MOTION CAPTURE TECHNOLOGIES

24. 3. 2015 DISA Seminar

Jakub Valcik

Outline

Human Motion and Digitalization

- Motion Capture Devices
 - Optical
 - Ranging Sensor
 - Inertial and Magnetic

□ Comparison

Human Motion

Brain + Skeleton + Muscles

Internal factors

- Musculature
- Skeleton
- Weight
- Injuries
- Movement habits
- Pregnancy
- State of mind

External Factors

- Shoes
- Clothes
- □ Type of surface
- □ Slope of surface
- Wind
- Gravity
- Environment

Motion Capture

 \Box Sequence of individual frames γ

$$m = (f_k)_{k=1}^n$$

- Captured information
 - Static body configuration
 - Position in space
 - Orientation of body
- □ Silhouette vs. Skeleton

Appearance Based Approaches

Eadweard Muybridge, 1878

Boys Playing Leapfrog, printed 1887

Appearance Base Approaches

□ Originally only regular video cameras, CCTV □ Silhouette oriented $f_k \coloneqq B_k(x, y) \in \{0, 1\}$

Silhouette extraction is a common bottleneck

Model Based Approaches

- Additional abstraction 2D, 3D
 Stick figure, volumetric model, ...
- Skeleton
 - Joint (or end-effector), Bone
 - Undirected acyclic graph J tree
 - Joint ~ Vertex, Bone ~ Edge
 - Static configuration ~ Pose $p \in \mathbb{R}^{3 \times |V(J)|}$

$$\square m = (f_k)_{k=1}^n = (p_k)_{k=1}^n$$

Motion Capture Devices

- Optical
 Markerless
 Invasive
 Inertial
 Magnetic
- Mechanical
- Radio frequency

Both, appearance and model based approaches

Only model based approaches

Optical Markerless MoCap Devices

- □ 3D scene reconstruction
 - Multiple views
 - Depth sensors
- RGB stereoscopic cameras
- Multiple synchronized cameras
- Additional sensors
 - Silhouette extraction
 - Depth sensing
 - IR camera, ranging sensor

Ranging Sensor - Triangulation

- Laser beam + IR camera
- Projection grid 'structured light'
- Known variables
 - Emitter-camera distance
 - Dot distribution in grid
- \Box Depth \sim dot translation
- \Box Grid resolution $\uparrow \downarrow$ Object distance
- PrimeSense (now Apple)
 - Project Natal => Kinect

Kinect v1 IR Structured Light

Kinect v1 – Reference Points

Kinect v1 – Point Shift (1)

Kinect v1 – Point Shift (2)

Ranging Sensor – Time of Flight

- □ Light speed $c \doteq 300\ 000\ ^{km}/_{s} = 30\ ^{cm}/_{ns}$
- Principles
 - RF modulated phase shift
 - Swiss Ranger 4000
 - PMD CamCube 3.0
 - Canesta Vision (now MS)
 - Range gated
 - Zcam by 3DV (now MS)
 - TriDiCam
 - Direct ToF 3D flash LIDAR
 - Advanced Scientific Concepts, Inc.

Ranging Sensor Comparison

Depth Sensor	Maximal Range	Resolution	Field of View [°]	Repeatability [mm](1 Sigma)
Kinect v1	10m	640x480	57.8 x 43.3	7.6@2m, 27.5@4m
Swiss Ranger 4000	8m	176x144	43 x 34 / 69 x 56	4/6
PMD CamCube 3.0	7m	200x200	40 x 40	3@4m

Camera Types Comparison

Interference comparison

Camera Type	Complex Background	Heat Source	Other Camera	Clothes
RGB (B/W)	00	••	••	00
IR	• 0	00	••	••
Ranging	••	• 0	00	• 0

Optical Markerless MoCap Devices

- Stereoscopic video cameras
 - Sony Playstation Eye
- Video camera + ranging sensor triangulation
 - MS Kinect v1, Asus Xtion live, Structure Sensor, PrimeSense Carmine 1.08
- Video camera + ranging sensor ToF
 - MS Kinect v2
- 360° video cameras
 - Organic Motion

PrimeSens Carmine

Asus Xtion Live

Structured Sensor

Microsoft Kinect v1

Price \$300

Fun fact #1: Body part estimation based on ML, Learning phase take 24,000 CPU hours

Organic Motion Openstage2

Starting price \$40,000

Invasive Optical MoCap Devices

- □ Active vs. Passive
- Multiple RGB & IR cameras
- Precise, fast
- Price, markers, additional electric source (active)
- Problems
 - Marker swapping

MoCap Suite

Starting price \$100,000 ?

