
PV213 EIS in Practice: 09 - Testing 1

PV213 Enterprise Information Systems

in Practice

09 – Testing

PV213 EIS in Practice: 09 - Testing 2

PV213 EIS in Practice: 09 - Testing 3

PV213 EIS in Practice: 09 - Testing 4

Content of this presentation

Purpose of testing

Test process

Multilevel testing

Static techniques

Blackbox and Whitebox testing

Risk-based testing strategy

Test-driven development

Test automation and regression testing

Testing

Process of validating and verifying that a product fits

requirements

PV213 EIS in Practice: 09 - Testing 5

PV213 EIS in Practice: 09 - Testing 6

Reason for testing

Human activity  errors

SW works unexpectly

system may fail (or do something it shouldn’t)

loosing money

time or business reputation

injury, even death

Defects in software, system or document may result in

failures, but not all defect do so

AT&T Phone System Crash, 1990

What happened

Mal-function in central server led to
chain reaction

Service outage of half of the system
for 9 hours

Loss of 75 million dollars damage for
AT&T

Reasons

Wrong usage of break command

Software update directly in largest
part of the system

switch expression {

 …

 case (value):

 if (logical) {

 statement;

 break;

 } else {

 statement;

 }

 statement;

 …

}

7 PV213 EIS in Practice: 09 - Testing

PV213 EIS in Practice: 09 - Testing 8

Role of testing

Reduce risk of problems occurring during operation

Quality assurance activity

Requirement in contract, industry-specific standards

How much testing needed ?

Depends on the level of risk (technical, business, safety) and

project constraints (time, budget)

Should provide sufficient information to stakeholders to make

decision about the release for the next development phase or

handover to the customers

PV213 EIS in Practice: 09 - Testing 9

Tests as % of overall development

Internal survey of teams in UK (25%)

Internal survey (30%)

Microsoft, Borland, Novell, WordPerfect (33%)

Microsoft Windows (50%)

Lotus 1-2-3 (66%)

Aerospace, Nuclear Power Plants, … (90%)

0%

PV213 EIS in Practice: 09 - Testing 10

Testing activities

Planning and control

Choosing test approach

Design and test case execution

Checking results

Evaluating exit criteria

Reporting results

Tracking bugs

Review of documents, source code, ...

Conducting static/dynamic analysis

PV213 EIS in Practice: 09 - Testing 11

Cost Effort

Time

Release

Good testing

No testing

Until end of realization
No testing approach is cheaper

It’s no what it costs,
It’s what it saves.
 Rex Black

PV213 EIS in Practice: 09 - Testing 12

Basic Testing Principles

Principle 1 – Testing shows presence of defects

Principle 2 – Exhaustive testing is impossible

Principle 3 – Early testing

Principle 4 – Defect clustering

Principle 5 – Pesticide paradox

Principle 6 – Testing is context dependent

Principle 7 – Absence-of-errors fallacy

PV213 EIS in Practice: 09 - Testing 13

Historical view

Show it works
(demonstration)

1950s view

Find defects
(detection)

1975s view

Measure quality
Evaluation
(prediction)

1980s view

Influence quality
Control quality
(prevention)

1990s view

Optimisation
Improvement
(process)

2000s view

Time

PV213 EIS in Practice: 09 - Testing 14

Test process

Test planning and control

Test analysis and design

Test implementation and execution

Evaluating exit criteria and reporting

Test closure activities

Although logically sequential, the activities in the process may overlap

or take place concurrently.

Tailoring these main activities within the context of the system and the

project is usually required.

DO

PLAN
ACT

CHECK

PV213 EIS in Practice: 09 - Testing 15

Multilevel testing

A common type off V-model uses four test levels,
corresponding to the four development levels.

Component (unit) testing

Integration testing

System testing

Acceptance testing

PV213 EIS in Practice: 09 - Testing 16

Multilevel testing – Component Testing

Test basis:

Component requirements

Detailed design

Code

Typical test objects:

Components

Programs

Data conversion / migration programs

Database modules

PV213 EIS in Practice: 09 - Testing 17

Multilevel testing – Integration Testing

Test basis:

Software and system design

Architecture

Workflows

Use cases

Typical test objects:

Subsystems

Database implementation

Infrastructure

Interfaces

System configuration and configuration data

PV213 EIS in Practice: 09 - Testing 18

Multilevel testing – System Testing

Test basis:

System and software requirement specification

Use cases

Functional specificaton

Risk analysis reports

Typical test objects:

System, user and operation manuals

System configuration and configuration data

PV213 EIS in Practice: 09 - Testing 19

Multilevel testing – Acceptance Testing

Test basis:

User requirements

System requirements

Use cases

Business processes

Risk analysis reports

Typical test objects:

Business processes on fully integrated system

Operational and maintenance processes

User procedures

Forms

Reports

Configuration data

PV213 EIS in Practice: 09 - Testing 20

Multilevel testing – Alpha and Beta testing

Developers of market, software often want to get feedback
from potential or existing customers in their market before
the software product is put up for sale commercially.

