Model of Stream Processing Applications

Filip Nálepa

Outline

- Introduction
- Model
- Performance analysis

Introduction

- Stream processing application
 - Infinite streams of data
 - Tasks
 - Resources
- Focus: multimedia data, event detection
- Goal: performance analysis (delay)
- How: create a model

Model Structure

Workflow (streams, tasks)

System (resources, links)

Deployment (tasks at resources)

Workflow Model

- Processing cost
- Waiting time
- Data size
- Output frequency

Processing Cost

- Multimedia data variable cost
- Single value (average, maximum) inaccurate

Processing Cost

- Multimedia data variable cost
- Single value (average, maximum) inaccurate
- Probability function e.g., 1 s in 90 %; 4 s in 10 %

New data item every

2 seconds

Task

Possible cost sequences:

- 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1; maximum delay: 4 s
- 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1; maximum delay: 6 s

Processing Cost

- Multimedia data variable cost
- Single value (average, maximum) inaccurate
- Probability function e.g., 1 s in 90 %; 4 s in 10 %

New data item every

2 seconds

Possible cost sequences:

- 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1; maximum delay: 4 s
- 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1; maximum delay: 6 s

Solution: specify maximum number of 4s items in a row

Processing Cost Cumulative Function

- $cost(\Delta) = x$, where x is the maximum number of processing units (e.g., CPU cycles) needed to process any sequence of data items of length Δ
- Example:
 - Cost sequence: 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1
 - $-\cos(1) = 4$
 - $-\cos(2) = 8$
 - $-\cos t(3) = 9$
- Analogically minimal cost

Workflow Model

- Processing cost cumulative function
- Waiting time external service, cumulative function
- Data size cumulative function
- Output frequency cumulative function
 - Time based maximal/minimal number of items output per a given time interval
 - Processed items based maximal/minimal number of items output per any sequence of processed data items of a given length

System Model

Deployment Model

Tasks at resources

- Split maximal/minimal number of data items for each outgoing edge per any sequence of a given length, i.e., cumulative functions
- Scheduling strategy

Performance Analysis

- Direct analysis of the model
- Model conversion to a well-known model of distributed systems
 - Colored Petri Nets (CPNs)
 - Formal state space exploration computationaly intensive
 - Simulation estimate

Model to CPN

Hierarchical structure

Petri Net Examples

Summary

- Model of stream processing applications
 - Workflow model tasks and streams
 - Processing cost, waiting time, data size, output frequency
 - System model resources and links
 - Computational power, link bandwidth
 - Deployment model tasks at resources
 - Scheduling strategy
- Performance analysis
 - Conversion to CPN
 - Simulation

