pcore_v1_00_a\include.

Click OK, to import the LMS IP driver.

In the right-hand panel, select lms_pcore_addr.h and click Finish.

Note: This directory will only be available if you have completed Exercise 4B of Tutorial 4.

If you have not completed this exercise, you can obtain lms_pcore_addr.h from the source

directory C:\Zynq_Book\sources\adventures_with_ip_integrator\drivers.

(j) Similarly, import the audio controller IP driver, audio.h, from the directory

C:\Zynq_Book\sources\adventures_with_ip_integrator\drivers.

With all the driver files for the IP imported, we can import the source files for our application.

(k) Follow the same procedure as in Step (i) to import the following files from the

C:\Zynq_Book\sources\adventures_with_ip_integrator\software

directory:

• adventures_with_ip.h

• adventures_with_ip.c

• audio.c

• ip_functions.c

The source files will be imported and the application should build.

(l) Open the header file adventures_with_ip.h by double-clicking on it in Project Explorer.

This is the main header file for the software application. At the top of the file you should see a list

of included header files, which define a variety of functions which are used in the software

application.

Further down the file you should see the inclusion of the custom IP header files which we

imported earlier:

/* ‐‐ *

 * Custom IP Header Files *

 * ‐‐ */

#include "audio.h"

#include "lms_pcore_addr.h"

#include "xnco.h"
141Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
As an example of one of the header files that was created during the IP creation process, we will

open the header for the LMS IP core.

(m) In the Outline tab on the right hand side of the SDK window, double click on

lms_pcore_addr.h.

In the LMS header file, you should see the following definitions:

These define the memory-mapped address offsets of the various signals of the LMS peripheral.

Data can be transferred between the peripheral in the PL and the software in the PS by writing to,

or reading from the these offset addresses. The actual address that would be used to access these

signals would be BASE ADDRESS + OFFSET.

Each IP peripheral that we added to our block design in IP Integrator is automatically assigned a

base address in memory. These addresses can be determined from a Xilinx parameters C header

file which is automatically created when exporting an IP Integrator design which contains a Zynq

Processing System. The header file is called xparameters.h.

We shall now explore the Xilinx parameters header file.

(n) Switch back to the adventures_with_ip.h tab in the Editor window.

xparameters.h is included in this main header file, and is therefore accessible from the Outline

tab.

(o) Open xparameters.h by double-clicking on it in the Outline tab.

Here you should see a list of memory base address definitions, along with a number of other

parameters.

As we were previously looking at the LMS header file, we will look at the definition of the base

address for the LMS peripheral.

#define IPCore_Reset_lms_pcore 0x0 //write 0x1 to bit 0 to reset IP core

#define IPCore_Enable_lms_pcore 0x4 //enabled (by default) when bit 0 is 0x1

#define IPCore_Strobe_lms_pcore 0x8 //write 1 to bit 0 after write all input data

#define IPCore_Ready_lms_pcore 0xC //wait until bit 0 is 1 before read output data

#define x_k__Data_lms_pcore 0x100 //data register for port x(k)

#define d_k__Data_lms_pcore 0x104 //data register for port d(k)

#define e_k__Data_lms_pcore 0x108 //data register for port e(k)
142Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
(p) Scroll down the file until you see the following lines:

Here we see the definitions of both the base and high addresses in memory for the LMS

peripheral. As the difference between the high address and the base address is 0xFFFF, the LMS

peripheral has an addressable range of 65536 bits, or 64 Bytes.

Referring back to the memory address offsets for the LMS block in Step (m), if we, for example,

wanted to write data to the input port x(k), we would do this by writing the desired value to the

BASE ADDRESS + OFFSET, which in this case would be:

XPAR_LMS_PCORE_0_BASEADDR + x_k__Data_lms_pcore = 0x43C10000 + 0x100

Giving a unique address of 0x43C10100.

We will now take a look at the main software application file.

(q) Open the source file adventures_with_ip.c by double-clicking on it in Project Explorer.