Alpha testing is performed at the developing

organization’s site but not by the developing team.

Beta testing, or field-testing, is performed by customers

or potential customers at their own locations.

Test exit criteria – unit and integration tests examples

All unit and integration tests and results are documented

There can be no High severity bugs

There must be 100% statement coverage

There must be 100% coverage of all programming

specifications

The results of a code walkthrough and they are

documented and acceptable

21 PV213 EIS in Practice: 09 - Testing

Test exit criteria – system tests examples

All test cases must be documented and run

90% of all test cases must pass

All test cases high risk must pass

All medium and high defects must be fixed

Code coverage must be at least 90% (including unit and

integration tests)

22 PV213 EIS in Practice: 09 - Testing

Test exit criteria – acceptance tests examples

There can be no medium or high severity bugs

There can be no more than 2 bugs in any one feature or 50 bugs

total

At least one test case must pass for every requirement

Test cases 23, 25 and 38-72 must all pass

8 out of 10 experienced bank clerks must be able to process a loan

document in 1 hour or less using only the on-line help system

The system must be able to process 1000 loan applications/hour

The system must be able to provide an average response time of

under 1 second per screen shift with up to 100 users on the system

The users must sign off on the results

23 PV213 EIS in Practice: 09 - Testing

Test exit criteria – also possible

Time is over

Budget is used up

The boss says “ship it!”

Testing is never finished, it’s stopped!

Software products are never released, they escape!

24 PV213 EIS in Practice: 09 - Testing

PV213 EIS in Practice: 09 - Testing 25

Static techniques: Static code analysis

Typical defects discovered by static analysis tools include:

Referencing a variable with an undefined value

Inconsistent interfaces between modules and components

Variables that are not used or are improperly declared

Unreachable (dead) code

Missing and erroneous logic (potentially infinite loops)

Overly complicated constructs

Programming standards violations

Security vulnerabilities

Syntax violations of code and software models

Static code analysis tools

Black box testing

No knowledge of internal
implementation (user view)

White box testing

Internal implementation is know
and usually also tested

Black box and white box testing

PV213 EIS in Practice: 09 - Testing 26

Risk-based testing strategy

Base the testing strategy on business goals and priorities

=> Risk-based testing strategy

No risk = No test

Risk = P x D

P … probability of failure

D … damage (consequnce & cost for business & test &

usage)

27 PV213 EIS in Practice: 09 - Testing

Damage (consequence, cost)

p
ro

b
a
b
ili

ty

lo
w

medium high low

m
e
d
iu

m

h
ig

h

10

4

3

13

17

29

14

35

33

28 PV213 EIS in Practice: 09 - Testing

Broker Sales
system

User Interface

Policy and Client
Converter

Policy
Printing
system

Policy
Management

system

Intranet Internet

Client system

Campaign
Creation system

Campaign
Manager

Marketing
Campaign

Printing and
Distribution system database

29 PV213 EIS in Practice: 09 - Testing

Test data selection

Best guess

Intuition and hope and luck

Random choice

Expert know-how

All combinations

Every combination used in test cases

Suitable for trivial cases

Each choice

Each value of each parameter to be included in at least one test

case

30 PV213 EIS in Practice: 09 - Testing

SW to control test execution

Code driven testing

Graphical user interface testing

Limitations (Minefield metaphor)

Test Automation

31 PV213 EIS in Practice: 09 - Testing

Test-Driven Development (TDD)

32 PV213 EIS in Practice: 09 - Testing

TDD – calculator example

public class CalculatorFixture extends ColumnFixture {

 public int x;

 public int y;

 public int add() { return 0; }

 public int subtract() { return 0; }

 public int multiply() { return 0; }

 public int divide() { return 0; }

}

x y add() subtract() multiply() divide()