62

Inertial & Magnetic MoCap Devices

- Acceleration, magnetic flux
- No global position nor orientation
- Pose initialization
- Accumulation of error
- □ Gravity, wiring, reinforced concrete

MVN XSens

Feature	MVN Awinda	MVN Link
Trackers	17 Wireless	17 Wired
Latency	30ms	20ms
Wireless range	20m/50m	50m/150m
Output rate	60Hz	240Hz

Starting price from \$12,000

Other MoCap Devices

- Mechanical system
 - Exoskeleton directly measures joint angle rotations
- Radio Frequency Positioning
 - RADAR working on high frequencies >50GHz
 - Inaccurate, large areas (hundreds of meters²)

MoCap Devices Comparison

Sensor name	Range	Resolution	Framerate	Sensor Type	Invasive	Field of View
Kinect v1	0.8-4m	640x480	30Hz	RGB, IR-triangulation	-	57°
Kinect v2	0.5-4.5m	512x424	30Hz	RGB(1080p), ToF, IR	-	70°
				camera		
Asus Xtion Pro Live	0.8-3.5m	640x480	30Hz	RGB, IR-triangulation	-	58°
PrimeSense Carmine 1.08	0.8-3.5m	640x480	30Hz	RGB, IR-triangulation	-	57.5°
Structure Sensor	0.4-3.5	640x480	30Hz	RGB, IR-triangulation	-	58°
Playstation Eye Camera	30cm-inf	1280x800	120Hz	2RGB	-	85°
Vicon MX40+	space 7x7m	2352x1728	120Hz	8-40 cameras (IR &	markers	360°
				RGB combination)		
Xsens MVN	-	0.05 deg	120Hz	17 Inertial and mag-	on body	-
				netic sensors	sensors	
Organic Motion BioStage	space 4.3x3.8m	640x480	120Hz	12-24 cameras (B/W)	-	360°

MoCap Software Comparison

Sensor	Software	Tracked Subjects	Morphology Stability	Positional Accuracy	Rotational Accuracy [°]	Landmarks
				[mm]		
Kinect v1	Kinect SDK v1.*	2	No	50 - 150	?	20
Kinect v1	OpenNi+Nite 1.3	2	No	50 - 150	?	15
Kinect v2	Kinect SDK v2	6	No	?	1 - 3	25
Vicon MX40	Vicon-Workstation V4.6/142	?	Yes	0.063	?	32 - variable
Xsens MVN	MVN Human model	1	Yes	-	0.5 - 1	22
Organic Motion	OpenStage2	5	Yes	1	1 - 2	22

Joint Tracking Error Kinect v1

Joint	System	Walk	360	Hide	Box	Occ	Sit
Head	MSSDK	15.8	17.2	16.1	13.2	32.5	14.8
	NITE	10.6	11.8	13.3	12.2	76.2	11.0
Neck	MSSDK	11.2	14.5	10.9	8.5	31.8	7.7
	NITE	4.6	4.9	3.2	10.5	76.6	5.7
Torso	MSSDK	4.4	5.9	3.9	10.1	30.7	7.5
	NITE	6.7	6.7	6.8	15.5	82.0	12.1
Shoulders	MSSDK	7.8	16.8	5.8	9.3	34.6	7.9
	NITE	5.6	18.6	7.1	8.7	82.4	9.2
Elbows	MSSDK	9.6	28.6	7.6	6.4	42.5	8.7
	NITE	9.0	32.0	7.4	9.1	78.5	11.1
Hands	MSSDK	14.8	47.3	15.6	12.2	52.9	14.1
	NITE	14.8	50.2	11.0	15.9	84.7	14.2

Cosgun, A., Bünger, M., & Christensen, H. I. (2013). Accuracy Analysis of Skeleton Trackers for Safety in HRI (p. 1).

Percentage of Tracked Frames Kinect v1

Joint	System	Walk	360	Hide	Box	Occ	Sit
Head	MSSDK	100	100	100	100	66	100
	NITE	91	99	93	82	83	68
Neck	MSSDK	100	100	100	100	67	100
	NITE	100	100	100	100	83	99
Torso	MSSDK	100	100	100	100	67	100
	NITE	100	100	100	100	83	99
Shoulders	MSSDK	100	73	100	100	60	99
	NITE	100	100	100	100	83	99
Elbows	MSSDK	100	75	100	96	57	74
	NITE	99	90	100	71	59	95
Hands	MSSDK	100	76	58	48	47	86
	NITE	99	88	100	70	58	94

Cosgun, A., Bünger, M., & Christensen, H. I. (2013). Accuracy Analysis of Skeleton Trackers for Safety in HRI (p. 1).

Thank you for your attention

Resources

- <u>http://nongenre.blogspot.cz/2010/12/how-kinect-senses-depth.html</u>
- □ <u>http://www.freepatentsonline.com/20100118123.pdf</u>
- http://users.dickinson.edu/~jmac/selectedtalks/kinect.pdf
- http://www.nimbocg.com.br/wpcontent/uploads/2013/02/mocap11.jpg
- Other sources cited in thesis