This file contains the main function, and another function which implements an interactive menu

that allows the user to control the system using keyboard commands via the terminal.

Take a moment to look over the file and note the function calls which are made.

In the main() function, the first set of functions are called to setup and configure the audio

coded. These functions are defined in audio.c, which we will look at next.

(r) Open audio.c.

Here we have the functions which are called to initialise the audio codec and the required I2C

interface in the Zynq PS.

We don’t want to go into great detail about the functionality contained here, but in basic terms

the purpose of these functions is to configure the audio codec by writing to the codec’s control

registers.

/* Definitions for peripheral LMS_PCORE_0 */

#define XPAR_LMS_PCORE_0_BASEADDR 0x43C10000

#define XPAR_LMS_PCORE_0_HIGHADDR 0x43C1FFFF
143Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
Each control register has a unique address which can be accessed via the I2C serial interface.

The control register addresses are defined in the audio.h header file.

(s) Open audio.h.

This file contains a number of definitions relating to the audio codec and the I2C interface, as well

as some prototype function definitions.

You should see an enumerated type which lists all of the audio codec’s control register addresses,

which were mentioned in the previous step.

More information on the audio codec can be found in the data sheet:

http://www.analog.com/static/imported-files/data_sheets/ADAU1761.pdf

Next we will have a look at the functions which control the custom IP peripherals in the PL.

(t) Open ip_functions.c.

This file contains the functions which control the IP peripherals, as well as some functions to

initialise drivers for the GPIO and NCO.

The three functions of interest are:

• audio_stream() — Implements stereo audio loopback between the input and output

ports of the audio codec. Left and right audio samples are read in from the audio

controller peripheral’s I2S receive register and are then written back out to the controller’s

I2S transmit register.

• tonal_noise() — This function builds upon the audio loopback in audio_stream(). A

step size value is input via the slide switches on the board. The corresponding value is

then output to the LEDs on the board by writing to the memory-mapped register of the

LED controller peripheral. The step size value is also output to the NCO peripheral using

the XNco_SetStep_size_v() function defined by the NCO driver file. A sinusoidal

sample created by the NCO peripheral is the read in by the XNco_GetSine_sample_v()

NCO driver function and, as in the previous audio streaming function, left and right audio

samples are received from the audio codec. The sinusoidal noise component is then

added to the left and right audio samples before being written to the audio controller for

output to the codec.
144Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
• lms_filter() — This function combines the functionality of the NCO and the LMS

peripherals to create system which add tonal noise to an audio signal, before using an

LMS adaptive filter for noise cancellation to remove the added noise. As in the

tonal_noise() function, sinusoidal samples are generated from the NCO peripheral

and added to the left and right audio samples from the audio controller. The sinusoidal

sample is then input to the LMS as the input sample x(k) and the sample with added

tonal noise is input as the desired signal d(k). The resulting output of the LMS peripheral

is only read if the user presses any of the push buttons on the board, otherwise the

corrupted audio sample is retained. This allows the user to verify that the LMS filter

peripheral is removing the noise.

Now that we have had a look at the functions and definitions contained in the various source and

header files, we can move on to actually implementing the system on the ZedBoard.

To begin, we will program the Zynq PL with the bitstream that we generated in the previous

exercise.

Note: At this stage ensure that the ZedBoard is powered on and both the PROG and UART USB

ports are connected to your host computer.

You should also ensure that the board is configured to boot from JTAG.
145Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
(u) Select Xilinx Tools > Program FPGA from the Menu Bar. The Program FPGA window should be

configured as in Figure 5.19.

Click Program.

The Zynq PL on the board will be configured with the bitstream and the DONE LED should

turn blue.

At this stage we must invoke PuTTY — the terminal program which you should have downloaded

at the beginning of this tutorial.

(v) At the location which you downloaded PuTTY, double-click PuTTY.exe. As you downloaded

the executable file, Windows may present a security warning. Accept the warning by clicking

Run.