0 0 0 0 0 error

1 1 2 0 1 1

4 2 6 2 8 2

9 3 12 6 27 3

35 5 40 30 175 7

33 PV213 EIS in Practice: 09 - Testing

TDD – calculator example

public class CalculatorFixture extends ColumnFixture {

 public int x;

 public int y;

 public int add() { return 0; }

 public int subtract() { return 0; }

 public int multiply() { return 0; }

 public int divide() { return 0; }

}

x y add() subtract() multiply() divide()

0 0 0 0 0 expected: error

1 1 expected: 2

actual: 0

0 expected: 1

actual: 0

expected: 1

actual: 0

4 2 expected: 6

actual: 0

expected: 2

actual: 0

expected: 8

actual: 0

expected: 2

actual: 0

9 3 expected: 12

actual: 0

expected: 6

actual: 0

expected: 27

actual: 0

expected: 3

actual: 0

35 5 expected: 40

actual: 0

expected: 30

actual: 0

expected: 175 actual:

0

expected: 7

actual: 0

34 PV213 EIS in Practice: 09 - Testing

TDD – calculator example

public class CalculatorFixture extends ColumnFixture {

 public int x;

 public int y;

 public int add() { return x+y; }

 public int subtract() { return x-y; }

 public int multiply() { return 0; }

 public int divide() { return 0; }

}

x y add() subtract() multiply() divide()

0 0 0 0 0 expected: error

1 1 2 0 expected: 1

actual: 0

expected: 1

actual: 0

4 2 6 2

expected: 8

actual: 0

expected: 2

actual: 0

9 3 12 6 expected: 27

actual: 0

expected: 3

actual: 0

35 5 40

30 expected: 175 actual:

0

expected: 7

actual: 0

35 PV213 EIS in Practice: 09 - Testing

Result of the refactoring

public class Calculator {

public int plus(x, y) { return x + y; }

public int minus(x, y) { return x - y; }

public int times(x, y) { return x * y; }

public int divide(x, y) { return x / y; }

}

public class CalculatorFixture extends ColumnFixture {

 public int x;

 public int y;

 private Calculator calc;

 public CalculatorFixture() { calc = new Calculator(); }

 public int add() { return calc.plus(x,y); }

 public int subtract() { return calc.minus(x,y); }

 public int multiply() { return calc.times(x,y); }

 public int divide() { return calc.divide(x,y); }

}

36 PV213 EIS in Practice: 09 - Testing

Regression Testing

The fundamental problem with software maintenance is that fixing a

defect has a substantial (20-50 %) chance of introducing another.

Frederick P. Brooks, Jr., 1995

When you fix one bug, you introduce several newer bugs.

ISTQB Glossary (2007)

Testing of a previously tested program following modification to

ensure that defects have not been introduced or uncovered in

unchanged areas of the software, as a result of the changes

made. It is performed when the software or its environment is

changed.

37 PV213 EIS in Practice: 09 - Testing

Regression Testing – test selection strategy

Retest all

Retest by risk – priority, severity, criticality

Retest by profile (frequency of usage)

Retest changed parts

Retest parts that are influenced by changes

38 PV213 EIS in Practice: 09 - Testing

PV213 EIS in Practice: 09 - Testing 39

Some characteristics of good testing

For every development activity there is a corresponding

testing activity

Each test level has test objectives specific to that level

The analysis and design of tests for a given test level should

begin during the corresponding development activity

Testers should be involved in reviewing documents as soon

as drafts are available in the development life cycle

40

Continuous Integration example

Production

Module Tests, run in "common mode"
4,000

Note: PureCov & Purify on a weekly base

Automated Installation

Pre-Integration Tests
100 (as far as they fit into the 24h-frame)

Sanity Tests (on target-machine)

Bring-Up & Sanity Tests
Plus Integration Regression Tests that fit into a 24-hours run

Integration tests
Cca 1,800 fully automated regression and feature tests

PV213 EIS in Practice: 09 - Testing

Development tools

example

PV213 EIS in Practice: 09 - Testing 41

Certifications

ISTQB (International Software Testing Qualifications Board)

PV213 EIS in Practice: 09 - Testing 42

Next lessons

21.4. Introduction to Safety Critical Software

Development in Aerospace (Radek)

28.4. Retrospective, final game (Ales)

PV213 EIS in Practice: 09 - Testing 43

PV213 EIS in Practice: 09 - Testing 44

Děkuji za pozornost.