Figure 5.19: Program FPGA window
146Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
(w) PuTTY Configuration should open, as shown in Figure 5.20.

(x) Select Serial as Connection type (highlighted in Figure 5.20) and configure the settings as

specified in Figure 5.21.

NOTE: The value of the Serial line entry will vary depending on which the USB UART cable is

connected to.

In order to determine this value on a Windows system, open the Device Manager and identify

the COM port.

(y) Click Open, to open the terminal connection. The PuTTY terminal window will open.

With the terminal connection open, the final step is the run the software on the Zynq PS.

(z) Right-click on adventures_with_ip in Project explorer and select Run As > Launch on

Hardware (GDB).

Figure 5.20: PuTTY

Figure 5.21: PuTTY configuration
147Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
In the PuTTY terminal you should see the following output:

Note: At this point you should attach an audio patch cable between the PC speaker output and

the board’s Line IN input. Also, connect headphones to the board’s Line OUT input. These

connections are highlighted in Figure 5.22.

(aa) Open the audio file

C:\Zynq_Book\sources\adventures_with_ip_integrator\original_speech.wav

in an audio player, and begin playback.

Note: It may be useful to turn on the repeat setting in the audio player for continuous

playback.

(ab)In the PuTTY terminal window, press the ‘s’ key on your keyboard.

This will prompt the software application to enter the audio_stream() function which we

looked at earlier.

You should be able to hear audio of speech via the headphone connection.

(ac) Press the ‘q’ key on the keyboard to return to the menu.

(ad)Press the ‘n’ key on the keyboard. This will prompt the application to enter the

tonal_noise() function.

Initially you should hear the same audio signal.

You should note that currently there is no step size being input to the NCO.

Push slide switch SW0 into the on position. You should now be able to hear a sinusoidal tone

PC speaker out Headphones

Figure 5.22: ZedBoard audio jacks
148Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
which has been added to the audio signal. LED 0 should also be lit.

Experiment with different step size values by varying the on/off values of slide switches SW1

and SW2. This will vary the frequency of the tonal noise.

(ae) Press the ‘q’ key on the keyboard to return to the menu.

(af) Press the ‘f’ key on the keyboard. This will prompt the application to enter the lms_filter()

function. The basic functionality here is the same as in the previous NCO function, and you can

add tonal noise to the audio signal using the slide switches.

With tonal noise being added to the audio signal, press any of the push buttons on the board.

The sinusoidal tone will be adaptively filtered by the LMS, and the tonal noise removed.

This concludes this exercise on the creation of an audio application in the SDK. You should now

be familiar with:

• The automatically generated xparameters.h header file, and its contents.

• Identifying memory-mapped base addresses and offsets for communication between

software running on the Zynq PS and peripherals in the PL.

• The procedure of configuring the ZedBoard’s ADAU1761 audio codec via the control

register addresses.

• Receiving and sending audio samples to/from the audio codec via an audio controller

block in the PL.

• The process of communicating with custom peripherals in the PL via generated software

drivers.
149Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
150Adventures with IP Integrator
v1.2.1, September 2014

www.zynqbook.com

	Contents
	First Designs on Zynq
	Creating a First IP Integrator Design
	Creating a Zynq System in Vivado
	Creating a Software Application in the SDK

	Next Steps in Zynq SoC Design
	Expanding the Basic IP Integrator Design
	Creating a Zynq System with Interrupts in Vivado
	Creating a Software Application in the SDK
	Adding a Further Interrupt Source

	Designing With Vivado High Level Synthesis
	Creating Projects in Vivado HLS
	Design Optimisation in Vivado HLS
	Interface Synthesis

	IP Creation
	Creating IP in HDL
	Creating IP in MathWorks HDL Coder
	Creating IP in Vivado HLS

	Adventures with IP Integrator
	Importing IP to the Vivado IP Catalog
	ZedBoard Audio in Vivado IP Integrator
	Creating an Audio Software Application in SDK

